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Abstract: Reconstruction algorithms are presented for a two-step solution 
of the bioluminescence tomography (BLT) problem. In the first step, a 
priori anatomical information provided by x-ray computed tomography or 
by other methods is used to solve the continuous wave (cw) diffuse optical 
tomography (DOT) problem. A Taylor series expansion approximates the 
light fluence rate dependence on the optical properties of each region where 
first and second order direct derivatives of the light fluence rate with respect 
to scattering and absorption coefficients are obtained and used for the 
reconstruction. In the second step, the reconstructed optical properties at 
different wavelengths are used to calculate the Green’s function of the 
system. Then an iterative minimization solution based on the L1 norm 
shrinks the permissible regions where the sources are allowed by selecting 
points with higher probability to contribute to the source distribution. This 
provides an efficient BLT reconstruction algorithm with the ability to 
determine relative source magnitudes and positions in the presence of noise. 
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1. Introduction 

Optical molecular imaging in small animals has been attracting much interest in recent years 
as a noninvasive method of visualization of disease progression and response to treatment  
[1–4]. Small animals can be labeled with optical molecular probes which emit light that can 
be detected at the surface giving information about the distributions of specific genes or 
proteins associated with these sources and so realizing a noninvasive investigation of the 
small animals [5]. The direct image captured by the CCD camera does not reflect the actual 
internal source distribution as in the visible and near infrared range the light transported inside 
the tissue suffers from multiple scattering and absorption processes before escaping. The goal 
of bioluminescence tomography (BLT) is to resolve the molecular process inside the tissue by 
measuring the light over the animal surface and reconstructing the correct distribution of the 
bioluminescence sources. 

For wavelengths where scattering dominates absorption, the diffusion model has been 
extensively used to describe light propagation inside tissue [6–16]. Diffuse optical 
tomography (DOT) involves reconstructing the spatial distribution of the optical properties of 
tissue from the measured light fluence rate at the tissue surface. The measured data are used to 
estimate the scattering and absorption coefficients of different tissue types inside the animal at 
a specific wavelength. In this study, the reconstructed image for the optical properties for 
wavelengths in the range 580-620 nm is then used with the measured light at the boundary to 
solve the BLT problem and reconstruct the correct distribution of the bioluminescence 
sources. 

The reconstruction of the tissue optical properties and BLT are ill-posed problems [17]. 
The points at the surface boundary are the only accessible data points and their number is 
much less than the number of variables representing the absorption and scattering coefficients 
at all points inside the tissue. This precludes a unique solution to the problem [11]. Therefore, 
the solution should include some priori information about the distribution of the optical 
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properties inside the tissue and the characteristics of the bioluminescence sources. Using the 
anatomical information of the x-ray CT image, different regions inside the animal can be 
distinguished due to their differences in x-ray attenuation. By making use of that, and by 
assuming that each identified region has the same optical properties, the number of variables 
will be significantly reduced and a unique solution can be obtained [18]. For the BLT 
problem, different researchers have used sparsity regularization [19–21], to describe the 
bioluminescence sources as localized and sparse. Making use of these source characteristics, 
an iterative minimization algorithm can be used to get the source distribution using an updated 
permissible region. The permissible region is initially the entire domain and is then reduced 
iteratively to get the best localization of the reconstructed sources. 

In this paper, a novel approach to solving the BLT problem is described. The algorithm 
uses the anatomical information of the CT image to guide the cw DOT reconstruction which is 
then used for solving the BLT problem. The model is applied to 2D cylindrical objects to 
estimate the optical properties of different regions inside the object assuming that every 
element of each region has the same optical properties. The light fluence rate at the boundary 
is written as a Taylor series expansion around an initial guess corresponding to a homogenous 
object with the same optical properties in all tissues. The expansion is approximated by the 
first three terms in the series which include the first and the second order derivatives and the 
higher orders are neglected. The first and second order derivatives represent the Jacobian and 
Hessian and they give the change of light fluence rate at the boundary due to small change in 
the tissue optical properties. The derivatives are obtained by the direct. The Jacobian and 
Hessian are used in an iterative algorithm to reconstruct the tissue optical properties. The 
reconstructed optical properties are close to the actual values even in the presence of noise. 
The advantage of the proposed iterative DOT algorithm in this paper over the previous 
Levenberg-Marquardt (LM) approach is that there is no need of any regularization parameter 
as the second order derivative is already given and the symmetric matrix formed from the 
Jacobian is not ill-posed due to the small number of variables representing the tissue optical 
properties. In addition, the algorithm does not require the initial guess of the tissue optical 
properties to be very close to the actual values as in the case of linear approximation without 
considering the second order derivatives. In the presence of noise, the inclusion of the second 
order derivatives reduces the error in the reconstructed optical properties compared to those 
recovered using only the first order approximation. 

