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Abstract: Diffuse optical tomography (DOT) is a non-invasive brain 
imaging technique that uses low-levels of near-infrared light to measure 
optical absorption changes due to regional blood flow and blood oxygen 
saturation in the brain. By arranging light sources and detectors in a grid 
over the surface of the scalp, DOT studies attempt to spatially localize 
changes in oxy- and deoxy-hemoglobin in the brain that result from evoked 
brain activity during functional experiments. However, the reconstruction of 
accurate spatial images of hemoglobin changes from DOT data is an ill-
posed linearized inverse problem, which requires model regularization to 
yield appropriate solutions. In this work, we describe and demonstrate the 
application of a parametric restricted maximum likelihood method (ReML) 
to incorporate multiple statistical priors into the recovery of optical images. 
This work is based on similar methods that have been applied to the inverse 
problem for magnetoencephalography (MEG). Herein, we discuss the 
adaptation of this model to DOT and demonstrate that this approach 
provides a means to objectively incorporate reconstruction constraints and 
demonstrate this approach through a series of simulated numerical 
examples. 

©2010 Optical Society of America 

OCIS codes: (170.3010) Image reconstruction techniques; (170.2655) Functional monitoring 
and imaging. 
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1. Introduction 

Diffuse optical tomography (DOT) is a non-invasive technology which uses low-levels of 
non-ionizing light in the range of 650-900nm to record changes in the optical absorption and 
scattering of tissue. Over the past thirty years, the use of DOT for non-invasively imaging the 
human brain has been steadily growing as reviewed in [1]. As compared with functional MRI 
(fMRI), DOT is less costly, more portable, and allows for a wider range of experimental 
scenarios because it does not require a dedicated scanner nor require the subject to lay supine. 
Moreover, optical imaging has the ability to resolve changes in both oxy- and deoxy-
hemoglobin (denoted HbO2 and Hb respectively) within the brain using multiple wavelengths 
of light, which can potentially lead to the ability to discriminate blood flow and oxygen 
metabolism changes [2]. Examples of niche applications for optical brain research have 
included studies on infant and child brain activation [3], studies of activation during exercise 
and mobility [4,5], bedside monitoring of clinical patients [6,7], as well as more traditional 
cognitive testing and psychology studies. Because of its low cost of operation and portability, 
DOT has been growing in popularity in these fields over the last several years. 

Although a strength of optical imaging is its temporal resolution (several hertz) and ability 
to detect both oxy- and deoxy-hemoglobin, optical imaging can also provide some degree of 
specificity to spatially localize regions of brain activity through the reconstruction of images 
from data collected via multiple optical light emitter and detector pairs. In a typical optical 
brain imaging experiment, a grid of light emitters and detectors is placed on the surface of the 
scalp as shown in Fig. 1. The optical absorption changes recorded from light diffusely 
traveling between emitter and detector pairs can be used to recover low-resolution spatial 
images of the underlying blood flow changes. However, such images are often difficult to 
accurately recover due to optical scattering in the tissue, the limited number of measurements 
typically available, and the inverse problem of estimating changes within the underlying 
volume of tissue (brain) from measurements made only on the surface of the head. The 
estimation of optical images is generally both under-determined (more unknowns than 
measurements) and ill-posed (no single unique solution). The optical inverse problem has 
been reviewed in [8]. 

#133504 - $15.00 USD Received 19 Aug 2010; revised 2 Oct 2010; accepted 2 Oct 2010; published 6 Oct 2010
(C) 2010 OSA 1 November 2010 / Vol. 1,  No. 4 / BIOMEDICAL OPTICS EXPRESS  1085



 

Fig. 1. Diffuse optical imaging uses fiber optic based light sources and detectors to record 
changes in the optical absorption of underlying tissue. A grid of sensors is placed non-
invasively on the head of a participant and used to measure changes in oxy- and deoxy-
hemoglobin in the brain during task-evoked activation. The source-detector arrangement in the 
probe above is shown in Fig. 2. 

Active research on the optical inverse problem has lead to continued improvements in 
recent years and for an overview of image reconstruction techniques see [9]. To date, much of 
the work on the optical inverse problem has involved the use of regularization priors, such as 
the weighted minimum norm (WMN) or Tikhonov regularization. In general, regularization 
methods require an estimate of weight (trust) given to the regularization penalty (prior) that is 
usually predefined or manually tuned to yield acceptable images. One of the difficulties of 
these techniques, therefore, is the need for an a priori choice of this weight or weights in the 
case of multiple priors. 

In this paper, we will describe how the restricted maximum likelihood (ReML) method 
and a Bayesian formulation can be used to stabilize the optical inverse problem and introduce 
multiple statistical priors. ReML has been introduced previously in the field of 
magnetoencephalography (MEG) for a similar inverse model [10]. This method is also the 
basis of a deconvolution model currently implemented for the time-series analysis of fMRI 
data within the software packages SPM (statistical parametric mapping [11]) and AFNI 
(analysis of functional neuroimages [12]). The purpose of this paper is not to exhaustedly 
cover the theory behind the ReML method, which can be found in previous literature (see [11] 
for a review). Instead, we will briefly outline the concept, describe how to implement this 
method for optical spatial inverse problems, and provide several demonstrations of how this 
approach can be used to optimally introduce multiple priors into optical reconstructions. 
Throughout this paper, we will present numerical examples of this model with increasing 
complexity in order to gradually introduce components of this method. First, in initial 
demonstrations, we will first show that for the case of a single minimum norm prior model 
(similar to the widely used Tikhonov regularization to the optical inverse problem), the ReML 
method produces identical results to those obtained through optimized regularization via the 
L-curve method. In later sections of this work, we generalize this model to show that the 
ReML method allows the incorporation of additional priors including assumptions about the 
physiology of the brain’s response and region-of-interest information. We will finally show 
how the ReML method can be used to independently tune the Bayesian noise model in the 
brain and superficial layers to create depth discrimination and to separate superficial noise and 
brain activity signals. 

