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Abstract: Noninvasive optical techniques for tissue characterization, in 
particular, light scattering properties and blood supply quantification of 
mucosa, is useful in a wide variety of applications. However, fiber-optic 
probes that require contact with the tissue surface can present a challenging 
problem in the variability of in vivo measurements due the nature of 
interactions, for example affects due to variations in pressure applied to the 
probe tip. We present an in vivo evaluation of pressure, angle, and temporal 
effects on tissue properties for polarization-gated spectroscopy at superficial 
depths (within 100 to 200 microns of tissue surface) for oral mucosa. 
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1. Introduction 

Noninvasive optical techniques are employed by numerous groups for diagnostic and 
therapeutic applications in vivo [1–5]. For clinical applications, many noninvasive techniques 
include systems with fiber-optic probes which must be placed in contact with the target tissue 
to transmit light to and from the tissue. To maintain good contact and eliminate gaps between 
the probe and tissue interface a gentle pressure is usually applied to these probes. In some 
applications, like those used in conjunction with endoscopes, the angle between the probe axis 
and tissue surface is difficult to control precisely. Additionally, in research applications, a 
technician will operate the system while a physician utilizes the probe. This potentially adds 
small time delays between initial probe contact and measurement acquisition. These factors 
may cause variability in the data and therefore impact the optical properties measured. 
Previous studies have reported that pressure applied to a tissue sample affects the optical 
properties, in both ex vivo and in vivo experiments [6–9]. For example, in an in vivo animal 
study on mouse thigh muscle, Reif, et al. [6] established that varying probe pressure affects 
the reflectance spectrum in a predictable manner. In another in vivo animal study of rat heart 
and liver tissue, Ti, et al. [9] found that applying pressure to the probe induces spectral 
alterations in diffuse reflectance and fluorescence spectroscopy for both short-term and long-
term effects, and the minimum pressure required to induce alterations is tissue-type 
dependent. In an in vivo human study, Nath, et al. [7] found that probe contact pressure had 
little to no effect on fluorescence spectra when measured from cervical tissue. While insights 
have been gained through these studies, they have largely focused on a single penetration 
depth into the target tissue. However, tissue is a heterogeneous multilayered structure and 
probe-tissue interactions may have differential effects on tissue properties depending on the 
depth of interrogation. 

Depth-selective tissue analysis is possible utilizing polarization-gating fiber-optic probes 
[10–12]. Polarization-gating interrogates progressively deeper tissue depths through analysis 
of the differential polarization signal, ∆I = I|| - I┴, co-polarized signal, I||, and cross-polarized 
signal, I┴. Tissue phantom studies demonstrated the average penetration depths of the ∆I, I||, 
and I┴ signals are ~95, 145, and 185µm, respectively [13]. The objectives of this study are to 
exploit the depth-selective capabilities of polarization-gating probes to map the effects of 1) 
pressure applied to the probe, 2) the angle between the probe axis and tissue surface, and 3) 
continuous probe contact for short time scales as a function of depth. All measurements were 
taken in vivo on human lip tissue. This tissue was selected for its in vivo accessibility and 
because it closely simulates the colonic mucosa which aligns with the research interests of our 
group. 
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2. Materials and methods 

2.1 Experimental setup 

The clinical data acquisition system was used for this experimental setup, which consists of a 
white light LED (WT&T) for an illumination source; two fiber optic spectrometers for 
detection (Ocean Optics, USB2000); a polarization-gating fiber-optic probe for transmission 
of light to and from tissue; and a control computer. Figure 1 illustrates the probe design, 
described in detail previously [2,13], which consists of three 200µm-core diameter fibers, one 
serves as an illumination channel and the other two for collection of the co-polarized and 
cross-polarized signals. Each tissue measurement acquires 3 spectra spanning the wavelength 
range of 350 to 700nm. The first and last acquisitions have the light source on for use 
investigating temporal effects, and to record the ambient signal, the source is turned off for the 
second acquisition. The recorded ambient signal is subtracted from each tissue measurement 
to account for any external effects not related to the probe illumination, such as room light. 
The entire time for this acquisition sequence is less than three seconds. 

