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1 Unidad de Genética, Instituto de Investigación Sanitaria-La Fe, 46009 Valencia, Spain
2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
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Usher syndrome (USH) is an autosomal recessive disease characterized by hearing loss, retinitis pigmentosa (RP), and, in some
cases, vestibular dysfunction. It is clinically and genetically heterogeneous and is the most common cause underlying deafness
and blindness of genetic origin. Clinically, USH is divided into three types. Usher type I (USH1) is the most severe form and
is characterized by severe to profound congenital deafness, vestibular areflexia, and prepubertal onset of progressive RP. Type II
(USH2) displays moderate to severe hearing loss, absence of vestibular dysfunction, and later onset of retinal degeneration. Type
III (USH3) shows progressive postlingual hearing loss, variable onset of RP, and variable vestibular response. To date, five USH1
genes have been identified: MYO7A (USH1B), CDH23 (USH1D), PCDH15 (USH1F), USH1C(USH1C), and USH1G(USH1G).
Three genes are involved in USH2, namely, USH2A (USH2A), GPR98 (USH2C), and DFNB31 (USH2D). USH3 is rare except in
certain populations, and the gene responsible for this type is USH3A.

1. Introduction

Usher syndrome (USH) was first described by von Graefe in
1858 and is characterized by the association of sensorineural
hearing loss, retinitis pigmentosa (RP), and, in some cases,
vestibular dysfunction. Its heritability was established by
Charles Usher, a British ophthalmologist [1]. The syndrome
is inherited in an autosomal recessive pattern. The syndrome
is the most frequent cause of deaf-blindness, accounting for
more than 50% of individuals who are both deaf and blind
[2, 3], about 18% of RP cases [4], and 5% of all cases
of congenital deafness [5]. Its range of prevalence is 3.2–
6.2/100,000 depending on the study [2, 4, 6–8].

Usher patients present progressive photoreceptor degen-
eration in the retina called retinitis pigmentosa, which
leads to a loss of peripheral vision. This degeneration is
predominantly attributable to rod dysfunction, although
cones usually degenerate later in the course of the disease.

Clinical symptoms may vary and include night blind-
ness (nyctalopia) with elevated dark adaptation thresholds,
abnormal electroretinogram responses, visual field constric-
tion, abnormal retinal pigmentation including peripheral
bone spicules, arterial narrowing, and optic-nerve pallor, and
predisposition to myopia and posterior subcapsular cataracts
[9].

The human inner ear consists of the cochlea, a snail-
shaped organ which mediates sound transduction, and
the vestibular labyrinth, which detects gravitational force
and angular and linear accelerations. Both structures have
specialized hair cells which convert mechanical stimuli
into variations of intracellular potential, thus transmitting
afferent nerve signals toward the brain. On the apical surface
of these cells there is a mechanosensitive organelle, the
hair bundle, which consists of precisely organized actin-
filled projections known as stereocilia. In Usher syndrome
patients, alteration in the morphogenesis and stability of
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stereocilia results in sensorineural hearing loss and may also
cause balance defects [10].

The majority of patients with Usher syndrome usually
fall into one of three clinical categories [11]. Of these, Usher
syndrome type I (USH1) is the most severe form, consisting
of profound hearing loss and vestibular dysfunction from
birth. Moreover, onset of RP occurs earlier in USH1 than
in Usher syndrome type II (USH2), which produces less
severe congenital hearing loss and does not impair normal
vestibular function. In most populations, USH1 accounts
for approximately one-third of USH patients whereas two-
thirds are classified as USH2. Usher syndrome type III
(USH3) is a less common form except in such populations
as Finns and Ashkenazi Jews. In this USH3 type, hearing loss
is progressive and leads to variable vestibular dysfunction
and onset of RP. Table 1 outlines the clinical characteristics
of each type. Some cases are not easily classifiable under
the aforementioned categories and could be categorized as
atypical USH syndrome [12].

All subtypes are genetically heterogeneous and 12 loci
have been described, namely, USH1B-H, USH2A, C-D, and
USH3A-B (hereditary hearing loss homepage: http://hered-
itaryhearingloss.org). Nine genes have been identified
through the discovery of a mouse homolog or by positional
cloning. There are five USH1 genes that codify known prod-
ucts: myosin VIIA (MYO7A), the two cell-cell adhesion cad-
herin proteins cadherin-23 (CDH23) and protocadherin-15
(PCDH15), and the scaffold proteins harmonin (USH1C)
and SANS (USH1G). The three identified USH2 genes are
USH2A, which codes for the transmembrane protein usherin
(USH2A); the G-protein-coupled 7-transmembrane receptor
VLGR1 (GPR98), and whirlin (DFNB31), another scaf-
folding protein. The USH3A gene encodes clarin-1, which
exhibits 4 transmembrane domains. Mutations in any one of
these genes cause primary defects of the sensory cells in the
inner ear and the photoreceptor cells of the retina, both being
the source of the clinical symptoms of USH.

