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Abstract: We use Digital Holographic Microscopy to study dynamic 
responses of live cells to femtosecond laser cellular membrane 
photoporation. Temporal and spatial characteristics of morphological 
changes as well as dry mass variation are analyzed and compared with 
conventional fluorescent assays for viability and photoporation efficiency. 
With the latter, the results provide a new insight into the efficiency and 
toxicity of this novel optical method of drug delivery. In addition, 
quantitative phase maps reveal photoporation related sub-cellular dynamics 
of cytoplasmic vesicles. 
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1. Introduction 

Laser induced poration of the cell membrane has recently gained much attention [1]. It offers 
a selective non-contact sterile targeted method to introduce membrane impermeable 
molecules into the cell’s cytoplasm and emerges as an attractive alternative to the classical 
methods of intracellular drug delivery. It can be easily combined with microscopic imaging or 
optical tweezers [2], which opens the way to a variety of novel experiments in molecular 
biology. 

Laser light irradiation has been used to optoinject a range of molecules and nanoparticles 
[3], as well as to transfect cells with foreign genetic material [1,4] or silence specific genes 
[5]. A good extensive review of the available laser based transfection techniques can be found 
in [1]. While many different types of lasers have been used for this purpose, femtosecond 
pulsed infrared lasers have emerged as a source of choice for their ability to target selectively 
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single cells with a high degree of viability. The ultrashort pulsed beam, usually provided by a 
Titanium-Sapphire laser at a wavelength of approximately 800 nm and pulse duration of 
~100fs, creates a low density plasma at the cellular membrane in a multiphoton process, 
which may lead to the appearance of a short lived cavitation bubble [6]. This induces a 
transient sub-micrometer pore in the membrane which rapidly seals leaving the cell viable. 

The unrivaled accuracy of the treatment has already proven advantageous in a variety of 
challenging biological experiments such as the transfection of embryonic zebrafish [7] and 
stem cells [8,9]. It was also shown that a transcription factor Elk1 mRNA optoinjected into the 
soma of primary neurons causes a different cellular response to mRNA injected into the 
dendrites [10]. In another exciting application, the whole transcriptome was extracted from 
primary astrocyte cells and optoinjected into individual primary rat hippocampal neurons 
causing their phenotypical change into astrocytes [11]. 

Although this drug delivery technique has gained popularity, the dynamic cellular 
response to the femtosecond laser membrane poration has not, to date, been the subject of 
detailed investigation. Numerous questions present themselves including the physical 
response of the cell to the poration process and the correlation between the cell response and 
uptake of dye. It would be advantageous to develop label-free techniques to address these 
points. Previous studies have estimated that the relative volume exchanged in the process is 
0.4 times the total cell volume [12] and that reactive oxygen species may contribute to the 
toxicity of femtosecond laser membrane poration [13]. However, no real-time volumetric 
study of the cellular dynamic response to photoporation has been shown to date. Further, the 
femtosecond membrane poration is very subtle in its nature and the resulting cellular 
response, except for the cavitation bubble itself, is minuscule and difficult to observe, in 
particular in brightfield imaging. In previous experiments, typically the efficiency of 
membrane poration was not verified directly during irradiation. Instead, membrane 
impermeable fluorescent dyes, like propidium iodide (PI) [12] or Lucifer Yellow (LY) [10] 
were used and their intracellular presence was checked post factum. Similarly, the cells’ 
viability was proven after a few hours of incubation using a fluorescent viability assay, e.g. 
Calcein AM [14] or in a fluorophore exclusion test [12]. However, fluorescence-based 
procedures are cumbersome, time consuming and depend on long-term tracking or 
identification of each cell. Moreover, fluorescent imaging carries the risk of cyto- and photo-
toxicity, which may be disadvantageous in the case of sensitive cell types. In this work we 
explore the possibility of using label-free quantitative phase imaging to predict the uptake of 
biologically relevant compounds and subsequent cell viability of membrane photoporation. 

