
Next-generation acceleration and code
optimization for light transport in turbid

media using GPUs

Erik Alerstam,1,5,∗ William Chun Yip Lo,2,5 Tianyi David Han,4

Jonathan Rose,4 Stefan Andersson-Engels,1 and Lothar Lilge2,3

1Department of Physics, Lund University, Sweden
2Department of Medical Biophysics, University of Toronto, Canada

3Ontario Cancer Institute, University Health Network, Canada
4The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of

Toronto, Canada
5These authors contributed equally to this work and should be considered co-first authors.

*erik.alerstam@fysik.lth.se

http://code.google.com/p/gpumcml

Abstract: A highly optimized Monte Carlo (MC) code package for
simulating light transport is developed on the latest graphics processing
unit (GPU) built for general-purpose computing from NVIDIA – the Fermi
GPU. In biomedical optics, the MC method is the gold standard approach
for simulating light transport in biological tissue, both due to its accuracy
and its flexibility in modelling realistic, heterogeneous tissue geometry in
3-D. However, the widespread use of MC simulations in inverse problems,
such as treatment planning for PDT, is limited by their long computation
time. Despite its parallel nature, optimizing MC code on the GPU has been
shown to be a challenge, particularly when the sharing of simulation result
matrices among many parallel threads demands the frequent use of atomic
instructions to access the slow GPU global memory. This paper proposes
an optimization scheme that utilizes the fast shared memory to resolve the
performance bottleneck caused by atomic access, and discusses numerous
other optimization techniques needed to harness the full potential of the
GPU. Using these techniques, a widely accepted MC code package in
biophotonics, called MCML, was successfully accelerated on a Fermi GPU
by approximately 600x compared to a state-of-the-art Intel Core i7 CPU.
A skin model consisting of 7 layers was used as the standard simulation
geometry. To demonstrate the possibility of GPU cluster computing, the
same GPU code was executed on four GPUs, showing a linear improvement
in performance with an increasing number of GPUs. The GPU-based
MCML code package, named GPU-MCML, is compatible with a wide
range of graphics cards and is released as an open-source software in two
versions: an optimized version tuned for high performance and a simplified
version for beginners (http://code.google.com/p/gpumcml).

© 2010 Optical Society of America

OCIS codes: (170.3660) Light propagation in tissues; (170.5280) Photon migration;
(170.7050) Turbid media; (290.4210) Multiple scattering.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 658

References and links
1. B. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med.

Phys. 10, 824 (1983).
2. L. Wang, S. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,”

Comput. Meth. Prog. Biol. 47, 131–146 (1995).
3. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through

complex heterogeneous media including the adult human head.” Opt. Express 10, 159–170 (2002).
4. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin

and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478
(1998).

5. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determina-
tion of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).

6. G. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part
I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062–1071 (2006).

7. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan., “Pertur-
bation Monte Carlo methods to solve inverse photon migration problems in heterogenous tissues,” Opt. Lett. 26,
1335–1337 (2001).

8. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,”
J. Biomed. Opt. 13, 041304 (2008).

9. A. Custo, D. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. Grimson, and W. Wells III, “Anatomical
atlas-guided diffuse optical tomography of brain activation,” NeuroImage 49 (2010).

10. D. Boas and A. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse
optical tomography of human brain function,” Appl. Opt. 44, 1957–1968 (2005).

11. W. C. Y. Lo, K. Redmond, J. Luu, P. Chow, J. Rose, and L. Lilge, “Hardware acceleration of a Monte Carlo
simulation for photodynamic therapy treatment planning,” J. Biomed. Opt. 14, 014019 (2009).

12. A. Johansson, J. Axelsson, S. Andersson-Engels, and J. Swartling, “Realtime light dosimetry software tools for
interstitial photodynamic therapy of the human prostate,” Med. Phys. 34, 4309 (2007).

13. S. Davidson, R. Weersink, M. Haider, M. Gertner, A. Bogaards, D. Giewercer, A. Scherz, M. Sherar, M. Elhilali,
J. Chin et al., “Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer,”
Phys. Med. Biol. 54, 2293–2313 (2009).

14. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-
speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

15. N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in
complex heterogeneous tissues,” Opt. Express 18, 6811–6823 (2010).

16. Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by
Graphics Processing Units,” Opt. Express 17, 20178–20190 (2009).

17. A. Badal and A. Badano, “Monte Carlo simulations in a graphics processing unit,” Med. Phys. 36, 4878–4880
(2009).

18. W. C. Y. Lo, T. D. Han, J. Rose, and L. Lilge, “GPU-accelerated Monte Carlo simulation for photodynamic
therapy treatment planning,” Proc. SPIE 7373, (2009).

19. E. Alerstam, T. Svensson, and S. Andersson-Engels, “CUDAMCML - User manual and implementation notes,”
http://www.atomic.physics.lu.se/biophotonics/.

20. L. Wang, S. Jacques, and L. Zheng, “CONV - convolution for responses to a finite diameter photon beam incident
on multi-layered tissues,” Comput. Meth. Prog. Bio. 54, 141–150 (1997).

21. NVIDIA Corporation, “CUDA Programming Guide 3.0,” (2010).
22. NVIDIA Corporation, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,” (2010).
23. G. Marsaglia, “Random number generators,” J. Mod. Appl. Stat. Meth. 2, 2–13 (2003).
24. H. Shen and G. Wang, “A tetrahedon-based inhomogenous Monte Carlo optical simulator,” Phys. Med. Biol. 55,

947–962 (2010).
25. M. Matsumoto and T. Nishimura, “Mersnne Twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator,” ACM T. Model. Comput. S. 8, 3–30 (1998).
26. M. Saito and M. Matsumoto, SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator

(Springer, 2008).
27. I. Meglinsky and S. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med.

Biol. Eng. Comput. 39, 44–50 (2001).
28. S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, “Optical properties of Intralipid: a phantom medium

for light propagation studies,” Laser. Surg. Med. 12, 510–510 (1992).
29. M. Quinn, Parallel Computing: Theory and Practice (McGraw-Hill, 1994).
30. N. Carbone, H. Di Rocco, D. I. Iriarte, and J. A. Pomarico, “Solution of the direct problem in turbid media with

inclusions using monte carlo simulations implemented in graphics processing units: new criterion for processing

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 659

transmittance data,” J. Biomed. Opt. 15, 035002 (2010).