The second part of the model developed in the paper is used to solve the BLT for the 2D 
object based on the reconstructed optical properties and measured light data. The Green’s 
function of the system at specific wavelengths is calculated numerically using the 
reconstructed optical properties. A minimization problem is solved where the objective 
function is the first norm of the difference between the actual measured light fluence rate and 
the values calculated using the Green’s function. The solution of the minimization problem 
gives an estimate of the source strength and distribution that results in the best fit to the 
measured data. The objective function is minimized iteratively such that in every iteration, the 
permissible region in which the source is contained is reduced, removing the points 
corresponding to small values and making the search region smaller, hence reducing the 
number of variables in the ill-posed problem. The main advantage of the proposed algorithm 
over previous algorithms that used the permissible region technique is that we do not need to 
know from the beginning where the source should be in order to fix the region where we 
search. Instead we start with the whole object as the initial permissible region which is then 
shrunk iteratively until the BL sources are properly reconstructed. The objective function uses 
the first norm in addition to a zero norm penalty term to localize the source distribution. The 
choice of the first norm for the objective function instead of the second norm has some 
advantages, as it shows better stability in the presence of noise and it is faster to calculate. The 
reason for the preference of the L1 norm over the L2 norm for noisy data is that the L1 norm 
is robust to outliers and large amplitude anomalies, see for example [22]. The time required to 
solve the minimization problem is greatly reduced if the first and second derivatives of the 
objective function are provided. Using the first norm will make the second derivatives vanish 
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and avoid the huge memory required to store the calculated second derivative matrix. The two 
models of optical properties reconstruction and BLT rely on solving the diffusion equation 
numerically using the method of finite elements (FE). The numerical technique described in 
the paper to solve the diffusion equation is described for the 2D problem, but the upgrade to 
solve 3D problems will not change the algorithms. It will, however, change the basis function 
of the finite elements and the formulation that converts the differential equation to a matrix 
equation. 

2. DOT and BLT forward model 

In the forward model, the light flux from the tissue surface must be calculated assuming that 
we know the tissue optical properties and source distribution. Light propagation in a dense 
elastic-scattering medium like tissue is similar to neutral-particle transport which can be 
described by the radiative transport equation (RTE) - a specific form of the generalized 
Boltzmann equation [23,24]. In the visible and near infrared, some approximations can be 
applied to the RTE to avoid its high computation cost and detailed knowledge of tissue optical 
properties, and the simple diffusion equation can be used to describe the light propagation. 
The diffusion equation has been extensively used to model light propagation in tissues where 
the scattering of light is dominant over absorption. The diffusion equation at a specific 
wavelength in the frequency domain and in 2D space is given by [23]. 

( ) ( ) ( ) ( ) ( ), ; , ; , ; , ; ; , ; ; ,
a

i
x y x y x y x y q x y

x x y y c

ω
κ λ κ λ µ λ ϕ λ ω λ ω

  ∂ ∂ ∂ ∂  − + + + =    ∂ ∂ ∂ ∂    
 (1) 

where ( ), ; ;x yϕ λ ω  is the light fluence rate at position ( ),x y  and wavelength λ  and the light 

modulation frequency is given by 2 fω π= , and the speed of light in tissue is given by c. The 

isotropic source distribution is given by ( ), ; ;q x y λ ω . The spatial distribution of the tissue 

optical properties at wavelength λ  are given by the absorption coefficient ( ), ;
a

x yµ λ  and the 

diffusion coefficient ( ), ;x yκ λ , where the diffusion coefficient is given by 

 ( )
( )

1
, ; ,

3 ( , ; ) ( , ; )
a s

x y
x y x y

κ λ
µ λ µ λ

=
′+

  (2) 

where ( , ; )
s

x yµ λ′  is the reduced scattering coefficient which is defined as (1 )
s s

gµ µ′ = − , 

where 
s
µ  is the scattering coefficient and g is the anisotropy factor. To solve the differential 

equation in (1), the boundary condition at the air-tissue boundary should be defined. The 
boundary condition considered is a Robin-type boundary condition [7], in which the light 
fluence rate at the boundary is equal to the gradient of fluence rate at the boundary multiplied 
by a factor to account for internal reflection due to refractive index mismatch. At the 
boundary, the light fluence rate satisfies the equation 