2.45 mm

Polarizer 1Polarizer 2

Delivery fiber

Collection 

fibers 0.5 mm

(a) (b)
 

Fig. 1. (a) Schematic diagram (frontal view) of the polarization-gating fiber optic probe tip. (b) 
Schematic (side view) of the probe tip, which comes in contact with the sample, showing the 
fibers, thin-film polarizers and GRIN lens. 

Experiments were performed on the inner, mucosal surface of the lower lips of 4 
volunteers. For all measurements, the volunteer manipulated the probe to ensure contact with 
the lip tissue while a technician acquired the data. Prior to measurements, the inner surface of 
the lip was moistened to ensure water or saliva was present at the interface between the probe 
tip and tissue surface. In each experiment, measurements were normalized to our perceived 
ideal operating conditions which included applying a gentle pressure and the probe axis 
normal to the tissue surface. From each tissue measurement, five parameters were extracted 
from the algorithm used in previous in vivo analysis [2,13–16]: (1) total hemoglobin (Hb) 
concentration, (2) oxygen saturation, (3) packaging length scale (PLS) which is proportional 
to blood vessel diameter, (4) shape parameter, m, which describes the distribution of length 
scales, and (5) total scattering intensity. The parameter m characterizes the shape of the 
refractive index correlation function and is used to model the distribution of scattering length 
scales. Changes in m lead to changes in the power law that describes the reduced scattering 
coefficient dependence on wavelength. For the Whittle–Matérn model of refractive index 
distribution, values of parameter m < 1.5 correspond to a mass fractal, 1.5 < m < 2 
corresponds to a stretched exponential, and m = 2 corresponds to an exponential correlation 
function [17]. Each parameter (except total scattering intensity) was calculated at 2 depths 
from the tissue surface: the differential polarization spectra, ∆Ι, (average penetration depth 
~100µm) and cross-polarization spectra, I┴, (average penetration depth ~200µm). 

Exclusion criteria were determined to indicate poor contact between the probe tip and 
tissue surface. One criterion is low reflected signal, defined as any calculated Hb 
concentration value more than 2.5 standard deviations from the mean for ideal operating 
conditions (i.e. gentle pressure). Another criterion is signal-to-noise ratio (SNR = 
mean/standard deviation of the signal intensity) below a threshold of 33. The SNR threshold 
ensured that variation in calculated Hb concentration due to noise was 3 times less than the 
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inter-measurement variability in ideal operating conditions. For the temporal study, exclusion 
of an outlier was determined based on its placement in the time sequence. A point at the 
beginning of the time sequence was assumed to have poor contact for the initial measurement 
and the starting point for that particular set was adjusted. These sets will have less than 20 
measurements per tissue site. A single, random point in the sequence was simply excluded 
and the remaining data analyzed. Any points near the end of the sequence (i.e. in the last 10 
seconds) were not excluded because this may be an effect of continuous contact. 

To demonstrate that the probe can accurately measure the reduced scattering coefficient of 
a sample, we conducted a series of measurements on liquid suspensions of polystryene 
microspheres (Duke Scientific) in water. The scattering coefficient was varied from 6 – 36.5 

cm
−1

 by altering the concentration of microspheres and was calculated from Mie theory. In 
addition, suspensions with two different sizes of microspheres, 0.52 µm and 0.87 µm, were 
made corresponding to anisotropy values of 0.75 and 0.89 respectively. For each scattering 
coefficient and anisotropy value, measurements were taken by inserting the probe into the 
sample and recording the total reflected intensity collected by the probe. The relative 
reflectance was then determined as the ratio of the absolute reflectance of the phantom over 
the absolute reflectance of a polytetrafluoroethylene reflectance standard (Ocean Optics). The 
relative reflectance as a function of the reduced scattering coefficient is shown in Fig. 2(a). 
The overlap between the two different anisotropy values suggests that the relative intensity is 
a function of the reduced scattering coefficient only rather than the scattering coefficient or 
anisotropy factor independently. The functional relationship is observed to be linear with an 
R

2
 of 0.99. 
Tissue phantom models for oxygenation measurements were constructed according to the 

methods given in Siegel, et al. [12]. In brief, lypholized human hemoglobin (Sigmal-Aldrich) 
was added to a polystyrene microsphere suspension to create the starting solution. This 

starting solution had a hemoglobin concentration of 3 g/l, g = 0.86, and µ s = 200 cm
−1