1. Introduction

Modelling light propagation in biological tissue both accurately and efficiently is a problem
of great importance in biomedical optics. Macroscopic transport of light in scattering mate-
rials, such as tissue, can be described by the Radiative Transport Equation (RTE), which has
proven difficult to solve analytically without introducing severe approximations and simplifica-
tions. To solve the RTE numerically, Wilson and Adam [1] introduced the Monte Carlo (MC)
method. Owing to its accuracy and its ability to handle heterogenous optical properties, the MC
method is currently widely accepted as the gold standard approach for photon migration mod-
elling. In particular, the MC implementation by Wang et al. (MCML) [2] has been accepted as
a gold standard tool for simulating light propagation in multilayered turbid media. The MCML
code package has since then been used for validation of numerous photon migration modelling
schemes and as a starting point for custom-developed MC solutions. Further, Boas et al. ex-
tended the code capabilities by releasing the tMCimg code for time-resolved and steady-state
MC-based photon migration in arbitrary, 3-D voxelized media [3].

The main drawback of the MC method is the heavy computational burden, causing MC sim-
ulation times to become prohibitively long. Owing to this limitation, MC simulations have so
far mainly been used for forward modelling—that is, calculating the photon density distribution
given a defined geometry of photon sources and tissue structures as well as their optical proper-
ties. A few examples of inverse modelling have been published [4–8], but these methods have
relied on either rescaling the results of Monte Carlo simulations or building databases of simu-
lation results, both methods constraining the evaluation space in terms of optical properties and
geometrical complexity. The ability to directly use MC simulations for complex, inverse op-
timization problems would benefit numerous important biomedical applications, ranging from
diffuse optical tomography [9, 10] to treatment planning for photodynamic therapy [11–13].

To enable the use of MC simulations for solving inverse problems, the graphics processing
unit (GPU) has recently emerged as a promising solution, achieving speedups of up to 3 orders
of magnitude over CPU-based codes [14]. However, several previous attempts to use the GPU
for accelerating MC simulations have shown limited success, probably due to the difficulty of
optimizing the GPU code for high performance. These previous attempts [15–19] and prelim-
inary observations highlight the need for a new optimization approach to avoid performance
bottlenecks in order to harness the full potential of the GPU. To tackle this computational chal-
lenge, we present a highly optimized implementation of MCML on GPUs, called GPU-MCML,
which represents the fusion of and a significant improvement on our earlier, preliminary imple-
mentations. In addition, this work focuses on various GPU optimizations enabled by the latest
Fermi GPU architecture and analyzes how they dramatically affect the performance of MC
simulations for photon migration on GPUs. In particular, we propose a solution to tackle the
major performance bottleneck caused by the inefficiency of atomic access to the GPU memory.
The proposed solution is applicable to both 2-D and 3-D cases; it is also favored by the latest
architectural improvements on the Fermi GPUs.

In addition to solving major bottlenecks, the current GPU-MCML code is designed to support
a wide range of NVIDIA graphics cards, including those with multiple GPUs. With this scala-
bility, the code can be extended to run on a GPU cluster and be used for solving complex in-
verse problems in the future. A generalized version of the GPU-MCML code is also presented,
which serves as a starting point for scientists and programmers interested in developing their
own custom GPU-accelerated MC code. This version is a familiar, well-documented starting
point and it shares many similarities with the well-known MCML package. The GPU-MCML
code has been thoroughly validated against the original CPU version and can be downloaded

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 660

Launch new
photon

Compute step
size

Check boundary

Move photon

Scatter Reflect or

Hit
boundary

Did not hit
boundary

Position
Update

Direction

Fluence
Update

Scatter

Absorb

transmit

Survival Roulette

Update

Photon alivePhoton dead

Fig. 1. Left: Flow-chart of the MCML algorithm. Right: Simplified representation used in
subsequent sections.

from http://code.google.com/p/gpumcml.

2. Background

2.1. MCML

The MCML algorithm [2] models steady-state light transport in multi-layered turbid media
using the MC method. A pencil beam perpendicular to the surface is modelled; more com-
plex sources can be modelled with modifications or with other tools [20]. The implementation
assumes infinitely wide layers, each described by its thickness and its optical properties, com-
prising the absorption coefficient, scattering coefficient, anisotropy factor, and refractive index.

In the MCML code, three physical quantities – absorption, reflectance, and transmittance
– are calculated in a spatially-resolved manner. Absorption is recorded in a 2-D array called
A[r][z], which stores the photon absorption probability density [cm−3] as a function of radius
r and depth z for the pencil beam (or impulse response). Absorption probability density can
be converted into more common quantities, such as photon fluence (measured in cm−2 for the
impulse response) which is obtained by dividing A[r][z] by the local absorption coefficient.

The simulation of each photon packet consists of a repetitive sequence of computational steps
and can be made independent of other photon packets by creating separate absorption arrays
and, importantly, decoupling random number generation using different seeds. Therefore, a
conventional software-based acceleration approach involves processing photon packets simul-
taneously on multiple processors. Figure 1 shows a flow chart of the key steps in an MCML
simulation, which includes photon initialization, position update, direction update, fluence up-
date, and photon termination. Further details on each computational step may be found in the
original papers by Wang et al. [2].

2.2. Programming Graphics Processing Units

This section introduces the key terminology for understanding the NVIDIA GPU hardware and
its programming model. This learning curve is required to fully utilize this emerging scientific

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 661

Fig. 2. Simplified representation of the GPU architecture for NVIDIA GTX 280 (left) and
GTX 480 (right). Each GPU consists of a number of streaming multiprocessors (SMs),
each of which has a number of scalar processors (SPs). GTX 280 has 16KB of shared
memory per SM, while GTX 480 has up to 48KB.

computing platform for this and other related applications.

2.2.1. CUDA

GPU-accelerated scientific computing is becoming increasingly popular with the release of an
easier-to-use programming model and environment from NVIDIA (Santa Clara, CA), called
CUDA, short for Compute Unified Device Architecture [21]. CUDA provides a C-like pro-
gramming interface for NVIDIA GPUs and it suits general-purpose applications much better
than traditional GPU programming languages. However, performance optimization of a CUDA
program requires careful consideration of the GPU architecture.

In CUDA, the host code and the device code are written in a single program. The former
is executed sequentially by a single thread on the CPU, while the latter is executed in parallel
by many threads on the GPU. Here, a thread is an independent execution context that can, for
example, simulate an individual photon packet in the MCML algorithm. The device code is
expressed in the form of a kernel function. It is similar to a regular C function, except that it
specifies the work of each GPU thread, parameterized by a thread index variable. Correspond-
ingly, a kernel invocation is similar to a regular function call except that it must specify the
geometry of a grid of threads that executes the kernel, also referred to as the kernel configura-
tion. A grid is first composed of a number of thread blocks, each of which then has a number
of threads.