 ( ) ( ) ( ) ( )ˆ, ; ; 2 , ; , . , ; ; 0,x y x y An x y x yϕ λ ω κ λ ϕ λ ω+ ∇ =   (3) 

where ( )ˆ ,n x y is a unit vector pointed outwardly normal to the surface, and A is derived from 

Fresnel’s law as [25] 

 
( )( ) 3
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2

2 / 1 1 cos
,

1 cos

c

c

R
A

θ

θ

− − +
=

−
  (4) 
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where the critical angle ( )1
sin 1/

c
nθ −=  and ( ) ( )2 2

0
1 / 1R n n= − + and n is the tissue 

refractive index at the boundary while the air refractive index is assumed 1. Equation (1) can 
be solved numerically using the method of finite elements (FE), where the space is discretized 
using small triangular elements. Assuming that the space is divided using a mesh which 
contains M triangles and N nodes, the differential equation can be transformed to a matrix 
equation [26] 

 [ ] [ ]1 1
,

NN N N
K qϕ ×× ×

=   (5) 

where the light fluence rate can then be obtained from Eq. (5) by a simple matrix inversion. 

3. Optical properties Reconstruction 

The forward model described in the previous section can be used to calculate the light fluence 
rate at the boundary due to any source distribution inside the tissue assuming known optical 
properties. There are actually two inverse problems that have been solved in this paper; the 
first is the DOT problem which is to reconstruct unknown optical properties assuming known 
sources and the second one is the BLT problem which is to reconstruct unknown sources 
assuming known optical properties. Therefore, estimating the unknown source distribution is 
dependent on first reconstructing the unknown optical properties of in-vivo tissues by solving 
the first inverse problem. Since the first inverse problem is to estimate the optical properties 
of many points of the mesh inside the tissue from few data points at the boundary, it is an ill-
posed problem and the solution is not unique [11]. One way to overcome this is to reduce the 
number of variables by constraining the nodes corresponding to the same region to have the 
same optical properties making use of the information provided by CT imaging. In this case 
the number of variables will be equal to twice the number of regions, as each region will have 
two parameters: the scattering and absorption coefficients. 

Assuming that the light fluence rate data captured by the detectors at a specific wavelength 
around the object can be written as a Taylor series expansion such that 

 

2

0

,

1
,

2

d d

d d i i j

i i ji i j
u

ϕ ϕ
ϕ ϕ δµ δµ δµ

µ µ
∂ ∂

= + + +
∂ ∂ ∂∑ ∑ ⋯   (6) 

where 
d
ϕ  is the light fluence rate value at a detector d and d varies from 1 to the total number 

of detectors and 0

d
ϕ  is the value corresponding to an initial estimate of the optical properties 

and known sources. 
i

δµ  gives the change in the optical properties for region i and i = 1, 2, 

…., 2N and N is the total number of regions identified from the x-ray CT image. The vector 

δµ is given by 

 

1

1

,

s

sN

a

sN

δµ

δµ
δµ

δµ

δµ

 
 
 
 

=  
 
 
 
  

⋮

⋮

  (7) 

and 
si
µ and 

ai
µ are the scattering and absorption coefficient of region i. The Jacobian (

d
J ) or 

the sensitivity row vector ,  1, 2, , 2d

i

i N
ϕ
µ
∂

=
∂

⋯ gives the rate of change of the light fluence 

rate due to small changes in the tissue optical properties. The Hessian (
d

H ) 
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2

,  , 1, 2, , 2d

i j

i j N
ϕ

µ µ
∂

=
∂ ∂

⋯ gives the second derivative of the light fluence rate with respect to 

small changes of the optical properties. By considering only terms up to the second order,  
Eq. (6) can be written in the compact form 

 
0 1

2

T

d d d dJ Hϕ ϕ δµ δµ δµ= + +   (8) 

Multiplying both sides of (8) by
d

TJ , and with some rearrangement we get 

 ( ) 1 1
,

2

T T T

dJ J J Hδµ δϕ δµ δµ
−   = −  

  
  (9) 

where 0

d d d
δϕ ϕ ϕ= − . Equation (9) is a nonlinear equation which gives the variation of the 

optical properties in terms of the variation in the light fluence rate at the boundary. For 
d

N  

detectors, Eq. (9) is given by 
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and for every detector d, where d varies from 1 to Nd 
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  (12) 

The reconstruction algorithm is summarized in the flowchart in Fig. 1. 
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Fig. 1. Flowchart for iterative solution of the optical properties reconstruction. 