Firstly, it is important to contrast this approach with other potential methods. Live cells are 
mostly optically transparent with minimal scattering occurring with the intracellular 
structures. As a consequence simple brightfield light microscopy is usually not suitable for 
detailed observation of cellular morphology. As an alternative, the variance of the refractive 
index of the intracellular structures, which results in optical phase shift of the transmitted 
light, can be used as an endogenous contrast technique. The two most popular methods of 
phase shift visualization, phase contrast (PC) and differential interference contrast (DIC) have 
been successfully used in live cell imaging [15]. However, both these techniques are based on 
a nonlinear relationship between the optical phase shift and the produced intensity 
distributions as such are inherently qualitative. As a result they do not offer the possibility to 
reconstruct the thickness of the cell from the recorded images. Moreover they produce 
artifacts, such as the halo in PC and directional loss of contrast in DIC. 

Quantitative phase microscopy, has recently gained attention as it provides high quality 
cytometric data on live cells without any additional sample preparation [16–19]. Among other 
applications Quantitative Phase Imaging (QPI) has been used to investigate a cell’s response 
to hypotonic shock [20,21]; the cellular membrane dynamics in living red blood cells [22–24]; 
as well as the beating motion of cardiac myocytes [17]. QPI has also been used to evaluate the 
impact of nanosecond laser cell microsurgery where a change in optical thickness of a cell 
was observed along the ablation path [25,26]. The mechanism of laser surgery depends 
strongly on the pulse duration and focusing of the beam, and in the case of loosely focused 
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nanosecond pulses, the main effect is photothermal [27]. In contrast, our studies use a tightly 
focused femtosecond laser beam to create low density plasma with minimal heating so that the 
damage to the cell is related mainly to laser induced chemical decomposition. Also, optical 
breakdown is achieved at a much lower mean power than with a nanosecond laser which 
limits the affected area. Here, we show that as a consequence of this significant difference in 
the laser-cell interaction, the cellular response to light is transient and more localized when 
using femtosecond laser membrane poration as compared to nanosecond irradiation [25]. In 
our study we use the cytometric data from both quantitative phase and fluorescence imaging 
to verify viability and cellular membrane integrity. 

In this paper, we use QPI obtained with a single frame off-axis transmission Digital 
Holographic Microscopy (DHM) [28] to analyze the cell’s response to transient poration of 
the cellular membrane caused by the multiphoton absorption of a femtosecond near infrared 
beam. Off-axis DHM provides high spatial resolution comparable to brightfield diffraction 
limited imaging, while the temporal resolution is limited solely by the frame rate of the 
camera owing to single frame recording. Moreover, the cell thickness can be reconstructed 
with sub-wavelength precision [20,21]. These features make DHM particularly well suited for 
quantitative phase observation of dynamic processes in live cells. In addition it offers the 
possibility of numerical refocusing, which enables three dimensional in-focus reconstruction 
of the whole sample and facilitates simultaneous observation of events in multiple image 
planes. Also, the optical phase shift can be translated into the physical thickness of a cell if the 
refractive indices of the cell and of the surrounding medium are known. 

To our knowledge this is the first time that the cellular response to femtosecond laser 
membrane photoporation has been quantified using a label-free technique. We present two 
examples of a typical dynamic morphological reaction resulting in either a viable or non-
viable cell and quantify these changes. Next, we relate the temporal and spatial scale of the 
observed swelling that occurs under laser irradiation to well established fluorescence-based 
efficiency and viability assays. We also show how intracellular dynamics can be revealed in 
such a quantitative phase map. 

2. Experimental procedure 

2.1 Photoporation system with DHM 

An off-axis transmission DHM system was developed and incorporated within a NIKON TE-
2000E inverted microscope as shown in Fig. 1. 

 

Fig. 1. DHM (implemented with a laser diode) integrated with an inverted research microscope 
and photoporation beam (fs laser). CL-condenser lens (NA 0.3), MO – microscope objective 
(60x, NA = 1.3, oil), BS – cube beam splitter, SM – steering mirror for the poration beam, TL - 
tube lens, BE - telescopic beam expander. Shutter controls the irradiation time and number of 
doses. 
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Light from a laser diode (Hitachi HL6344G, λ = 635 nm, coherence length lc≈90 mm) is 
coupled into a single mode optical fiber splitter. The beam from one of the arms is combined 
with the microscope’s brightfield illumination and focused through a long-working distance 
condenser (NA = 0.3) onto the sample. Light transmitted through the sample in a Petri dish, is 
collected by an objective (60x, NA = 1.3) and the image is created in a side port of the 
microscope. Light from the second arm of the fiber splitter is used as a reference beam in the 
Mach-Zehnder interferometer configuration. The two beams are recombined by a cube beam-
splitter at a small angle to produce a typical off-axis hologram on the CCD camera (Imaging 
Source DMK31BU03 1024x768, 8 bit, 30 fps). The complex wavefront in the object plane is 
reconstructed from the holograms using the Fourier space filtering technique [29] either in 
real time using LabView or in MATLAB post-processing. When necessary the reconstructed 
phase is unwrapped and the quadratic curvature of the background is fitted and subtracted 
[30]. 