. A trace 
amount of baker’s yeast was added to this starting solution and simultaneous measurements 
were taken with the polarization-gating probe and an oxygen-sensitive microelectrode 
(Microeletrodes Inc.) as the starting solution gradually deoxygenated. The subroutine reported 
by Kelman [18] was used to convert the partial pressure of oxygen measured by the electrode 
into percent oxygenation for comparison with the output of the polarization-gating probe and 
algorithm. Figure 2(b) compares these simultaneous measurements and demonstrates that the 
oxygenation values measured by the polarization-gating probe closely matched the 
oxygenation values determined by the electrode. The average percent error between both 
techniques was 2% over the physiological range of 35%-100% oxygenation. These results 
validate the accuracy of oxygenation determination by the polarization-gating probe. 
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Fig. 2. (a) Relative Reflectance from a tissue scattering phantom collected by the EIBS probe 
as a function of the reduced scattering coefficient for two different anisotropy factors. (b) The 
EIBS probe accurately measures percent oxygenation compared to a standard oxygen sensitive 
microelectrode. Perfect agreement between the probe and electrode oxygenation measurements 
is indicated by the diagonal line. The average percent error between both oxygenation 
measurement methods was 2% over the physiological range of 35%-100% oxygenation. 

2.2 Pressure study 

To study the effect of pressure applied by the probe to tissue, a set of measurements were 
taken randomly along the bottom lip. A set consisted of 2 measurements, each with different 
pressure, taken on the same tissue site with a 3 second recovery period between successive 
measurements. Pressure was manually applied to the probe by the volunteer. For each 
volunteer, 20 measurements were taken with firm pressure first and 20 with gentle pressure 
first. The order of applied pressure was randomized. Each spectrum was acquired within 2s of 
bringing the probe in contact with tissue. From the total 160 tissue sites probed, 5 were 
excluded due to poor tissue contact, resulting in a total of 155 tissue sites analyzed. Gentle 
pressure corresponded to the probe lightly touching the tissue surface, while firm pressure was 
enough to visibly indent the tissue surface. In order to estimate a value for each pressure, 
individuals applied a similar pressure to that used in experiments onto clay that was placed on 
a scale. From this, gentle and firm pressures were found to correspond to 0.009 – 0.012 
N/mm

2
 and 0.15 – 0.2 N/mm

2
, respectively. 

2.3 Angle study 

To study the effect of the angle between the axis of the probe tip and tissue surface, a set of 
measurements were performed similar to pressure. Here, a set consisted of 3 measurements 
taken on the same tissue site using three different angles between the axis of the probe tip and 
the surface normal: 0-10 degrees, 30-50 degrees, and 60-90 degrees from normal to the 
surface. Gentle pressure was applied for all measurements. Only 3 volunteers participated in 
this experiment, and for each volunteer, 10 sets were taken on random tissue sites and the 
order of angle randomized. From the total 30 tissue sites probed, 3 were excluded due to poor 
tissue contact, resulting in a total of 27 tissue sites analyzed. 

2.4 Temporal study 

To study temporal effects regarding the length of contact time between the probe and tissue, 
and whether this effect depends on applied pressure, a set of measurements were taken 
randomly on the lip. For a measurement set in this study, 10 successive acquisitions were 
taken on the same tissue site, without moving the probe. Since two spectra are acquired for 
each measurement, this produced 20 tissue acquisitions within a 30 second time interval. 
Throughout the entire sequence, either gentle or firm pressure was applied consistently. From 
the total 100 tissue sites probed, 8 were excluded due to poor tissue contact throughout the 
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entire measurement sequence, resulting in a total of 43 tissue sites analyzed for gentle 
pressure and 49 tissue sites analyzed for firm pressure. 