2.2.2. NVIDIA GPU Architecture

CUDA-enabled NVIDIA GPUs have gone through two generations; an example for each gen-
eration includes Geforce 8800 GTX and Geforce GTX 280, respectively. The third generation,
named Fermi and represented by Geforce GTX 480, was released recently (in the second quar-
ter of 2010). Figure 2 compares the underlying hardware architecture of GTX 280 and GTX
480, showing both a unique processor layout and memory hierarchy [21].

GTX 280 has 30 streaming multiprocessors (SMs), each with 8 scalar processors (SPs). Note
that the 240 SPs (total) are not 240 independent processors; instead, they are 30 independent
processors that can perform 8 similar computations at a time. From the programmer’s perspec-
tive, each thread block is assigned to an SM, and each thread within it is further scheduled

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 662

to execute on one of the SPs. Compared to GTX 280, the Fermi-based GTX 480 has half the
number of SMs, but each SM contains four times the number of SPs, resulting in a total of 480
SPs.

Apart from the processor layout, the programmer must understand the different layers and
types of memory on the graphics card, due to the significant difference in memory access
time. At the bottom layer resides the off-chip device memory (also known as global mem-
ory), which is the largest yet slowest type of GPU memory. Closer to the GPU are various
kinds of fast on-chip memories. Common to both GTX 280 and GTX 480 are registers at the
fastest speed, shared memory at close to register speed, and a similarly fast cache for constant
memory (for read-only data). On-chip memories are roughly a hundred times faster than the
off-chip global memory, but they are very limited in storage capacity. Finally, there is a region
in device memory called local memory for storing large data structures, such as arrays, which
cannot be mapped into registers by the compiler. Compared to GTX 280, GTX 480 has up to
triple the amount of shared memory for each SM. Most importantly, it includes two levels of
hardware-managed caches to ameliorate the large difference in access time of on-chip and off-
chip memories. At the bottom, there is an L2 cache for the global memory with roughly half
the access time. At the top, there is an L1 cache within each SM, at the speed of the shared
memory. In fact, the L1 cache and the shared memory are partitions of the same hardware. The
programmer can choose one of two partitioning schemes for each kernel invocation. Even with
these improvements in GTX 480, it is still important to map the computation efficiently to the
different types of memories for high performance.

2.2.3. Atomic Instructions

CUDA also provides a mechanism to synchronize the execution of threads using atomic instruc-
tions, which coordinate sequential access to a shared variable (such as the absorption array in
the MCML code). Atomic instructions guarantee data consistency by allowing only one thread
to update the shared variable at any time; however, in doing so, it stalls other threads that require
access to the same variable. As a result, atomic instructions are much more expensive than reg-
ular memory operations. Although their speed has been improved on Fermi-based GPUs [22],
it is still very important to optimize atomic accesses to global memory, as explained in the
following section.

3. GPU-accelerated MCML Code (GPU-MCML)

This section presents the implementation details of the GPU-accelerated MCML program
(named GPU-MCML), highlighting how a high level of parallelism is achieved, while avoiding
memory bottlenecks caused by atomic instructions and global memory accesses. The need to
carefully consider the underlying GPU architecture, particularly the differences between the
pre-Fermi and Fermi GPUs, is discussed.

3.1. Features

Before describing the implementation details, several features of the GPU-MCML program are
highlighted below:

1. Compatibility with a wide range of NVIDIA graphics cards (Fermi and pre-Fermi):
The GPU-MCML program has been tested on the latest NVIDIA Fermi graphics cards
such as GTX 480 (Compute Capability 2.0) and is backward compatible with pre-Fermi
generations such as GTX 280 and 8800 GT (Compute Capability 1.1-1.3). This compati-
blity is achieved by automatically enabling different set of features based on the Compute
Capability of the GPU detected.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 663

2. Multi-GPU execution mode: The program can be executed on multi-GPU systems by
specifying the number of GPUs at runtime to open up the possibility of GPU cluster
computing.

3. Optimized version and simplified version: Two versions of the GPU-MCML pro-
gram are released. The optimized version automatically detects the GPU generation and
chooses the proper set of architecture-specific optimizations based on the features sup-
ported. The simple version aims for code readability and reusability, by removing most
optimizations. The simplified code is designed to look very similar to the original CPU
MCML program to ease the learning curve for novice CUDA programmers.

3.2. Implementation Overview

One important difference between writing CUDA code and writing a traditional C program (for
sequential execution on a CPU) is the need to devise an efficient parallelization scheme for the
case of CUDA programming. Although the syntax used by CUDA is, in theory, very similar
to C, the programming approach differs significantly. Compared to serial execution on a single
CPU where only one photon packet is simulated at a time, the GPU-accelerated version can
simulate many photon packets in parallel using multiple threads executed across many scalar
processors. The total number of photon packets to be simulated are split equally among the
threads.

The GPU program or kernel contains the computationally intensive loop in the MCML sim-
ulation (the position update, direction update, and fluence update loop). Other miscellaneous
tasks, such as reading the simulation input file, are performed on the host CPU. Each thread
executes the same loop, except using a unique random number sequence. Also, a single copy
of the absorption array is allocated in the global memory, and all the threads update this array
concurrently using atomic instructions. Although it is, in theory, possible to allocate a private
copy of the array for each thread, this approach greatly limits the number of threads that can be
launched when the absorption array is large, especially in 3-D cases. Therefore, a single copy
is allocated by default (and the program provides an option to specify the number of replicas).

The kernel configuration, which significantly affects performance, is set based on the gen-
eration of the GPU detected at runtime. The number of thread blocks is chosen based on the
number of SMs detected, while the number of threads within each block is chosen based on the
Compute Capability of the graphics card. For example, the kernel configuration is specified as
15 thread blocks (Q=15), each containing 896 threads (P=896), for GTX 480 with a Compute
Capability of 2.0. As shown in Fig. 3, each thread block is physically mapped onto one of the 15
multiprocessors and the 896 threads interleave its execution on the 32 scalar processors within
each multiprocessor on GTX 480.