The optical phase shift φ can be translated into the physical thickness of a cell d = 
λ(φ/2π)/(ncell-nmedium) if the refractive indices of the cell ncell and of the surrounding medium 
nmedium are known. For the CHO-K1 cells and culture medium used in this work, we assume 
ncell = 1.39 [31] and nmedium = 1.34 when the physical thickness is discussed, which means that 
1 rad of phase shift translates to 2 µm of cell thickness. However, it is important to note that 
the refractive index of a cell may vary significantly at the sub-cellular level, in particular 
during laser photoporation and the related swelling. Since the implementation of DHM used 
in the presented work does not allow for an independent measurement of the refractive index 
for clarity of presentation we discuss changes in terms of optical rather than physical 
thickness. We verified a good temporal stability of the system with a standard deviation of the 
reconstructed phase signal fluctuations of STD = 0.082 rad over a period of 30 minutes, which 
corresponds with an axial resolution of approximately 165 nm. 

The photoporation infrared beam (800 nm, 180 fs @ 80 MHz generated by Coherent 
MIRA900F) is coupled into the microscope objective using a dichroic mirror placed in the 
epifluorescence turret of the microscope. The beam expanding telescope (BE) and the steering 
mirror (SM) placed in a plane conjugate to the back focal plane of the objective, are used to 
focus the beam precisely on the top of the membrane of the cell. The back aperture of the 
objective is overfilled in order to obtain a diffraction limited focal spot. 

2.2 Cell preparation 

Chinese hamster ovary (CHO-K1) cells were cultured at 37 °C and 5% CO2 in Modified 
Eagles Medium (Sigma, UK) with 10% Foetal Bovine Serum (Sera Laboratories 
International), L-Glutamine (2 mM, Sigma), streptomycin (100 µg/ml, Sigma) and penicillin 
(100 units/ml, Sigma). Cells were routinely passaged three times a week. CHO-K1 cells were 
seeded at a density of 2.4 x10

4
 cells per ml onto 35mm glass-bottomed culture grade dishes 

(World Precision Instruments) to achieve 40-50% confluency. Before the experiments, the 
cells were incubated at 37 °C and 5% CO2 for 48 h to allow cell attachment to the bottom of 
the glass dishes. 

For the fluorophore optoinjection experiments, the cell monolayer was washed twice with 
1 ml OptiMEM before the addition of 3 µM of Propidium Iodide (PI, Invitrogen). The 
fluorescent signal from PI was obtained at least 5 min after irradiation. Cells were then 
washed twice with 1 ml of OptiMEM and fresh medium was added to the cells before further 
incubating for at least 90 min. Prior fluorescence imaging for cell viability, cells were washed 
twice with 1 ml of Hanks’ Balanced Salt Solution (HBSS, Sigma), and then 2 µM of Calcein 
AM (CAM, Invitrogen) in HBSS solution was added and the cells further incubated for 15 
min. Non-fluorescent CAM is cell membrane permeant and is converted to green fluorescent 
Calcein after hydrolysis of intracellular cell esterases. Once inside, it is retained by the cells 
that have intact plasma membranes. However, in damaged or dead cells both unhydrolyzed 
and fluorescent products can leak out of the cell. Therefore healthy cells have 
characteristically bright green fluorescence while minimal and punctuate signal is indicative 
of cell death or compromised viability. 
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Fluorescence imaging was performed using an EMCCD camera (Andor iXon + ) with the 
mercury lamp as the excitation source. FITC and TRITC filter sets were used for CAM and PI 
imaging, respectively. 