The derivatives of the light fluence rate at the detectors corresponding to the scattering and 
absorptions coefficients in the Jacobian and Hessian matrices can be calculated using the 

direct method. For N regions within the mesh, a change or perturbation for either
s
µ or 

a
µ  or 

both of them depending on whether we calculate the first derivative or the second derivative is 
made in each region by a small fraction such as 1% and these data are used to calculate the 
corresponding light fluence rate at detectors to get the change. This process is repeated for 
every source. For example, the first and second derivatives of detector number k due to 
changes in the optical properties of regions i and j are given by 

 
( ) ( )

,   or ,
2

i

k i i k i ik

i si ai

i iµ

ϕ µ µ ϕ µ µϕ
µ µ µ

µ µ

+ ∆ − −∆∂
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∂ ∆
  (13) 

and 
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i

i j

k i i k i i k ik

i i

k i i j j k i i j j
k

i j i j k i i j j k i i j j

µ

µ µ

ϕ µ µ ϕ µ µ ϕ µϕ

µ µ

ϕ µ µ µ µ ϕ µ µ µ µϕ
µ µ µ µ ϕ µ µ µ µ ϕ µ µ µ µ

+ ∆ + − ∆ −∂
=

∂ ∆

 + ∆ + ∆ + −∆ − ∆∂  =
 ∂ ∂ ∆ ∆ − + ∆ − ∆ − −∆ + ∆ 

 (14) 

Due to the large range in the values of the light fluence rate at different detectors, it is 
better and more accurate to use the logarithm of the absolute value instead of the magnitude of 

the light fluence rate [14]. So in equations from 14 to 20, log
k k
ϕ ϕ→ , and since the 

modulation frequency is set to zero, the phase of the light fluence rate at all detectors is equal 
and all information is only in the magnitude. The reason for using zero modulation frequency 
is that the same camera used for the bioluminescence measurement is employed for optical 
properties reconstruction. The camera gives information about magnitude but not the phase of 
the light fluence rate. 

The 2D object (Fig. 2) used in the simulations is 25 mm in diameter and represents an 
approximate transverse view of the abdomen of a mouse. It is a simplified version of Fig. 6(a) 
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in Ref [27]. It consists of 6 different regions representing different organs and tissues in the 
mouse. The regions from 1 to 6 represent the skin (E1), the bowel and gut (E2), the kidneys 
(E3, E4), the bone (E5) and adipose tissue (E6). The different regions are assumed to be 
distinguished through CT x-ray imaging due to the differences in their attenuation coefficients 
and all elements within each region are assumed to have the same optical properties. In Fig. 2, 
the source-detectors setup used in the simulation is shown. There are 16 sources uniformly 
distributed around the object and for every source, the light fluence rate is calculated at 48 
detectors on the opposite side facing the source and constituting a 270° field of view as shown 
in Fig. 2. A full 360° is not practical to achieve with a camera and external sources. The total 

number of detector readings 16*48 768
d

N = = , so the size of the Jacobian is 768× 12 and the 

size of the Hessian matrix 
d

H  for every one of the 768 detector readings is12 12× . 

 

Fig. 2. Schematic of the object used in the simulation illustrating 6 different regions: E1 is the 
skin, E2 is the bowel, E3 and E4 are the kidneys, E5 is the bone and E6 is adipose tissue. The 
source-detectors setup is also shown in the figure; 16 sources (one is indicated by the star) 
uniformly distributed are used and associated with every source 48 detectors forming an 
approximately 270° of view; the total number of data readings are 16x48 which is 768. 

4. Optical properties calculations 

The absorption and scattering coefficient for each organ and tissue in the heterogeneous object 
are estimated using empirical formulas describing the spectral variation in each tissue. The 
spectral variation of the scattering coefficient can be described by the empirical formula [28] 

 ( ) ,
b

s
aµ λ λ −′ = ×   (15) 

where a and b are fitting parameters describing the spectral variation in each tissue. The 
absorption coefficient is calculated assuming that light absorption in tissues depend only on 
the percentage concentration of oxy-hemoglobin (HbO2), deoxy-hemoglobin (Hb), and water 
(W) in the tissue and is given by [29] 

 ( ) ( ) ( ) ( )( ) ( )
2aHb aHbO aW1 ,a B WS x x Sµ λ µ λ µ λ µ λ= + − +   (16) 

where ( )2 2
HbO / HbO +Hbx = and

B
S and

W
S are fitting parameters to match the absorption 

data available in the literature and as shown in [30] they were consistent with the blood and 
water fractions in different mouse organs. The scattering and absorption coefficient for 
different tissues in the heterogeneous object are calculated at three different wavelengths 
using Eqs. (15) and (16) and they are shown in Table 1. The values for the parameters a, b, x, 
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B
S  and

W
S in Eqs. (15) and (16) are reported in [28] and the absorption coefficients for the 

hemoglobin and water used are given in [29]. 