The choice of the kernel configuration is complicated by a series of competing factors. In
general, maximizing the number of threads per block is preferred since this maximizes GPU
resource utilization and helps hide the global memory latency. However, in this case, increasing
the number of threads also worsens the competition for atomic access to the common A[r][z]
array. Therefore, the maximum number of threads (i.e., 1024 for Fermi GPUs with a Compute
Capability of 2.0) was not chosen. Similar reasoning applies to the choice of the number of
thread blocks. Specifying fewer than 15 thread blocks would under-utilize the GPU resources
available since there are 15 multiprocessors on GTX 480. A larger number, such as 30 thread
blocks, would increase competition for atomic access and decrease the shared memory available
to each thread block. The need to improve the efficiency for atomic access is discussed in detail
next.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 664

Physical (GPU hardware) Logical (CUDA programming model)

Thread
1

Thread
2

Direction
Update

Fluence
Update

Position
Update

Thread P

Thread Block Q

…

Direction
Update

Fluence
Update

Position
Update

Thread 1

Shared Memory – stores high fluence region of A[r][z] (32bit or 64bit)

Direction
Update

Fluence
Update

Position
Update

Thread 2

Direction
Update

Fluence
Update

Position
Update

Thread P

Thread Block 1

32/64-bit
atomicAdd

SM 1SM 1

FAST Registers, Shared Memory
and True L1 Cache

Read-only Constant Memory
Cache

SP
1

SP
2

SP
31

SP
32

SM SM
1515

Global Memory – stores a single copy of A[r][z] (64bit integer)

…

64-bit
atomicAdd

SLOW Global Memory

L2 Global Memory Cache

Fig. 3. Parallelization scheme of the GPU-accelerated MCML code. Note that the number
of thread blocks Q is matched to the number of SMs available and the number of threads P
in each block is a many-to-one mapping (in this case, Q=15 and P=896 for GTX 480).

3.3. Key Performance Bottleneck

As all threads need to atomically access the same absorption array in the global memory during
every fluence update step, this step becomes a major performance bottleneck when thousands
of threads (13440 threads in example shown in Fig. 3) are present. In CUDA, atomic addition
is performed using the atomicAdd() instruction. However, using atomicAdd() instruc-
tions to access the global memory is particularly slow, both because global memory access is
a few orders of magnitude slower than that of on-chip memories and because atomicity pre-
vents parallel execution of the code (by stalling other threads in the code segment where atomic
instructions are located). This worsens with increasing number of threads due to the higher
probability for simultaneous access to an element, also known as contention.

3.4. Solution to Performance Bottleneck

To reduce contention and access time to the A[r][z] array, two memory optimizations were
applied:

1. Storing the high-fluence region in shared memory: The first optimization, illustrated in
Fig. 3, is based on the high access rate of the A[r][z] elements near the photon source (or
at the origin in the MCML model), causing significant contention when atomic instruc-
tions are used. Therefore, this region of the A[r][z] array is cached in the shared memory.
Namely, if a photon packet is absorbed inside the high-fluence region, its weight is accu-
mulated atomically into the shared memory copy. Otherwise, its weight is added directly
into the global memory atomically. At the end of the simulation, the values temporarily
stored in the shared memory copy are written (flushed) to the master copy in the global
memory.

This optimization has two significant implications. First, the shared memory copy of the
array is now only updated atomically by the threads within each thread block, instead of

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 665

all the threads across all thread blocks. Second, memory accesses to the shared memory
are ∼30-fold faster than those to the global memory.

A point of complexity of this optimization involves maximizing the number of high-
fluence elements that can be stored in shared memory. To achieve this, the size of each
A[r][z] element in shared memory can be reduced (from 64 bits for the master copy in
the global memory). In fact, the default setting in GPU-MCML for pre-Fermi GPUs is to
declare an array of 32-bit elements in the shared memory since the 64-bit atomicAdd
operation to shared memory is only supported on Fermi GPUs. However, reducing the
size of the shared memory entries to 32 bits requires the explicit handling of arithmetic
overflow. When the accumulated weight approaches ∼232 and overflow becomes immi-
nent, the value needs to be flushed to global memory. Since the overhead of overflow
handling can be significant (especially if overflow occurs frequently in highly absorbing
media), the default setting for Fermi GPUs is to declare a 64-bit shared memory array
instead.

The overall effect of this optimization clearly depends on both the size of the shared
memory on the GPU and the selection of the cached region from the A[r][z] array. Fortu-
nately, the latest Fermi GPUs have triple the amount of shared memory (48 kB on GTX
480) compared to pre-Fermi GPUs (16 kB on GTX 280). Hence, Fermi GPUs (and likely
future generations of GPUs with even larger shared memory) can greatly benefit from
this optimization. As for the selection of the optimal dimensions of the cached region,
this is currently specified manually as this selection is input-dependent (i.e., the shape of
the high-fluence region depends on such simulation inputs as the tissue optical properties
and absorption grid resolution). However, this selection can, in theory, be automated in
the future by running a short simulation with the input parameters and then extracting the
locations and shape of the region with the highest fluence.

2. Caching photon absorption history in registers: To further reduce the number of
atomic accesses (even to the shared memory), the recent write history, representing pre-
vious absorption events, can be stored privately in registers by each thread. It was ob-
served that consecutive absorption events can happen at nearby, or sometimes the same,
locations in the A[r][z] array, depending on the absorption grid geometry and optical
properties of the layers. To save on register usage, the current GPU-MCML code only
stores the most recent write history using 2 registers – one for the last memory location
and one for the total weight. For each thread, consecutive writes to the same location of
the A[r][z] array are accumulated into these registers until a different memory location
is computed. Once a different location is detected, the accumulated weight is flushed to
shared (or global) memory using an atomicAdd instruction and the whole process is
repeated.

As an additional optimization to avoid atomic accesses, in the GPU version, photon packets at
locations beyond the coverage of the absorption grid (as specified through the input parameters
dr, dz, nr, and nz) no longer accumulate their weights at the perimeter of the grid, unlike
in the original MCML code. Note that these boundary elements were known to give invalid
values in the original MCML code [2]. This optimization does not change the correctness of
the simulation, yet it ensures that performance is not degraded if the size of the detection grid
is decreased, which forces photon packets to be absorbed at boundary elements (significantly
increasing contention and access latency to these elements in the A[r][z] array).