3. Results 

In the literature, typically two different fs laser dosages have been used to date to achieve 
optoinjection and phototransfection. In one approach, a single irradiation dose is used with the 
power and irradiation time optimized experimentally [12], while in the other, three doses are 
applied in a sequence, usually using lower laser fluence, possibly profiting from accumulation 
of laser induced chemical effects [9]. In both cases the trade-off between membrane poration 
efficiency and cell viability is crucial and has to be determined using fluorescence imaging. 

In our work, the off-axis DHM system was used to acquire a series of time lapse 
recordings of the membrane poration events at the full frame rate of the camera (30 fps) using 
various sets of irradiation parameters with both single and triple dosages. The quantitative 
phase and amplitude maps were reconstructed and analyzed. In the case of out-of-focus 
images, the reconstructed complex amplitude was numerically re-propagated using a 
convolution implementation of the Kirchhoff-Fresnel diffraction formula [32] to a plane in 
which the details of interest, such as edge of the cell, cavitation bubble or intracellular 
organelles, were in focus. Figure 2 illustrates how this distinctive feature of DHM can be used 
to obtain at will, a focused intensity image of the photoporated cell (plane in which the 
diffraction pattern around the outer edge of the cell disappears, Fig. 2c) and simultaneously, a 
sharp-edged image of the cavitation bubble which forms 8.5 µm above the surface of the dish 
(Fig. 2b). As the cavitation bubble is formed on the top surface of the cell membrane, the 
distance between the two planes approximates to the thickness of the cell. Similar transient 
cavitation bubbles were previously imaged by brightfield microscopy by Vogel et al. [33] but 
without the added advantage of simultaneous in-focus imaging of the irradiated cell. Although 
the intensity images shown in Fig. 2 suffer from minor laser speckle noise originating from 
the coherent illumination, one can clearly determine the actual diameter of the cavitation 
bubble. In this example a manual technique based on analysis of the diffraction pattern around 
the scatterer has been used, but in a more automated manner, an autofocus criterion could be 
used [34,35] or an extended focused image could even be created [36]. 

 

Fig. 2. Intensity image of a cell during photoporation (with the cavitation bubble visible in the 
center of the cell) reconstructed from a recorded hologram: (a) in the original recorded plane, 
(b) after numerical refocusing to the plane in which the bubble is focused, (c) after numerical 
refocusing to the plane in which the cell is focused. The distance between the image planes in 
(b) and (c) is 8.5 µm. The process of numerical refocusing between the two planes can be seen 
in Media 1. The speckle noise visible in these images is related to the laser source used for the 
illumination. Scale bars 5 µm. 
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3.1 Time-lapse quantitative phase recordings 

The time-lapse recordings of a series of membrane poration events showed that the cellular 
response strongly depends not only on the parameters of irradiation but also on the location of 
the photoporation site on the cell, as well as on the morphology, size and shape of the cell. 
Figure 3 shows two distinctive examples of the observed cellular dynamic response. They 
illustrate the typical responses with a cell either remaining viable or suffering from 
irreversible damage. Both cells were irradiated using a moderate power of P = 75 mW at the 
sample and an irradiation time of T = 40 ms. The cell shown in Fig. 3a-f was dosed once 
leading to a localized swelling within a 4 µm radius that reached its maximum of 0.68 rad, 
which corresponds to a change of approximately 1.4 µm. The swelling retracted 45 seconds 
after irradiation with the cell recovering to its pre-treatment state. No change in optical 
thickness in other parts of the cell was observed apart from that coming from its natural 
movement. Notably, irradiation triggered dislocation of a submicron sized vesicle-like 
intracellular object that could be resolved in the phase map (Media 2 and Fig. 3b). The vesicle 
seen in Fig. 3b was initially attracted towards the poration spot and then repelled during 
recovery, which suggests hydrodynamic flow within the cytoplasm. 

 

Fig. 3. Optical thickness of cells reveals various responses of CHO-K1 cells depending on the 
irradiation dose. A cell dosed once (a-f) swells up locally and recovers to its original state after 
about 50 seconds (Media 2), b) shows the trajectory of a vesicle-like body. A similar cell dosed 
three times (g-l) (Media 4) exhibits swelling of the whole cell body; d),f) (Media 3),j), and l) 
(Media 5) show the quantitative change in optical thickness compared to time t = 0s, h) 
magnified region of the easily discernable nucleus with distinct nucleolus. White arrows point 
to the irradiation spot. All scale bars 5 µm. 