Table 1. Optical properties for each region in the heterogeneous object calculated at three 
different wavelengths. The values of the scattering and absorption coefficients are given 

in (mm−−−−1) 

 
580 nm 

s
µ ′  

a
µ  

600 nm 

s
µ ′  

a
µ  

620 nm 

s
µ ′  

a
µ  

Skin 2.6006 0.1299 2.5054 0.0391 2.4167 0.0178 
Bowel 1.3741 0.0202 1.3175 0.0073 1.2650 0.0041 
Kidney 2.8013 0.1216 2.6615 0.0372 2.5329 0.0176 
Bone 3.0847 0.1042 2.9347 0.0328 2.7966 0.0146 
Adipose 1.3037 0.0077 1.2805 0.0031 1.2584 0.0022 

5. Bioluminescence tomography 

The Green’s function of the system gives the response at any point due to a unit excitation at 
any other point. For the diffusion equation, the Green’s function in 2D space is defined as 

( ) ( ) ( ) ( ) ( ) ( ), ; , ; , ; , ; , ;
a

x y x y x y G x x y y x x y y
x x y y
κ λ κ λ µ λ λ δ δ

  ∂ ∂ ∂ ∂
′ ′ ′ ′− + + = − −  ∂ ∂ ∂ ∂  

 (17) 

The Green’s function defined in (17) gives the light fluence rate at the point ( ),x y  due to 

a point source excitation at the point ( ),x y′ ′ at zero modulation frequency. For any other 

excitation of the form ( ), ;s x y λ , the light fluence rate can be obtained from the Green’s 

function and is given by 

 ( ) ( ) ( )
,

, ; , ; , ; , ;
x y

x y G x x y y s x y dx dyϕ λ λ λ
′ ′

′ ′ ′ ′ ′ ′= ∫∫   (18) 

Equation (17) can be obtained in a matrix form by discretizing the space using, for 
example, the method of finite elements and the differential equation in Eq. (17) can be 
transformed to 

 
1

  ,DG I G D
−= ⇒ =   (19) 

where D is the discretized version of the diffusion operator shown in Eq. (17) and I is the 
identity matrix. The light fluence rate due to any source distribution is given by the simple 
matrix multiplication of the Green’s function and the source vector. 

The bioluminescence tomography problem is to obtain the estimate of the source strength 
and distribution that gives the best agreement with the light fluence rate captured by the 
detectors around the object. So the bioluminescence sources should satisfy the equation 

 ,
p

G s ϕ=   (20) 

where ( ), :
p

G G p=  is a matrix that gives the Green’s function values at the boundary points 

corresponding to delta function excitations at any other point. The index p corresponds to the 
index of the detectors points at the boundary and if the detector points do not coincide with 
the edge points of the FE mesh, interpolations are used to get the values of the Green’s 
function at the detector positions. The direct solution to the problem by inverting the Green’s 
function matrix such that 

 ( ) 1
T T

p p ps G G G ϕ
−

=   (21) 
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does not give a correct solution. This is because the square matrix 
T

p p
G G is an ill-posed matrix 

because the number of data points obtained from the detectors around the object surface is 
generally much smaller than the number of variables represented by the values of the sources 
at each point inside the object. In order to solve this problem, we can make use of information 
regarding the source characteristics. It is not likely to find the source very close to the tissue 
surface (the diffusion approximation itself may not be suitable to describe the photon transport 
in this case and other models should be considered), so we can exclude the region within 
about one transport length of the surface from the permissible region. Thus the initial guess 
for the permissible region is the whole object area except a small shell of one transport length 
close to edge. We can also make use of the fact that, for many applications, the sources are 
sparse in space, so we are looking for a few localized sources with a total number of source 
points less than or equal to the number of measured light fluence rate data points. In this case, 
an iterative solution can update the permissible region to shrink the domain by considering the 
most likely points where the sources can be found and excluding points of small, zero or 
negative values from the permissible domain. Every iteration includes solving a minimization 
problem which has the form 

 

( ) ( ) ( )
1

max

min ,

. .    0

. .    Permissible Region

p
G R s R

s t s s

s t R

λ

λ ϕ λ−

≤ ≤

∈

∑
  (22) 