3. Results 

Statistical analysis was done using Microsoft Excel and Stata 9 (StataCorp). To investigate 
effects of the probe, measurements were normalized according to the study. For the pressure 
study, measurements were normalized to gentle pressure. Individual differences in pressure 
applied were accounted for by normalizing parameters by the mean gentle pressure for each 
volunteer separately, and then compared between individuals in a two-sided Welch’s t test 
with a significance level of α = 0.05. For the angle study, parameters were normalized by the 
mean value at 0-10 degrees (probe normal to tissue surface) for each volunteer and then 
assessed using a single-factor ANOVA analysis with a significance level of α = 0.05. For the 
temporal study, the change over time between the two pressures, gentle and firm, was tested 
using linear mixed models with pressure and time as the fixed effects, a pressure by time 
interaction, and a random effect for sets within volunteer with a significance level of α = 0.05. 
To investigate the time point when a change in the parameters becomes significant, each 
measurement set was evaluated with a paired t test between the means at time = 1 second and 
5 distinct time points: time = 6, 10, 15, 19, and 30 seconds. The significance level was 
adjusted to α = 0.01 for multiple comparison tests. 

Reflectance signals were measured from the inner surface of the bottom lip tissue of 4 
volunteers while the probe was held and manipulated by the volunteer. For each study, 5 
parameters were quantified: (1) total Hb concentration, (2) oxygenation, (3) PLS, (4) m, and 
(5) total scattering intensity. The polarization-gating probe provided analysis for 2 depths (∆Ι 
~100µm and I┴ ~200µm) below the tissue surface. The mean and standard errors of the five 
parameters extracted from analysis of the pressure and angle experiments are presented in 
Figs. 3(a) through 3(i) and the temporal experiments are presented in Figs. 4(a) through 4(i). 
In these figures, panels (a) and (b) show total Hb concentration; panels (c) and (d) show 
oxygenation; panels (e) and (f) show PLS; panels (g) and (h) show m for superficial (100µm) 
and deep penetration depths (200µm), respectively; and panel (i) shows the total scattering 
intensity. 

3.1 Pressure 

In the pressure study, there were several trends worth noting. For total Hb content with firm 
pressure applied, there is a statistically significant increase (p = 0.002) for ∆Ι signal [Fig. 3(a)] 
and a significant decrease (p < 0.001) for I┴ signal [Fig. 3(b)]. For oxygenation, no significant 
change was observed at either depth (p = 0.80 for ∆Ι and p = 0.21 for I┴) [Fig. 3(c), 3(d)]. For 
PLS, ∆Ι remained constant (p = 0.99) [Fig. 3(e)], but I┴ showed a significant decrease in PLS 
(p < 0.001) [Fig. 3(f)]. The m parameter also showed no change for ∆Ι (p = 0.15) [Fig. 3(g)] 
and a significant increase for I┴ (p = 0.006) [Fig. 3(h)]. For total scattering intensity, there is a 
significant increase (p < 0.001) when firm pressure is applied [Fig. 3(i)]. 

3.2 Angle 

In the angle study, there were no significant trends observed (p > 0.25 for all parameters) in 
any parameter between the 3 different angles measured [Fig. 3(a)–3(i)]. This suggests that the 
angle between the probe tip and tissue surface has no influence on the probe measurements. 
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Fig. 3. . Results for pressure and angle experiments. Angle measurements were normalized to 
the mean value of each parameter for the probe axis normal to tissue. Pressure measurements 
were normalized to the mean value of each parameter for gentle pressure. Graphs represent the 
relative change in each parameter. Left panel shows the means and standard errors for (a) total 
Hb content, (c) oxygenation, (e) PLS, and (g) m from the ∆Ι signal. The right panel shows the 
means and standard errors for (b) total Hb content, (d) oxygenation, (f) PLS, and (h) m from 
the I┴ signal. Panel (i) shows the total scattering intensity. * Notes parameters with statistical 
significance of p < 0.05. 
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3.3 Temporal 

In the temporal study, the change in parameters was first compared between the two pressure 
groups over time using a random effects mixed model including an interaction. For 3 
parameters, total Hb content, oxygenation, and PLS, there was a statistically significant 
difference between gentle and firm pressure over time (interaction p < 0.001) for both ∆Ι and 
I┴ [Fig. 4(a)–4(f)]. For m, there was a significant difference over time for ∆I (interaction p < 
0.001), but not for I┴ (interaction p = 0.09) [Fig. 4(g), 4(h)]. For total scattering intensity, 
there was also a statistically significant difference over time (interaction p = 0.02) [Fig. 4(i)]. 