The same irradiation dose (P = 75 mW, T = 40 ms) but with three consecutive doses, 
caused global swelling of the cell as shown in Fig. 3g–3l. The whole body of the cell 
expanded laterally while the optical thickness in the center of the cytoplasm decreased 
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significantly (by up to 58%). A similar behavior has been reported previously in neurons 
during hypotonic shock [20] where the decrease in optical thickness is related to a significant 
influx of water into the cell and a consequent decrease in the refractive index of the diluted 
cytoplasm, which dominates over the increase in the axial dimension of the cell. Interestingly, 
initially the nuclear membrane remained intact preventing the drop in refractive index of the 
nucleus (Fig. 3g, 3i, 3k), which increased the contrast between the nucleus and cytoplasm  
(Fig. 3h). This revealed the position and shape of the nucleus which was undistinguishable 
before the photoporation. 

The time scale of the global swelling process was significantly longer than the local 
swelling that occurred in the first cell, as this second cell reached its maximum volume after 
800 seconds. Figure 4 compares the different time scales and recovery rates in the cytoplasm 
and swelling region in both cells. The second cell was clearly not able to recover from the 
swelling process. Moreover, after about 600 seconds the refractive index of the nucleus 
gradually started to decrease indicating the breakdown of the nuclear membrane. At the same 
time the optical thickness of the first healthy cell returns to its original value with only a small 
decrease of 0.12 rad (or 240 nm) in the poration spot which most likely was related to the 
natural movement of the cell. 

 

Fig. 4. Time trace of optical thickness change in various places in the cell. a) cell dosed once 
recovers from local swelling after 45 seconds, b) cell dosed three times swells up without 
recovery. Dry mass is normalized to the average value before photoporation (right axis). The 
rapid variation in phase shift of the swelling region (red curve) in graph (a) is related to the 
transient cavitation bubble created in this spot (signal acquired at 30 fps). This is not visible in 
graph (b) as the sampling rate in this acquisition (1 fps) is lower than the life-time of the 
bubble. Dashed vertical lines indicate the irradiation onset. “Background” – region of 
background remote from the cell; “Nucleus”-region within the nucleus; “Cytoplasm” – region 
of cytoplasm remote from the poration site within the original boundaries of the cell; 
“Swelling” – (a) small region including the poration site, (b) region originally outside of the 
cell into which the cell expanded due to swelling. 

The irreversible damage to the cellular membrane is substantiated further by the behavior 
of the cellular dry mass. This is one of the key cytometric parameters that can be retrieved 
from the quantitative phase map of the cell [18] and is proportional to the surface integral of 
the phase shift φ(x,y): 

 
A

( , )d dM x y x yφ= ∫   (1) 

where A is the area of the cell. As the intracellular refractive index and consequently φ(x,y) 
and M depend mainly on the concentration of proteins, in healthy cells M is constant under 
cellular volume changes. However, if the cellular membrane remains open for a significant 
period of time, the mobile contents of the cytoplasm may diffuse out of the cell resulting in a 
drop of the total dry mass. Indeed, comparison of the dry mass variation in the two discussed 
cells shows that while there was no noticeable dry mass change in the viable cell a significant 
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exponential decrease is clearly observed in the permanently damaged one. This decrease 
saturates at approximately 60% of the original dry mass which most likely corresponds with 
the amount of the immobile protein content in cytoplasm. We have not observed any 
noticeable increase in the refractive index of the surrounding medium due to the dry mass 
leakage, which is most probably a result of the high diffusion rate of proteins in water (in the 

order of 10
−6

 cm
2
/s [37]) and a large volume of the surrounding medium. Strikingly, the 

optical thickness in the cytoplasm (blue curve in Fig. 4b) decays at a similar rate to that of the 
dry mass, which suggests that cytoplasmic dry mass loss is the main cause of the rapid drop in 
the optical thickness of the cytoplasm in the second cell. It must be noted that a qualitatively 
similar local decrease in cytoplasmic optical thickness, observed in viable cells under 
hypotonic shock, results purely from water uptake during swelling [20]. However, in the non-
viable photoporated cell, the loss of dry mass confirms an irreversible response and indicates 
necrosis. Importantly, this significant difference would pass unnoticed for such cells observed 
in brightfield imaging while PC and DIC would show the qualitative temporal change in the 
cell’s image but would not enable dry mass determination and decoupling of these two 
inherently different mechanisms. 