Many of these genes can also cause either nonsyndromic
hearing loss (NSHL) or isolated RP. In fact, MYO7A causes
DFNB2/DFNA11 [13, 14]; USH1C also causes DFNB18
[15, 16]; CDH23 causes DFNB12 [17, 18]; PCDH15 causes
DFNB23 [19]; mutations in DFNB31 also lead to DFNB31
[20, 21]. Moreover, some mutations in the USH2A gene
cause isolated RP [22]. Table 2 shows the genetic classifica-
tion of Usher syndrome, the implicated loci and responsible
genes, as well as the involvement of USH in nonsyndromic
hearing loss and RP.

2. Usher Syndrome Type I

2.1. Clinical Features. Usher syndrome type I is the most
severe form. USH1 patients suffer from severe to profound
congenital and bilateral sensorineural hearing loss. These
individuals are either born completely deaf or experience
hearing impairment within the first year of life and usually
do not develop speech.

Constant vestibular dysfunction is present from birth;
children manifest a delay in motor development and begin
sitting independently and walking later than usual.

Onset of retinitis pigmentosa occurs during childhood,
resulting in a progressively constricted visual field and
impaired visual acuity which rapidly proceeds to blindness.
Anomalies of light-evoked electrical response of the retina
can be detected by electroretinography at 2-3 years of age,
which allows for early diagnosis of the disease.

2.2. Genetic Findings. Seven loci (USH1B–USH1H) have
been mapped and five causative Usher genes have been
cloned: MYO7A, USH1C, CDH23, PCDH15, and USH1G,
which are known to be implicated in USH1B, USH1C,
USH1D, USH1F, and USH1G, respectively.

Several studies have investigated the MYO7A gene, iden-
tifying a wide range of mutations (reviewed in [23]). These
reports reveal that the myosin VIIA gene bears the main
responsibility for Usher type I. Its implication ranges from
29% to ∼50% in different populations [24–27]. CDH23 is
probably the second most common mutated gene underlying
USH1. Its prevalence accounts for 19%–35% of USH1
families [23, 25, 26, 28]. The next most frequent is PCDH15,
reportedly involved in about 11%–19% of USH1 cases with
and a significant proportion of cases due to large genomic
rearrangements [25, 26, 29, 30]. The remaining genes show
a minor implication in the disorder, with the USH1C gene
accounting for 6%-7% [25, 26] and the USH1G for 7% as
seen in USH1 populations from the United States and the
United Kingdom [31]. However, in cohorts of USH1 patients
from France and Spain screened for the USH1G gene, no
pathological mutations have been identified [26, 32]. There
are some exceptions to this distribution due to mutation
founder effects in specific populations. As an example, the
mutation c.216G>A in USH1C found in French Canadians
of Acadian origin accounts for virtually all USH1 cases in this
population [33] but has not been found in other populations;
or the c.733C>T (p.R254X) in the PCDH15 [34] gene, which
is present in up to 58% of USH1 families of Ashkenazi origin.

3. Usher Syndrome Type II

3.1. Clinical Features. Firstly, RP symptoms manifest later in
USH2 patients than in their USH1 counterparts, for whom
onset occurs during or after puberty.

The degree of hearing impairment in patients diagnosed
with USH2 increases from moderate in low frequencies to
severe in high frequencies, tending to remain stable. Hearing
loss is congenital but may be detected at later stages when it
hinders communication.

Vestibular function in Usher type II patients is normal.

3.2. Genetic Findings. To date, three loci (USH2A, USH2C-
2D) have been proposed as being responsible for USH2, and
three causative genes have been identified: USH2A (USH2A),
GPR98 (USH2C), and DFNB31 (USH2D).

Mutational screenings performed on the long isoform of
the USH2A gene exons have shown that USH2A is involved
in 55%–90% of USH2 cases [35–39]. Of the high number
of mutations detected in this huge gene, the c.2299delG
mutation is the most prevalent and accounts for 45%–15%
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Table 1: Clinical features of Usher syndrome types.