Next, the time point after initial contact when a change in the parameters becomes 
significant was evaluated between the means at 5 distinct time points: time = 6, 10, 15, 19, 
and 30 sec. When gentle pressure was applied, there was no time point within the 30 seconds 
of continuous contact evaluated in this study that showed a statistically significant change 
from the first tissue measurement. When firm pressure was applied, some parameters showed 
a significant change within 6 sec, the first time point tested for significance. For total Hb 
content, the change is significant within 10 sec for ∆Ι (p = 0.005) and within 6 sec for I┴ (p = 
0.007). For oxygenation, the change is significant within 6 sec for both the ∆Ι (p = 0.008) and 
I┴ (p < 0.001). There is no significant change within the 30 second interval for PLS and m at 
either depth, or for total scattering intensity. The means and standard errors of the five 
parameters extracted from the analysis of the temporal experiments are presented in Figs. 4(a) 
through 4(i). 
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Fig. 4. Results for temporal experiments which include acquisition of 20 spectra within 30 
seconds on the same tissue site. For each tissue site, measurements were normalized to the first 
measurement in the sequence, corresponding to initial probe contact. Either gentle or firm 
pressure was applied consistently throughout the measurement sequence. Graphs represent the 
relative change in each parameter with the applied pressure. Left panel shows the means and 
standard errors for (a) total Hb content, (c) oxygenation, (e) PLS, and (g) m from the ∆Ι signal. 
The right panel shows the means and standard errors for (b) total Hb content, (d) oxygenation, 
(f) PLS, and (h) m from the I┴ signal. Panel (i) shows the total scattering intensity. 
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4. Discussion 

In this study, we investigated the influence of applying pressure to the probe, the angle 
between the probe tip and tissue surface, and temporal dependence on short contact durations. 
Firm pressure applied to the probe affects several parameters measured. At the deeper depth 
measured, the results are consistent with our expectations. As the tissue is compressed from 
firm pressure, the blood vessels are also compressed which forces some blood out of the area 
under the probe tip, as observed with a decrease in PLS and reduction in total Hb content. Yet, 
the superficial depth does not have the same trend. We hypothesize that the epithelial layer 
may have a different elasticity than the lamina propria and that applying firm pressure to the 
probe compresses the most superficial layer. This may bring some deeper vessels closer to the 
tissue surface, within the range of the average penetration depth measured by the delta-
polarization signal and account for the observed increase in total Hb. We expected firm 
pressure to decrease oxygenation due to a reduction in fresh blood supply to the area. In this 
pressure study, however, a single measurement does not provide the sufficient time scale to 
observe these changes. This is supported in Fig. 4(c), 4(d) which shows significant 
oxygenation changes do not occur until more than 5 seconds after initiating probe contact. It is 
suggested that the observed decrease in temporal oxygenation results from a combination of 
reduced blood supply and continued oxygen consumption by the tissue underneath the probe 
tip. Since there is less blood supply, the trapped blood under the probe will deoxygenate over 
time as the oxygen continues to diffuse into the tissue from the only available blood. 
Consistent with the observation by Reif et al [6], the change in total Hb content is less than 
20% for both depths. Although the total Hb content change is near 20% and below the intra-
patient and inter-patient variability (~40% for each) observed in our in vivo colonoscopy 
clinical studies [2,13], it is significant. This suggests that pressure could influence the 
measured parameters and may be largely responsible for the intra- and inter-patient variability 
since different endoscopists likely apply varying pressures to the probe. This effect needs 
further investigation to understand differences in utilization of the probe between endoscopists 
and the subtle differences occurring within the mucosal layers of tissue. 

We observed that firm pressure has some impact on total scattering intensity and the shape 
of the index correlation function, quantified by the parameter m. As stated above, we 
hypothesize that the probe tip compresses the tissue. This would bring the scatterers closer 
together, allowing two smaller scatterers to act as one larger scatter, leading to an increase in 
the total scattering intensity. Additionally, compressing the tissue leads to a change in the 
distribution of scattering length scales, measured by m. Future studies are needed to further 
investigate these effects to gain a better understanding of the observed changes in m and total 
scattering intensity. Future studies should also aim to verify that a controlled, gentle pressure 
applied to the probe can reduce variability in the clinical setting. This can be accomplished 
with a sensor on the probe tip that controls or measures the pressure applied. 