3.2 Relation of dynamic phase map information to viability and efficiency fluorescent assays 

To further investigate the relationship between the spatial and temporal cellular reaction, as 
revealed in the acquired quantitative phase maps, to the efficiency and toxicity of 
photoporation we compared the phase information with a traditionally used fluorescent 
viability assays. The efficiency of cellular membrane poration can be most directly assessed 
by optoinjection of a fluorophore whose molecules are small enough to diffuse freely through 
the transient opening created in the membrane. We used propidium iodide (PI), which binds to 
nucleic acids within the cell and becomes fluorescent within a few minutes. PI is membrane 
impermeable in healthy cells and at the concentration used it is completely excluded from 
viable cells for the whole duration of the experiment. We also used Calcein AM as a viability 
assay since its intensity is related to two cell viability indicators – concentration of esterases 
and integrity of the membrane. 

N = 40 cells were photoporated with a single laser dose using the average power of P = 75 
mW and T = 40 ms irradiation time. The appropriate fluorescent images and quantitative 
phase time-lapse sequences were recorded and analyzed. Figure 5 shows a typical set of 
acquired images. Each cell was checked for viability and optoinjection and the time-scale and 
extent of swelling was determined. The observed response depended significantly on the cell 
size, shape, morphology and the location of the photoporation site. However, it was possible 
to identify a range of typical values. Viably optoinjected cells showed transient localized 
swelling of no more than 0.83 rad (or 1.66 µm) in the 1-4.5 µm radius around the 
photoporation site with a typical retraction time of 24-73 s. In the cases when the swelling 
radius was larger than 11 µm, or when recovery lasted longer than 95 s, the cells proved to be 
necrotic after 90 min from irradiation. Characteristically, in all viable cells no noticeable dry 
mass loss was observed. 
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Fig. 5. Comparison of quantitative phase maps with fluorescent assays during an optoinjection 
experiment: a) phase map and b) propidium iodide fluorescence (optoinjection assay) 5 min 
after irradiation ; c) phase map and d) Calcein AM fluorescence (viability assay) after 90 min 
incubation. Two cells were successfully optoinjected - one proved viable (solid arrow) while 
the other (dashed arrow) was necrotic after 90 min. Note the significant decrease in the optical 
thickness of the non-viable cell. Scale bars 20 µm. 

4. Conclusion 

In this study, we have demonstrated that DHM provides a new insight into the cell’s response 
to cellular membrane poration with femtosecond near-infrared lasers. In photoporated cells 
that remain viable, the observed morphological changes are minimal and characterized by 
transient localized swelling. Interestingly, dynamics of this swelling may lead to intracellular 
vesicle movement. 

We showed that the temporal dynamics of the cellular optical thickness can be related to 
the toxicity of the treatment and give a viability indication without fluorescent staining. We 
have confirmed this relation using a commonly used viability assay based on fluorescent 
imaging. The quantitative phase map also revealed the loss of the cellular dry mass which is 
related to the leakage of intracellular vesicles and cytoplasmic material through the injured 
cellular membrane. This effect constitutes another indication of potential irreversible damage 
to the cellular membrane. The efficiency of membrane poration has been verified by using a 
membrane impermeable fluorescent dye (PI). No dry mass loss has been observed in viably 
optoinjected cells, while the observed irradiation-triggered swelling was confined to the 
poration site and typically fully retracted within the time-scale of about one minute. 

Although the observed changes depended on individual properties of each given cell and 
poration site, it was possible to identify a typical spatial and temporal scale of changes 
characteristic to viably optoinjected cells. The additional cytology data provided by the 
quantitative phase map, in particular cellular dry mass, gives further insight into the extent of 
membrane damage and proves membrane repair in viable cells. This could be used as a direct 
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indication of the toxicity and success of optoinjection experiments in which fluorescent 
imaging has to be avoided and a signal provided by a label-free technique would be 
advantageous. 
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