The minimization is done to the superposition at different wavelengths of the first norm of 
the difference between the multiplication of the Green’s function and the estimated sources 
(which gives the calculated light fluence rate at the boundary points) and the measured light 
fluence rate. It is assumed that the source strengths at different wavelengths are the same, but 
this is not necessary if the source emission spectrum is known. In this case, the source in  

Eq. (22) will be ( ) ( ) ( ),s R s R eλ λ→ , where ( )e λ  is the source emission spectrum. After 

every iteration, the permissible region is reduced by dividing the number of points in the 
permissible region by a number greater than one to get the number of points in the new 
permissible region by removing points corresponding to the lowest source values. The choice 
of this number is optional depending on the choice of the number of iterations and the initial 
and final number of points required in the permissible region for the final solution. The 
simplest way to do this is to choose the points corresponding to the largest source values to be 
the new permissible region. A better method that ensures no important points are lost is to 
choose the points such that the point is selected when the source values at the point and the 
surrounding neighbor points are high. This is achieved by enclosing every point in the 
permissible region with a circle of radius equal to one transport length to account for the 
source values of the neighbor points as well and calculating the total power of the source 
inside the circle. This will give priority to points in the center of the circular domain over 
points at the edge of the domain which is desirable when we have point or Gaussian sources to 
reconstruct. The minimization of the objective function is performed with the requirement that 
the source values lie between zero and a maximum estimated value. The algorithm terminates 
when the number of points in the permissible region becomes smaller than the number of 
detectors. 
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Fig. 3. Flowchart for iterative solution of the bioluminescence sources reconstruction 
algorithm. 

One of the practical issues when solving the minimization problem in Eq. (22) is to add a 
penalty term to the objective function to direct the minimizer to choose localized source 
distributions rather than distributed ones. For example, a point source at a specific location 
inside the tissue and sources forming a ring centered at the same point can give the same light 
fluence rate at the boundary points and are hence degenerate. In order to remove this 
degeneracy and form localized sources, the objective function can be modified to have the 
form 

 ( ) ( )
1 0

min ,
p

G s s
λ

λ ϕ λ α− +∑   (23) 

where α  is a negative number. This penalty is chosen to be the zero norm of the source term 

and it gives the largest positive source values that minimize the difference between the 
calculated and measured values of the boundary light fluence rate. This will lead to the choice 
of strong sources deeper inside the tissue instead of weak sources near the boundary. When 
the number of points in the permissible region become equal to or smaller than the number of 
detectors, α  is set to zero to give the correct solution in the last few iterations. 

6. Results and discussions 

6.1 Optical properties reconstruction 

The optical properties reconstruction algorithm described in the flowchart in Fig. 1 is applied 
to the heterogeneous object shown in Fig. 2. All elements within each region in the object are 
assumed to have the same optical properties. We are assuming that we start with an accurate 
segmented image provided by x-ray CT. It could also be provided by MR or by a deformable 
atlas of mouse anatomy. The question of whether CT will work in this regard remains to be 
determined in a prototype instrument. The contrast obtainable with x-ray CT is highly 
dependent on the radiation dose that is acceptable in a given application. In the computer 
simulation, 16 sources and 48 detectors associated with each source have been used. The 
external light source is simulated as a point isotropic source located one transport length, 

1/
s
µ ′ , from the boundary. The forward model algorithm is run to generate the light fluence 

rate at 48 detectors covering 270° field of view on the opposite side of the source as shown in 
Fig. 2. The forward model subroutine is called 16 times for the 16 sources and the total 
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number of detector readings is 16× 48 = 768. Since the modulation frequency is zero, the light 
fluence rate will be a real number. 

The Jacobian and Hessian can be calculated by performing a small perturbation to the 
optical properties around an initial guess. The initial values for the scattering and absorption 
coefficients can be taken to be the same in all regions (homogeneous structure) and a small 
perturbation in one of the optical properties is made to calculate the change in the light 
fluence rate due to this change. The initial value for the scattering and absorption coefficients 

for all regions are 2 and 0.02 mm
−1

, respectively. For every region, both the scattering and 
absorption coefficients are perturbed by ± 1% to calculate the partial derivatives of the light 
fluence rate with respect to the scattering and absorption coefficients of that region as shown 
in Eq. (13), and therefore the forward model subroutine is called 

( ) ( ) ( ),16 sources 4 6 regions 384s aµ× ±∆ × =  times to calculate the Jacobian. As an example, 

 
( ) ( )( )