We observed that changing the angle between the probe tip and tissue surface did not 
show a significant effect for any parameter. This indicates that the tissue conforms to the 
surface of the probe lens when it is in good contact with the target tissue. Although a slight 
trend can be observed for total scattering intensity, with an ANOVA p-value = 0.26, it is not 
statistically significant (all other parameters range from p = 0.5 to p = 0.9). It is possible that 
changing the probe angle could potentially distort the tissue under the probe or introduce 
changes in optical coupling that could be responsible for the observed trend. Since the data 
show less than 10% change, we can assume that the parameters measured are not dependent 
on the angle.Although the probe was designed to be used with the probe axis normal to the 
tissue surface, when it is delivered through the accessory channel of an endoscope, this is 
often difficult to achieve for every in vivo measurement. These results confirm that precise 
normal incidence to the tissue is not required and that angle is not an important source of 
variability in our clinical studies. 

From the temporal analysis, we observed that within a short time scale, continuous contact 
between the probe and tissue affects the parameters measured. The 30 second time scale was 
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chosen to represent probable delays for the clinical setting that occur between the time the 
physician places the probe in contact with tissue and the time the technician starts data 
acquisition. For gentle pressure, there are no significant differences in the parameters at any 
time point in this scale. For firm pressure, the rapid decrease observed in total Hb content and 
oxygenation in as little as 6 seconds from initial probe contact results from reduced blood 
supply and continued oxygen consumption, as discussed above. Also similar to the pressure 
study, PLS is not affected at the more superficial depth and only slightly decreases with 
pressure at the deeper depth. This further supports the hypothesis that firm pressures may 
compress the more elastic epithelial layer and collapse deeper vessels resulting in the reduced 
blood flow. These results suggest that temporal trends can yield information about oxygen 
consumption of the interrogated tissue. In the case of a controlled, known pressure, in vivo 
temporal measurements could correlate decreasing oxygenation with metabolic demand for 
potential diagnostic applications. 

These studies demonstrate that firm pressure impacts the data collected and needs to be 
addressed in the clinical setting. A proper protocol can be developed to include maintaining 
good contact between the probe tip and tissue surface with application of gentle pressure. 
Conversely, we realize that gentle pressure is subject to interpretation and even more difficult 
to assess if utilizing the probe through an endoscope. The temporal study revealed that 
changes due to pressure can occur in as little as 6 seconds. Thus, there is an urgent need for a 
robust mechanism to minimize and control any delay between probe contact and data 
acquisition. One potential solution is implementation of a sensor to automatically trigger data 
acquisition when contact is detected between the probe and target tissue. This will eliminate 
the need for a technician and ensure the delay between tissue contact and acquisition is 
consistent, potentially reducing variability previously encountered from pressure or temporal 
effects. We expect to further expand this study in a clinical setting to more relevant tissues, 
such as colon polyps or other lesions, coinciding with development of the sensor. 

One limitation to this study is that the volunteer manipulated the probe during 
measurements. While this allowed the volunteer to maintain good contact with the lip tissue 
and apply a more consistent pressure throughout measurements, this does not replicate the 
clinical scenario in which a physician uses the probe on a patient. Future studies should aim to 
investigate the effects of pressure and time when the probe is manipulated by another user, as 
well as with the probe used through the accessory channel of an endoscope. Furthermore, 
future studies should confirm that variability can be reduced in our clinical in vivo data when 
either the pressure applied to the probe or the time delay between contact and acquisition is 
controlled. Additionally, other sources of variability need to be explored, such as colonic 
distension. 

Another limitation of allowing the volunteer to manipulate the probe is that the pressure 
applied was subjective and each volunteer may interpret ‘gentle’ and ‘firm’ differently. We 
can assume that the gentle pressures represent the range of pressures applied in the clinical 
setting, and the firm pressures, which visibly indented the surrounding tissue, are greater than 
pressures utilized by physicians in our clinical studies. Eliminating pressure and temporal 
effects would simplify the use of our device in mutli-center clinical trials and in future 
applications. 
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