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 666

3.5. Alternative Solution: Reflectance/transmittance-only Mode

GPU-MCML offers an alternative way to overcome the performance bottleneck. In some cases,
the user is not interested in the internal absorption probability collected in the A[r][z] array. As
the major performance bottleneck is caused by the atomic update of the A[r][z] array for almost
every step for each photon, ignoring the array update (while still reducing the photon packet
weight after each scattering event) causes a major performance boost while still retaining valid
reflectance and transmittance outputs. The maximum number of atomic memory operations
is reduced to the total number of photon packets launched (since reflectance/transmittance is
recorded atomically only upon exiting the tissue, which happens once per photon packet) and
these operations are spread out over the entire simulation. Also, the small number of memory
operations compared to arithmetic operations allows the GPU to “hide” the cost of memory
operations. Note that this way of recording simulation output is similar to that presented in [14].
The option to ignore the A[r][z] array detection is enabled by passing a -A flag to GPU-MCML
at runtime.

3.6. Parallel pseudo-random number generation

Efficiently generating uncorrelated pseudo random numbers is a non-trivial, albeit critical, task
for parallelized MC simulations. Unless each thread uses a unique sequence of random num-
bers, there is a risk that multiple threads will simply re-calculate one another’s results, which
would affect the signal-to-noise ratio in the resulting simulation output. Simply seeding the
PRNG state differently for each thread, an approach taken in [11, 16, 18], is not sufficient to
ensure against inter-thread correlation of random numbers. The GPU implementation of the
Mersenne Twister (MT) PRNG used by Fang and Boas [16] provides unique random numbers
for threads within a block but still potentially suffers from correlation between different thread
blocks. In addition, continuously reseeding the PRNG state, for example in [16], is highly in-
appropriate and may increase the risk of correlating random numbers. Furthermore, the GPU
version of MT PRNG uses a significant amount of the limited shared memory which may be
put to better use as described in Section 3.4. Therefore, the PRNG solution used by Alerstam et
al. in [14] and [19]—the Multiply-With-Carry (MWC) algorithm by Marsaglia [23]—is instead
used in GPU-MCML. In addition to assigning each thread a unique seed, the MWC PRNG also
allows each thread to use a unique multiplier in the algorithm, ensuring that the PRNG se-
quence calculated by each thread is unique. The MWC PRNG uses only 3 registers per thread
and features a period of ∼260.

3.7. Scaling to Multiple GPUs

To scale the single-GPU implementation to multiple GPUs, multiple host threads were created
on the CPU side to simultaneously launch multiple kernels, to coordinate data transfer to and
from each GPU, and to sum up the partial results generated by the GPUs for final output. The
same kernel and associated kernel configuration were replicated N times where N is the number
of GPUs, except that each GPU initializes a different set of seeds and multipliers for the random
number generator and declares a separate absorption array. This allows the independent sim-
ulation of photon packets on multiple GPUs, opening up the possibility of GPU-based cluster
computing.

4. Performance

4.1. Test Platform and Test Cases

The execution time of the GPU-accelerated MCML program (named GPU-MCML) was meas-
ured on a variety of NVIDIA graphics card to test for compatibility across different genera-

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 667

tions. This selection includes the latest NVIDIA Fermi graphics card (GeForce GTX 480) and
the pre-Fermi GTX 200 series graphics cards (GeForce GTX 280 and GTX 295). The code
was also tested on a heterogeneous, multi-GPU system consisting of GTX 200 series graphics
cards (GTX 280 and GTX 295). This setup contains a total of 960 scalar processors. The final
GPU-MCML in single-precision was compiled using the latest CUDA Toolkit (version 3.0) and
tested on three different operating systems: Linux (Ubuntu 8.04), Mac OS X and Windows (Vi-
sual Studio). The Linux version was used for simulation time measurement in all cases except
the multi-GPU setup (which was configured on a Windows XP system). The number of GPUs
can be varied at run-time and the simulation is split among the specified number of GPUs.

For baseline performance comparison, a high-performance Intel Core i7 processor (Core i7
920, 2.66 GHz) was selected, using one of the four available processor cores. The original CPU-
based MCML program in double-precision (named here CPU-MCML) was compiled with the
highest optimization level (-O3 flag) using gcc 4.3.4 on Ubuntu 9.10. During simulations both
HyperThreading and SpeedStep was turned off for simulation time consistency and for easily
interpretable results. Also this allows simple extrapolation of the single core results to multiple
core results. Due to the slow and statistically bad PRNG used in the original MCML implemen-
tation [11,24], the PRNG was exchanged for the well-known double precision, SIMD-oriented
Mersenne Twister random number generator [25, 26]. This modification resulted in ∼10% im-
provement in the execution time of CPU-MCML.

To standardize performance measurement and validation, a seven-layer skin model at λ=600
nm (shown in Table 1) [27] was used as the simulation geometry. A second model, modelling
a a thick, homogeneous slab with 10% intralipid (μa=0.015 cm−1, μs=707.7 cm−1, n=1.33,
g=0.87, thickness=100 cm, λ=460 nm) [28] was also used. Unless otherwise noted, all simula-
tions were performed with an absorption grid resolution of 20 μm x 100 μm (z- and r-direction,
respectively) using a 500×200 detection grid (z- and r-direction, respectively) and 30 angular
bins for reflectance and transmittance detection. Similarly, unless explicitly specified, the max-
imum amount of shared memory available was used for caching of the high-fluence region of
the A[r][z] array.

Table 1. Tissue optical properties of a seven-layer skin model (λ=600 nm)

Layer n μa (cm−1) μs (cm−1) g Thickness (cm)
1. stratum corneum 1.53 0.2 1000 0.9 0.002
2. living epidermis 1.34 0.15 400 0.85 0.008
3. papillary dermis 1.4 0.7 300 0.8 0.01
4. upper blood net dermis 1.39 1 350 0.9 0.008
5. dermis 1.4 0.7 200 0.76 0.162
6. deep blood net dermis 1.39 1 350 0.95 0.02
7. subcutaneous fat 1.44 0.3 150 0.8 0.59

4.2. Effect of GPU Architecture

To demonstrate the compatibility of the GPU-MCML software on different graphics cards, Ta-
ble 2 shows the execution times measured on a pre-Fermi GPU (GTX 280) and the latest Fermi
GPU (GTX 480). Note that different architecture-specific optimizations are applied through the
automatic detection of GPU compute capability (which dictates what features are supported and
hence which optimizations can be applied). For example, the GPU-MCML program takes ad-
vantage of the larger shared memory size of the Fermi architecture by declaring a larger shared
absorption array.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 668

Table 2. Effect of GPU architecture on simulation time for 108 photon packets. The speedup
was calculated in comparison to the CPU-MCML execution time of 14418 s or ∼4 h. Values
in brackets were generated without tracking absorption; only reflectance and transmittance
were recorded

Platform (Compute Capability) No. of SMs No. of SPs GPU-MCML (s) Speedup
GeForce GTX 280 (1.3) 30 240 60.3 (38.6) 239x (374x)
GeForce GTX 480 (2.0-Fermi) 15 480 23.2 (16.6) 621 x (869x)

GTX280

GTX480

0x

100x

200x

300x

400x

500x

600x

700x

0 8 16 24 32 40 48

S
p
ee

d
u
p

Shared memory size [kB]

Fig. 4. The simulation time dependance on the shared memory size used for caching of
the high-fluence region of the A[r][z] array. The speedup is compared to the CPU-MCML
execution time of 14418 s or ∼4 h.