( )( )
( )11

11

21 1
0.02

log 2.01, 2, , 2; 0.02, , 0.02log
/ 2 0.01

log 1.99, 2, , 2; 0.02, , 0.02s

a

s

J
µ
µ

ϕϕ

µ ϕ′ =
=

 ∂
 = = ×

′∂  − 

… ⋯

… ⋯
 

To calculate the Hessian, the change in the light fluence rate due to perturbation of two 
optical properties whether in the same region or different regions should be obtained as 
described in Eq. (14). For every detector reading, the assigned Hessian matrix is a 12× 12 
matrix. The diagonal terms call the forward model 16(sources) × [4( ± ∆µ s,a) × 6(regions) + 
1(unperturbed)] = 400 times, and the off diagonal terms require 16(sources) × [4( ± ∆µs,a) × 
(11 + 10 + … + 1)] = 4224 times. Only half of the matrix needs to be calculated due to the 
symmetry. Making use of calculating the Jacobian, the diagonal terms require only 16 calls to 
the forward model for the unperturbed term. 

 

Fig. 4. Comparisons between the actual and reconstructed optical properties of different tissue 
regions, see Fig. 2, at 600 nm in the heterogeneous object and percentage relative error. 
Gaussian noise with standard deviation of 1% is added and the reconstruction model considers 
the 1st order approximation (the Jacobian). (a) and (b) show the actual (blue line with circles) 
and reconstructed (red line with stars) scattering and absorption coefficients in different 
regions, and (c) and (d) show the relative errors in the reconstructed scattering and absorption 
coefficients. 

Figure 4 shows a comparison between the actual and reconstructed scattering and 
absorption coefficients and the corresponding relative errors in all regions. The actual optical 
properties were calculated using Eqs. (15) and (16) and the results are shown in Table 1. 
These optical properties are used to calculate the light fluence rate which will represent the 
measured data. Gaussian noise with standard deviation of 1% of the signal is added to these 
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data to simulate an actual experiment and provide the reference data 
m
ϕ  for the reconstruction 

algorithm. The result in Fig. 4 shows that the reconstructed optical properties match very well 
with relative error <1.5% for a noise power of 1% using the first order approximation. 

 

Fig. 5. (a) and (b) show comparisons between the actual (blue lines with circles) and 
reconstructed (red lines with stars) scattering and absorption coefficients of different tissue 
regions at 600 nm in the heterogeneous object using the first order approximation (the 
Jacobian); the Gaussian noise added is 3%. (c) and (d) Show the same results using the second 
order approximation (the Hessian). 

Figure 5 shows a comparison between the results of the reconstruction algorithm when 
using the first order and second order approximation at higher level of noise power. Using the 
second order approximation rather than the first order one can reduce the maximum 
reconstruction relative error from 11% to < 7% at noise power of 3% as in Fig. 5. 

6.2 BLT reconstruction 

The reconstructed optical properties in the presence of 3% noise at the wavelength 580 nm, 
600 nm, and 620 nm were used for the BLT reconstruction as this is a realistic test of the 
complete process. The actual optical properties shown in Table 1 were used in the forward 
model to simulate the measured data due to the BLT sources inside the object. Gaussian noise 
of 3% standard deviation was added to these data to simulate experimental measurements. 150 
detectors were uniformly distributed around the cylindrical object. This is the same as the 
number of edge points of the mesh used in the simulations. The light fluence rate at the 
detector is calculated by interpolation of the values at the neighboring edge points. The 
Green’s functions at different wavelengths are calculated from Eq. (19) using the 
reconstructed optical properties. The source powers at the three wavelengths are assumed to 
be the same. An iterative solution to the minimization problem as described in the flowchart 
in Fig. 3 is used to get the estimate of the source values that gives the best fit to the measured 
light fluence rate at the detectors. The objective function is minimized using the fmincon 
function of Matlab. The source is constrained between 0 and 1, where it is assumed that its 
maximum value does not exceed 1 nw/mm

2
. The first and second derivatives of the objective 

function are provided to enhance the minimization speed. The fist derivative used in the 

model for the objective function is given by ( ) ( )grad=
T

p
C G

λ

λ λ α∗ +∑ , where 

( ) ( ) ( )( )sign pC G sλ λ ϕ λ= −  is a column vector of size equal to the number of detectors 

and its elements values equal 1 for ( ) ( )p
G sλ ϕ λ> , −1 for ( ) ( )p

G sλ ϕ λ< , and 0 for 

( ) ( )p
G sλ ϕ λ=  where the first norm is not differentiable. The second order derivative used 
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is zero. At every iteration, both the source vector and the Green’s function are changed such 

that ( )s s R←  and ( ) ( )index _ p, ;
p

G G Rλ λ← , where index_p is the index corresponding 

to the detector points and R is the index of points corresponding to the permissible region. The 
permissible region is reduced in every iteration by removing points with lower power and 
keeping the points that have high power. 