USH1 USH2 USH3

Hearing loss
Severe to profound Moderate to severe Moderate to severe

Congenital Congenital Progressive

Stable Stable

Vestibular function Altered Normal Variable

RP onset Usually prepubertal Around pubertyor postpubertal Around puberty or postpubertal

Language Unintelligible Intelligible Intelligible

Table 2: Genetic classification of Usher syndrome.

Locus Location Gene/protein Function

USH1B/DFNB2/DFNA1 11q13.5 MYO7A/myosin VIIA IE and R: transport

USH1C/DFNB18 11p15.1 USH1C/harmonin IE and R: scaffolding

USH1D/DFNB12 10q22.1 CDH23/cadherin 23 IE: tip link formation; R: periciliary maintenance

USH1E 21q21 −/− Unknown

USH1F/DFNB23 10q21.1 PCDH15/protocadherin 15 IE: tip link formation; R: periciliary maintenance

USH1G 17q25.1 USH1G/SANS IE and R: scaffolding and protein trafficking

USH1H 15q22-23 −/− Unknown

USH2A/RP 1q41 USH2A/usherin
IE: ankle links formation and cochlear development; R:
periciliary maintenance

USH2C 5q14.3 GPR98/VLGR1
IE: ankle links formation Cochlear development; R: periciliary
maintenance

USH2D/DFNB31 9q32-34 DFNB31/whirlin IE: scaffolding and cochlear development; R: scaffolding

USH3A 3q25.1 USH3A/clarin-1 IE and R: probable role in synapsis transport∗

USH3B 20q −/− Unknown

USH: usher syndrome; DFNB: autosomal recessive deafness; DFNA: autosomal dominant deafness; RP: retinitis pigmentosa; IE: inner ear; R: retina.
∗A role in the retinal and inner ear synapses as been proposed for all the USH proteins. This remains to be elucidated.

of all mutated alleles [37, 40]. The c.2299delG mutation
appears to be an ancestral mutation of European origin
which spread from Europe to other regions of the world
during colonization, and it shows a particular distribution
decreasing in frequency from Northern to Southern Europe
[40]. Again, a founder effect has been identified for the
c.4338 4339delCT deletion (p.C1447QfsX29) in the USH2A
gene which accounts for 55.6% of the USH2 alleles among
Quebec French-Canadians [41].

To date, few mutation screenings have been published on
GPR98, although based upon the results available, mutations
in GPR98 do not seem to be responsible for a large
proportion of USH2 cases, approximately 3%–5.6% [39, 42].

Ebermann et al. found two DFNB31 mutations in a
German family suffering from USH2 [21]. Later, in a
transnational study, Aller et al. failed to find any pathological
mutation in a series of 195 USH patients [43]. DFNB31
mutations appear to be a rare cause of recessive hearing loss
and Usher syndrome.

4. Usher Syndrome Type III

4.1. Clinical Features. The onset of RP symptoms (nyc-
talopia, progressive constriction of visual field, and reduction
of central visual acuity) is variable though usually occurs by
the second decade of life.

Sensorineural hearing loss is postlingual and progressive
and can appear between the first and third decade of life.
In its initial stages, the degree of hearing impairment is
similar to that seen in USH2, with major impairment seen
in high frequencies. The progression rate is variable but, in
most cases, hearing loss becomes profound. Nevertheless,
hearing levels during the first stages of development are good
enough to permit well-developed speech. Thus, successive
audiometric examinations are needed in USH3 patients in
order to obtain an accurate clinical diagnosis. The vestibular
responses are also variable, with 50% of cases experiencing
impairment.

4.2. Genetic Findings. Although the USH3A gene was initially
described as being responsible for USH3 cases, recent
studies have demonstrated that mutations in USH3A can
also produce clinical forms of Usher that are similar to
USH1 and USH2 [44, 45]. Usher syndrome type III is the
least common clinical type of the syndrome in the general
population. However, in some populations like the Finns
or the Ashkenazi Jews, the syndrome accounts for over
40% of USH cases due to the mutation founder effect of
c.300T>C (p.Y176X; known as the Finn mayor mutation)
and c.143T>C (p.N48K), respectively, [46, 47].

The existence of a second locus for this clinical type
(USH3B) was suggested by Chaı̈b et al. in 1997, although
these findings have yet to be confirmed in [48].
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5. The Usher Interactome

The proteins encoded by the identified USH genes belong
to different protein classes. Myosin VIIA (USH1B) is an
actin-based motor protein; harmonin (USH1C), SANS
(USH1G), and whirlin (USH2D) are scaffolding proteins
[20, 49, 50]; cadherin 23 (USH1D) and protocadherin
15 (USH1F) are cell-adhesion molecules [15, 51]; usherin
(USH2A) and VLGR1 (USH2C) are transmembrane proteins
with very large extracellular domains [42, 52]. Finally, clarin-
1 (USH3A) is a protein with four transmembrane domains
[53]. All these proteins have one or several protein-protein
interaction domains.