4.3. Effect of Shared Memory Size

Figure 4 demonstrates the effect of increasing the shared memory size, used for caching the
high-fluence region of the A[r][z] array, on the simulation time. The amount of shared memory
(per SM) is limited to 16KB on pre-Fermi architecture and 48KB on Fermi. As the amount
of shared memory is increased from 0 to the upper limit for each platform, the code executes
∼2x faster on GTX 280 and ∼2.4x faster on GTX 480. In the GTX 480 simulation where
0 kB is used for caching, each SM was configured with 48 kB true L1 cache and 16 kB of
shared memory (although this memory was not used for caching). In all other cases, each SM
was configured to use 48 kB for shared memory and 16 kB for true L1 cache. The fact that
the speedup increased from ∼260x (without using shared memory) to ∼620x (with shared
memory) on the Fermi platform shows that the true cache alone is not sufficient to attain the best
possible performance. Note that, given a fixed amount of shared memory, changing the shape
of the cached array region also has an impact on performance. Figure 5 shows the speedups for
using all possible shapes that take 45 KB of shared memory on GTX 480. The speedups for the
best and the worst shape configurations differ by a factor of 1.6.

In general, the highest speedup is achieved when the greatest number of high-fluence voxels
are cached in the fast, shared memory space. Although decreasing the capacity of each shared
memory element (e.g., from 64 bits to 32 bits) allows more high-fluence voxels to be cached,
this also causes more frequent arithmetic overflow, which slows down the simulation. Since
the frequency of overflow depends on parameters such as the absorption coefficient, the GPU-
MCML provides the option to toggle between 64-bit and 32-bit shared memory entries, as an
additional optimization.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 669

S
p
ee

d
u
p

(G
T
X
4
8
0
)

300x

350x

400x

450x

500x

550x

600x

650x

Shape (NZ x NR) of the cached array region (45 kB)

3
2
x1

8
0

3
6
x1

6
0

4
0
x1

4
4

4
8
x1

2
0

6
0
x9

6

6
4
x9

0

7
2
x8

0

8
0
x7

2

9
6
x6

0

1
2
0
x4

8

1
2
8
x4

5

1
4
4
x4

0

1
6
0
x3

6

1
8
0
x3

2

1
9
2
x3

0

2
4
0
x2

4

2
8
8
x2

0

3
2
0
x1

8

3
6
0
x1

6

3
8
4
x1

5

4
8
0
x1

2

Fig. 5. The simulation time dependance on the shape of the region of array A[r][z] that is
cached in the shared memory. Here, NR and NZ are the number of voxels in the r and z
dimensions of the cached region respectively. The speedup is compared to the CPU-MCML
execution time of 14418 s or ∼4 h.

4.4. Effect of Grid Geometry

The thick, homogeneous slab model was used to test the effect of the absorption grid resolution
and the number of voxels on simulation time. The four rows of Table 3 show the execution
times (and speedup) of GPU-MCML and CPU-MCML for four different grid resolutions, while
keeping the volume of the cylindrical region of interest constant at 1 cm in radius and 1 cm
in depth. As the grid resolution (specified by dr and dz) increases from 1 cm to 0.001 cm,
the execution time of GPU-MCML increases by 34%. This is anticipated because the number
of voxels (specified by nr and nz) increases with the resolution, and most importantly, the
number of voxels located near the photon source (i.e., in the high-fluence region) increases
proportionally. Since the shared memory can only cache a fixed number of voxels due to its
limited size, having more voxels in the high-fluence region means that a larger portion of the
region cannot be cached in the shared memory, leading to more atomicAdd() operations
for writing to the slow global memory. Also, GPU-MCML performs equally well when the
resolutions are set at 1 cm and 0.1 cm because all voxels are cached in the shared memory.
Note that increasing the resolution in CPU-MCML has a significant impact on the simulation
time. Also, the GPU-MCML code runs faster in a single-layered geometry compared to a multi-
layered geometry, likely due to reduced code divergence.

Table 3. Effect of absorption grid resolution (dr, dz) and grid dimensions (nr, nz) on sim-
ulation time, simulating 107 photon packets in the thick homogeneous slab model. The
GPU-MCML results were measured on the GTX 480 GPU

dr and dz (cm) nr nz GPU-MCML (s) CPU-MCML (s) Speedup
1 1 1 23.5 21817 928x
0.1 10 10 23.2 22708 979x
0.01 100 100 26.0 22624 870x
0.001 1000 1000 31.5 22813 724x

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 670

4.5. Scaling to Multiple GPUs

Table 4 shows the possibility of running the GPU-MCML software on a multi-GPU system
and the linear reduction in execution time as the number of GPUs was increased at runtime.
In this case, four GTX 200 series GPUs (two GTX280 graphics cards each with 1 GPU and
one GTX295 graphics card with 2 GPUs) were used as the test platform and the skin model
was used for performance measurements here. Each GPU contains 30 multiprocessors and
a total of 240 scalar processors. Therefore, the kernel configuration for each GPU was set
at 30 thread blocks and 256 threads per block. Using all 4 GPUs or equivalently 960 scalar
processors, the simulation time for 100 million photon packets in the skin model was reduced
from approximately 4 h on an Intel processor to only 19 s on 4 GPUs. This represents an overall
speedup of 775x, with all the simulation outputs enabled.