 

Fig. 6. BLT reconstruction of one bioluminescence Gaussian source localized in the left 
kidney; 3% Gaussian noise is added. (a) The actual source with a total power of 0.4845 nW. (b) 
The reconstructed source with a total power 0.2397 nW. (c) The reconstructed source with a 
total power 0.4975 nW when the actual source power used is 0.969 nW. 

Figure 6 shows the result of the BLT reconstruction algorithm for a single Gaussian source 
with total power of 0.4845 nW and FWHM of 1 mm located in the center of the left kidney. 
Figure 6(b) shows the reconstruction after 30 iterations where there are 15 points in the 
permissible region. The total simulation time is 89 seconds corresponding to average time per 
iteration of 2.967 seconds. The simulation is slower at the beginning because of the large 
number of points in the permissible region and accelerates as the region shrinks. The 
permissible region here starts at 1389 points and the algorithm is terminated when the number 
of points becomes 15 after 30 iterations. The number of points in the permissible region is 
reduced by a factor of (1389/15) ^ (1/30) = 1.1629 at each iteration. This factor can be altered 
by the user and affects the number of iterations required for solution. The choice here of the 
final number of points in the permissible region, which should be less than the number of 
detectors, is optional. However, the reconstruction results are improved when the number of 
points of the reconstructed sources becomes closer to the actual sources. The total power of 
the reconstructed source is 0.2397 nW, and it becomes 0.4975 nW if the actual source power 
is doubled to 0.969 nW. The total power of the reconstructed source is calculated by 
integrating the source density over a circle that encloses the non-zero values of the source 
points. Although the total power of the reconstructed source is only about half its actual value, 
the maximum values of the actual and reconstructed sources are comparable. The maximum 
values of the actual and reconstructed sources for a total power of 0.4845 of the actual source 
are 0.0739 and 0.0637 nW/mm

2
, respectively and for a total power of 0.969 of the actual 

source are 0.1478 and 0.1152, respectively. The reason for the differences in the reconstructed 
total power is that the minimizer algorithm source constraint leads to having few localized 
sources in the permissible region; however the localized source does not have a specific shape 
in space. Therefore, if the localized source values are distributed uniformly, the edge points 
that are close to the detectors will have higher contributions to the light fluence rate and so 
reduce the total source power required to fit the boundary data. Although the reconstructed 
source power is only half the actual source power, the algorithm conserves the linearity of the 
source power reconstruction. The results in Fig. 6 show the linearity of the reconstruction as 
the power of the reconstructed source is doubled when the actual source power is doubled. 
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Figure 7 shows the results of the BLT reconstruction algorithm if we have a source in each 
kidney. The reconstruction can detect the position of the sources with good accuracy and also 
the relative strength of the two sources. 

 

Fig. 7. BLT reconstruction of two bioluminescence Gaussian sources localized in the left and 
right kidneys with added 3% Gaussian noise. The actual sources are shown in (a), (c), and (e), 
while the corresponding reconstructed sources are shown in (b), (d), and (f) respectively. The 
two sources have the same strength in (a) and (b) and the total powers of the actual left and 
right sources are 0.96907 and 0.97743 nW and the left and right reconstructed sources are 
0.260 nW and 0.22 nW, respectively. (c) and (d) Show the results when the left source power is 
the double the right source power; and the total powers of the actual left and right sources are 
0.96907 and 0.4887 nW and the left and right reconstructed sources are 0.236 nW and 0.117 
nW, respectively. (e) and (f) Show the case when the right source power is double the left one; 
The total powers of the actual left and right sources are 0.4845 and 0.9774 and the left and right 
reconstructed sources are 0.1431 nW and 0.2329 nW, respectively. 

7. Conclusion 

Two numerical algorithms based on finite element methods for optical properties 
reconstructions and BLT in an object with known structure have been developed. A second 
order equation for the light fluence rate dependence on the scattering and absorption 
coefficients for all regions inside the object has been formulated and used to calculate the 
Jacobian and Hessian employed in the iterative solution of the reconstruction. For low noise, 
the first order approximation is sufficient to give good results with small relative error. For 
higher noise power, the second order term shows better performance and faster reconstruction. 
The BLT algorithm developed in the paper is based on calculating the Green’s function of the 
system at different wavelengths. An adaptive modification of the permissible region is 
performed to favor the recovery of a few strong sources. The results show good agreement 
between the localization of the actual and reconstructed sources in addition to the ability to 
estimate relative source magnitudes. 
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