USH1 and USH2 proteins are integrated in a protein
network known as Usher “interactome.”

The central core of the interactome is formed by the
PDZ domain containing the homologues harmonin and
whirlin and the microtubule-associated protein SANS, with
the remaining USH proteins attached to this core (Figure 1).

Many of the USH proteins also interact with other
proteins that are present in the inner ear and retina. These
additional interacting proteins may cause Usher syndrome,
nonsyndromic hearing loss, or retinal dystrophies.

Recently, one of these proteins, the protein encoded by
the PDZD7 gene, has been shown to be involved in the
pathogenesis of Usher syndrome. Mutations in PDZD7 act
as negative modifiers of the phenotype [54].

The localization of the Usher proteins in the hair cells of
the organ of Corti and in the photoreceptor cells suggests that
they play an important role in the neurosensorial function of
both the inner ear and the retina.

5.1. The USH Interactome in the Inner Ear. The main sites
of colocalization of Usher proteins are the stereocilia and the
synaptic regions of hair cells.

Usher proteins are essential for the correct development
and cohesion of the hair bundle of hair cells in the cochlea
and vestibular organ (reviewed in [56–58]).

In murine models, hair cells in the developing inner ear,
known as stereocilia, maintain their cohesion by interstere-
ocilia fibrous links and links with the kinocilium. There are
several types of links depending on the stage of hair-cell
development. In the mouse, transient lateral links appear at
very early stages of stereocilia formation, but while other
links appear at the base of stereocilia (ankle links), these
lateral links diminish progressively throughout development.
Later, ankle links diminish, and tip and horizontal links
appear and are preserved in adulthood [10].

The large extracellular domains of the cell adhesion
proteins cadherin-23 and protocadherin-15 and the trans-
membrane proteins usherin and VLGR1 are part of these
links. The proteins are anchored to the intracellular scaffold-
ing proteins harmonin and/or whirlin, which connect, via
myosinVIIa and possibly other interactome proteins, to the
actin core of the stereocilia [55, 56, 59, 60].

The role of the different proteins in the links probably
depends on the spatiotemporal stage of the links. It has been
proposed that protocadherin-15 and cadherin-23 in the tip

link play an essential role in triggering the mechanotrans-
duction cascade [61]. McGee et al. proposed that usherin and
VLGR1 are expressed in the transient ankle links [62].

Usher proteins also take part in the transport of vesicles
from the cuticular plate to the growing apical tip of stereocilia
[56].

Besides this, the presence of many of these proteins in the
synaptic regions of inner and/or outer hair cells suggests that
the Usher interactome might play a role in the neurotrans-
mission of the mechanotransduction signal [58, 60, 63].

5.2. The USH Interactome in the Retina. There is evidence
that myosin VIIa plays a role in the transport of opsin from
the inner segment to the outer segment of the photoreceptors
through the connecting cilium. Such evidence appears in
studies in shaker-1, the mouse model defective for myosin
VIIA, since shaker-1 accumulates opsin in the ciliary plasma
membrane of photoreceptor cells [64, 65].

Further studies have proven that both USH1 and USH2
proteins interact in the ciliary/periciliary region of cone
and rod photoreceptors. The proteins usherin, VLGR1b,
and SANS are associated with the periciliary ridge complex,
which is thought to be the docking side for cargo loaded post-
Golgi vesicles [66]. In mammals, this specialized domain
extends over the plasma membrane of the proximal part
of the calycal process, which is connected via extracellular
fibrous links to the plasma membrane of the connecting
cilium. In the extracellular space between the membranes of
the inner segment and the connecting cilium, the extracel-
lular domains of usherin and VLGR1b may be part of these
links, perhaps by means of homomeric, heteromeric, or both
interactions together. Furthermore, the short intracellular
domains of usherin and VLGR1b anchor to whirlin in the
cytoplasm. Finally, whirlin would link to SANS and myosin
VIIa, which directly interact with the cytoskeleton micro-
tubules and F-actin filaments [67]. Cadherin-23, vezatin, and
maybe other partners of the multiprotein complex that bind
myosin VIIa may serve as anchors for this molecular motor
at the periciliary membrane (reviewed in [57, 68]). Thus, the
Usher protein network should provide mechanical support
to the membrane junction between the inner segment and
the connecting cilium, participating in the control of vesicle
docking and cargo handover in the periciliary ridge.