Table 4. Speedup as a function of the number of GPUs for simulating 108 photon packets
in a skin model (λ=600 nm). The speedup is compared to the CPU-MCML execution time
of 14418 s or ∼4 h. Values in brackets were generated without tracking absorption; only
reflectance and transmittance were recorded

Number of GPUs Platform Configuration Time (s) Speedup
1 GTX 295 (using 1 of 2 GPUs) 73.3 (45.9) 197x (314x)
2 GTX 295 (using both GPUs) 37.2 (23.4) 388x (616x)
3 GTX 295 (2 GPUs) + GTX 280 24.8 (15.7) 581x (918x)
4 GTX 295 (2 GPUs) + 2 x GTX 280 18.6 (11.9) 775x (1212x)

4.6. Performance of Simplified Version

Table 5 shows the performance of the simplified version of GPU-MCML (described in Sec-
tion 3.1) for the 7-layer skin model specified in Table 1, with and without tracking the absorp-
tion. With absorption calculations, the simpler version is ∼4x slower on GTX280 and ∼6x
slower on GTX480. In the reflectance/transmittance-only mode, the simpler version achieves
similar performance.

Table 5. Execution time of the simplified version of GPU-MCML for 108 photon packets.
The speedup is compared to the CPU-MCML execution time of 14418 s or ∼4 h. Values
in brackets were generated without tracking absorption; only reflectance and transmittance
were recorded

Platform Simplified GPU-MCML (s) Speedup
GeForce GTX 280 225.8 (38.3) 64x (376x)
GeForce GTX 480 147.9 (17.5) 97x (824x)

4.7. Performance in Reflectance/transmittance-only Mode

The results of running GPU-MCML in reflectance/transmittance-only mode, by enabling
the -A flag, are shown in parentheses in Tables 2, 4, and 5. In summary, the additional
speedup factor is ∼1.4x and ∼1.6x (multiplicatively) on GTX 480 and GTX 280, respec-
tively. The cause of the discrepancy is the larger cache on Fermi GPUs, as illustrated in Fig. 4.
The simple GPU-MCML version achieves similar performance as the optimized version in
reflectance/transmittance-only mode as shown in Table 5, since atomic access is not a bottle-
neck in this mode and optimizations targeted at atomic access are expected to have minimal
effect.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 671

Investigating the effects of removing absorption tracking in CPU-MCML revealed a ∼ 10%
performance boost, which reduced the simulation time for 108 photon packets in the skin model
from 14418s to 12824s.

5. Validation

In this section, the validation results of GPU-MCML vs. CPU-MCML are presented. Although
all output parameters of GPU-MCML have been validated using several different GPUs (both
single and multiple GPU configurations) and different test cases, only the representative results
are included here. The fastest GPU platform available (NVIDIA GTX 480 - Fermi architecture)
was selected to generate the GPU results and the standard skin model (108 photon packets) from
Table 1 was used as the test case geometry.

All the validation tests indicate that the simulation outputs of GPU-MCML are statistically
equivalent to those of CPU-MCML.

5.1. Fluence Distribution

0

2

4

6

z
[m

m
]

GPU-MCML CPU-MCML

10-6

10-4

10-2

100

102

[cm-2]

10-5

10-5
10-3

10-310-2

10-2
0.1

10

-20 -15 -10 -5 0 5 10 15 20
r [mm]

0

2

4

6

z
[m

m
] 10-5

10-5

10-3

10-3

10-2

10-2

0.1

10

-20 -15 -10 -5 0 5 10 15 20
r [mm]

Fig. 6. Simulated fluence distribution and corresponding contour plots in the skin model
(108 photon packets) for the impulse response: generated by GPU-MCML (left) and by
generated by CPU-MCML (right). Note the logarithmic scale. The first layers are thin and
cannot be fully appreciated in this scale, especially as the optical properties are rather sim-
ilar. Both simulations provide, within statistical uncertainties, the same results.

Figure 6 shows the simulated fluence distribution and the corresponding isofluence plots.
The outputs produced by the GPU-MCML and CPU-MCML programs matched very well. To
further quantify any potential error introduced in the implementation, the relative error E[ir][iz]
is computed for each voxel using Eq. (1).

E[ir][iz] =
|Agpu[ir][iz]−Acpu[ir][iz]|

Acpu[ir][iz]
(1)

where Acpu is the gold standard absorption array produced by the CPU-MCML software while
Agpu contains the corresponding elements produced by the GPU-MCML program.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 672

r [mm]

z
[m

m
]

0

2

4

6

0 5 10 15 20

GPU-MCML vs. CPU-MCML

r [mm]
0 5 10 15 20

CPU-MCML vs. CPU-MCML

0%

5%

10%

Fig. 7. Distribution of relative error for the skin model (108 photon packets). Left: GPU-
MCML vs. CPU-MCML. Right: CPU-MCML vs. CPU-MCML. Color bar represents per-
cent error from 0% to 10%.

Figure 7 plots the relative error as a function of position, showing that the differences ob-
served are within the statistical uncertainties between two simulation runs of the gold standard
CPU-MCML program using the same number of photon packets.

6. Discussion and Conclusions

The rapid evolution of the GPU, particularly with the recent release of the NVIDIA Fermi GPU
built for general-purpose computing, has made GPU-based scientific computing an attractive
alternative to conventional CPU-based cluster computing. However, several previous attempts
to use the GPU for accelerating MC simulations by other groups have shown limited success
due to the difficulty of optimizing the GPU code for high performance. This makes the GPU
seem less than ideal, especially for complex inverse problems where high performance is an
important criterion.

For example, two groups have recently presented attempts to use GPUs for MC-based photon
simulations in arbitrary 3-D geometry, but both groups reported challenges optimizing GPU
code for high performance. Ren et al. only achieved a 10x speedup compared to a 2.4-GHz Intel
Xeon CPU, despite using a modern GPU (NVIDIA GTX 260 with 192 scalar processors). Their
simulation involved modelling heterogenous tissue using triangular meshes [15]. Although an
earlier 3-D, voxel-based implementation by Fang and Boas [16] reported a higher speedup
(300x on an NVIDIA 8800GT graphics card with 112 scalar processors compared to a 1.86GHz
Intel Xeon CPU), this was achieved without using atomic instructions, possibly compromising
data integrity. The speedup dropped to 75x, or 4 times slower, when atomic instructions were
used. Note that atomic instructions are required to avoid race conditions [29]. Race conditions
can compromise the stability and accuracy of the simulation results, both of which are crucial to
the use of the MC method as a gold standard. Finally, Badal and Badano obtained a 27x speedup
when using a modern GTX 295 GPU (utilizing 240 out of 480 scalar processors) to accelerate
the simulation of high-energy photons in voxelized media for X-ray imaging [17]. Based on
these previous attempts, Shen and Wang developed a tetrahedron-based, inhomogeneous MC
simulator utilizing multiple cores in modern CPUs, arguing that the speedup obtained using
mid-range GPUs was insufficient to motivate a complicated, GPU-based implementation [24].