Usher proteins also localize in the photoreceptor synapse,
as they do in the hair cells in the organ of Corti, where
they could form a complex involved in the trafficking of
the synaptic vesicles [57]. However, some researchers do not
support this idea since there are no mouse models with
photoreceptor synaptic dysfunction [69].

In the retinal pigment epithelium (RPE) the absence of
myosin VIIa causes a significant decrease in phagocytosis
of outer segment disks by the pigment epithelial cells [70],
suggesting a role for myosin VIIa in the shedding and phago-
cytosis of the distal outer segment disks by the RPE. A
role involving the intracellular transport of melanosomes
in the RPE cells has also been proposed for myosin VIIa
[56]. The same authors suggested that protocadherin-15,
together with cadherin-23 or other cadherins, could ensure
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Figure 1: Schematic diagram illustrating the deciphered interactions within the USH protein network interactome adapted from van Wijk
et al. [55].

proper alignment of outer segment disks of photoreceptors
and apical microvilli of RPE cells through interactions with
harmonin. However, none of the USH2 proteins have been
shown to be present in the RPE.

Most of the USH genes are responsible not only for Usher
syndrome but also for nonsyndromic hearing loss. To date,
however, only one gene (USH2A) is known to be responsible
for isolated RP, which suggests that usherin plays a main role
for the photoreceptor or that the rest of the Usher proteins
are not essential in the photoreceptor function.

6. Conclusion

6.1. Diagnosis. Usher syndrome is a clinically and genetically
heterogeneous disorder which is important from a public
health viewpoint because of the social isolation which Usher
patients must endure. The first step towards correct diagnosis
is proper differential diagnosis of the syndrome.

Initially, USH manifests as a sensorineural hearing
impairment, sometimes with vestibular dysfunction, with
RO onset occurring later in life. Several syndromes may
exhibit clinical signs which are similar to USH. Differential
diagnosis should take into account the presence of endocrine
abnormalities such insulin resistance, type 2 diabetes, hyper-
triglyceridemia, hepatic dysfunction, and/or renal failure, all
of them would indicate Alström syndrome or the presence

of obesity, mental retardation or cognitive impairment, and
postaxial polydactly and hypogenitalism, which may be
indicators of a Bardet-Biedl syndrome (BBS). If a family
history of X-linked inheritance is observed, or if signs of
dystonia or ataxia are detected, Mohr-Tranebjaerg syndrome
should be suspected.

Genetic tests could be a very powerful tool in differential
diagnosis of USH patients. However, there are many factors
that make the genetic study of this disease a complicated
difficult one. As explained in this paper, the genes identified
to date do not explain all the USH cases (this is true for
BBS and Alström syndromes as well), and the variable nature
of the proteins involved in USH and the complexity of the
USH interactome make identifying novel genes a difficult
task. This is due to genetic and allelic heterogeneity, which
contribute to the low rate of mutation detection, together
with the possible presence of large deletions, mutations in
noncoding regions, or isoforms in low concentration only
present in the affected tissues. Moreover, other complex
inheritance forms could modify the phenotype and its
expression, as recently shown by Ebermann et al. [54]. All
of these factors make the use of traditional techniques for
mutation detection difficult.

Application of new technologies based on DNA chips
could solve this problem; in fact, the recent creation of
a specific microchip for this disease [71, 72] permits the
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identification of mutations in 30%–50% of the affected
patients and requires only a very small DNA sample, and
the technique is both cheap and fast [71–73, 72]. Advances
in massive sequencing technologies will certainly change the
approaches to molecular diagnosis of Usher syndrome.

Gene characterization and mutation screening will
unravel the functional aspects and allow a phenotype-
genotype correlation to be established.

6.2. Therapy. Currently, there is no treatment available for
Usher syndrome. The hearing-loss problem can be solved
by the use of hearing aids and cochlear implantation, but
the retinal problem remains unsolved. Therapeutic strategies
to treat retinal degeneration target the specific genetic
disorder (gene therapy), slowing or stopping photoreceptor
degeneration or apoptosis (e.g., growth factors or calcium
blocker applications, vitamin supplementation, and endoge-
nous cone viability factors) or even the replacement of lost
cells (e.g, transplantation, use of stem or precursor cells)
(reviewed in [73]). However, before these strategies can be
applied to humans, animal models, pre clinical studies, and
appropriately designed human clinical trials are needed to
test different treatments and provide information on their
safety and efficacy.
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