In contrary, our earlier work showed that the GPU has the potential to significantly accelerate
MC simulations for photon migration. Alerstam et al. introduced GPU-accelerated MC to the
field by demonstrating a massive speedup for simulating time-resolved photon reflectance in a
homogenous semi-infinite medium [14], which requires atomic access to a 1-D histogram array.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 673

Lo et al. presented both an FPGA-based [11] and a GPU-based solution [18] to simulate steady-
state photon migration in multilayered media. Notably, this preliminary GPU implementation
demonstrated the importance of optimizing atomic access to the 2-D absorption array. Simul-
taneously and independently, Alerstam et al. presented a more versatile, albeit less optimized,
code solving the same problem using GPU hardware [19] and observed a similar performance
bottleneck caused by atomic access.

In this paper, we point out a major performance bottleneck preventing several GPU-MC
codes for photon migration from fully exploiting the computing power in modern GPUs [16]
and present a solution based on caching the high-fluence region in the on-chip shared memory.
This is illustrated by implementing a GPU-accelerated version of the well-known MC pro-
gram MCML [2] and showing that an approximate 600x speedup can be achieved on a single
NVIDIA GTX 480 Fermi graphics card compared to a high-performance Intel Core i7 pro-
cessor. This speedup should be put into perspective by considering the equivalent performance
figure for the naive solution as presented in Table 5 where a mere 97x speedup is achieved on
the same setup. In other words, the optimized implementation is more than 6x more efficient
than the naive solution. The effect of the size and shape of the cached region is investigated and
it is found that more shared memory results in better performance, giving the new Fermi archi-
tecture an advantage over the pre-Fermi architectures. Although Fermi features an L1 cache, the
performance when using this implicit (true) caching method is found to be significantly inferior
to the explicit caching scheme which configures the GPU to use 48 kB of shared memory.

In addition to presenting a cache-based solution to the key bottleneck, we present an alterna-
tive solution which may be of great use for some applications. As illustrated by the simplified
GPU-MCML code, representing the naive solution, the major bottleneck is the atomic memory
operation performed by every thread in every iteration of the main loop. Simply ignoring the
scoring of the internal absorption distribution (by not storing this data in memory) reduces the
need for atomic memory operations to a maximum of one per photon packet. Note that this is
very similar to the simulation performed by Alerstam et al. [14] and Carbone et al. [30]. Con-
sidering the differences in the hardware used, the performance of the codes agree well. This
is an important result as almost all current methods of evaluating optical properties, including
optical tomography methods, are based on either monitoring spatial/temporal distributions of
light exiting the boundary of a scattering medium or monitoring one or a few discrete points
inside the medium. Both of these cases are covered by the alternative solution. In addition, this
result illustrates the strength of GPU-based calculations; GPUs are good at handling organized
(coalesced) memory operations (which is hard to achieve in MC applications), but perform
poorly with random memory operations and atomic memory operations. However, when the
ratio of arithmetic operations to memory operations is high, the GPU may “hide” the memory
latency by using the waiting time to do calculations with other threads. Consequently, the sim-
plified/naive GPU-MCML version performs almost as well as the highly optimized code when
ignoring the internal absorption array detection while the code is much simpler.

The great speedup of MC applications for simulating photon migration on GPUs are mainly
attributed to their parallelizable nature, as the results of each photon packet can be computed
independently of all the other photon packets and thus all other threads. A simple and effective
way to accelerate CPU-based Monte Carlo simulations would be to make use of the many
cores in moderns CPUs. The Intel Core i7 CPU used for performance comparison in this paper
has four cores and one may expect up to four times the performance if all cores were used
for the simulation. Additional CPU-based optimizations can be applied, such as vectorizing
the MC code, making use of Streaming SIMD Extensions (SSE), and using faster arithmetic
libraries. This was attempted, for example, by Shen and Wang who demonstrated a 30-50%
improvement in speed [24]. Although optimizing the CPU code would decrease the relative

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 674

gain of using GPUs for accelerating MC simulations, one should keep in mind that the effort
to write optimized CPU code may be similar, or even greater, than writing optimized GPU
code while the GPU code most likely still would be significantly faster. While many current
MC codes may benefit significantly from GPU-based acceleration, it should be mentioned that
not all implementations may be suitable for massive parallelization. In particular, calculations
with more inter-thread dependancies may not be possible to efficiently implement on GPUs and
CPU-based MC may remain competitive for certain complex MC algorithms.

The scalability of the GPU-based implementation was also demonstrated using four GTX
200 series graphics cards. With this scalability, the performance can be further improved using
a GPU-based computing cluster, such as the NVIDIA Tesla S1070 system with 960 scalar
processors which can be stacked in a cluster configuration.

In conclusion, we demonstrate a highly optimized, scalable and flexible GPU-accelerated
implementation of the well-known MCML package, named GPU-MCML. GPU-MCML fea-
tures two ways of utilizing the hardware to achieve the best possible performance, either by
caching the high-fluence region in the on-chip shared memory or by only tracking the dis-
tribution of the photon packets exiting the medium. Both these solutions illustrate the need to
understand the underlying GPU architecture for high performance, even on the latest Fermi
GPU designed for general-purpose computing. The dramatic reduction in computation time
opens up the possibility of using MC simulations for solving inverse problems in biomed-
ical optics in the future. A generalized and simplified code is released along GPU-MCML
which intends to provide a good starting point for scientists and programmers interested in
learning or using GPU-accelerated MC. This code aims to ease the learning curve for anyone
familiar with MCML and provides a foundation built on good GPU programming practices.
The GPU-MCML code package has been released as an open-source software on this website:
http://code.google.com/p/gpumcml.

Acknowledgments

The authors acknowledge the financial support from the Canadian Institutes of Health Research
(CIHR) Grant No. 68951, the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant No. 171074, NSERC CGS-M, PGS-M scholarships and the Swedish
Research Council Grant No. 621-2007-4214. Infrastructure support was provided by the Min-
istry of Health and Long-Term Care.

#131443 - $15.00 USD Received 12 Jul 2010; revised 11 Aug 2010; accepted 13 Aug 2010; published 23 Aug 2010
(C) 2010 OSA 1 September 2010 / Vol. 1, No. 2 / BIOMEDICAL OPTICS EXPRESS 675