2. Theory 

The optical forward model 

Diffuse optical brain imaging has been described in several recent reviews [1]. In this section, 
we will only briefly describe the setup and recording of optical data as it pertains to the optical 
spatial inverse problem. In a typical DOT experiment, a grid of light emitters and detectors is 
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positioned on the surface of the scalp of the subject (see Fig. 1). At each of these emitter 
positions, light is sent into the tissue at two or more wavelengths. Due to the highly scattering 
nature of biological tissue, this light spreads as it enters the tissue. For samples thicker than a 
few millimeters, the propagation of light through tissue is often approximated by a diffusion-
based random walk of the photons of light and can be modeled through Monte Carlo, finite 
difference, finite element, or boundary element methods. The propagation of the light depends 
on the structure of the underlying layers of the tissue (in our case; the scalp, skull, cerebral 
spinal fluid, and gray/white matter layers of the head), which defines the volume sampled by 
each optical emitter and detector combination. The optical measurement model is 
approximated by the expression 

  , , , ,,i j i j A S i j i jOD L G           (1) 

where OD is the measured optical density and is defined as 

 

,

,

0

i j

i j

I
OD Log

I
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In Eq. (2), I is the intensity of light exiting the tissue and Io is the light entering the tissue. 
G is a geometry dependent factor. In Eq. (1), υ is an additive noise in the measurement space 
(e.g. instrument noise), which will be emphasized further in the context of the ReML model. 
Lij

λ is the optical measurement model obtained from estimation of the ensemble path of 
photons through the tissue and describes the summation of absorption values μA along the 
diffuse path traveled by the light going from a particular light emitter to a detector pair (i,j). 
Both μA and μs are vectors of the absorption and scattering values at each position in the 
volume and can be reshaped as an image of these changes. 

During brain activity, regional changes in blood flow alter the concentration of 
hemoglobin in the brain and in turn change the absorption of the tissue. In this work, we will 
ignore scattering changes associated with brain activity although the model we will describe 
can be easily extended to deal with scattering as well. For small changes in absorption, as 
typically observed for brain activity studies, the change in optical density ΔOD is 
approximated by linearization of Eq. (1) around the baseline values of μA and μs and 
subtraction of the baseline absorption. 

  , , ,,i j i j A S A i jOD A             (3) 

ΔμA is a vector of the changes in absorption at each position (voxel) in the underlying tissue. 
Aij

λ is the Jacobian of the optical measurement model. Equation (3), describes the optical 
forward model describing the change in optical signal caused by changes in the absorption in 
the underlying tissue for one particular wavelength of light and set of baseline optical 
properties. Typically in brain imaging studies, two or more wavelengths of light are used to 
provide an ability to distinguish changes in both oxy-hemoglobin (HbO2) and deoxy-
hemoglobin (Hb). The overall absorption at each wavelength is a linear combination of the 
contributions from each chromophore and is given by the Beer-Lambert expression 

      
2 2, 2 ,A HbO HbO Hb HbHbO Hb                 (4) 

where ελ
HbX is the molar extinction coefficient for oxy- or deoxy-hemoglobin at the particular 

wavelength and describes the wavelength specific absorption properties of these 
chromophores per molar unit of concentration. ωHbX is a second type of additive noise (or 
uncertainty error) term acting in the image (brain) space and is distinct from the measurement 
space noise (υ). We will clarify this distinction later in the context of the ReML model. Again, 
ΔμA, Δ[HbX], and ω are vectors representing these changes at each position in the tissue. 
Equation (4) can be substituted into the optical forward model to produce the optical 
measurement model with spectral priors (e.g. Li et al [13]) 
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2 2, , 2 ,i j i j HbO HbO Hb Hb i jOD A HbO Hb                    (5) 

From here on, the dependence of the forward model (Ai,j) on baseline absorption and 
scattering coefficients will be no longer explicitly written (e.g. Aλ

i,j = Aλ
i,j(μ

λ
A, μ

λ
S’) ). Changes 

in oxy- and deoxy-hemoglobin can be inferred from optical measurements at multiple (N) 
wavelengths by means of solving a set of linear equations given by 
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and λi denotes the ith-wavelength. Hereafter, the optical forward model will be written in the 
more compact form 

  Y H        (7) 

where the new variable β has been introduced to describe the unknown values of the 
combination of oxy- and deoxy-hemoglobin changes in the tissue, given by 

 
 
 

2HbO

Hb

   
 
  

 (8) 

In summary, Eqs. (7) and (8) describe the linear relationship between changes in 
concentrations of HbO2 and Hb in the tissue, and the changes in optical density as recorded on 
the surface between optical sources and detectors. It is this equation that must be inverted in 
order to reconstruct an image (volume) of the hemodynamic changes in the brain. 

The optical inverse problem 

The estimation of optical images by the inversion of Eq. (7) entails an underdetermined 
problem where there generally are significantly less available measurements (Y) than 
unknown parameters (β) in the image to-be-estimated. This means that, in general, there is not 
enough information in the measurements alone to yield accurate and unique estimates of 
images of brain activity. There are two general approaches to solving this problem— 
regularization and Bayesian theories. In general, regularization theory (including Tikhonov 
regularization) has been most widely used and is more familiar to practitioners of the optical 
inverse problem. On the other hand, ReML and our current work are based on the Bayesian 
interpretation. For this reason, we will briefly attempt to reconcile these two theories noting 
that for a subset of regularization models in the class of linear-quadratic regularization (which 
includes many of the current optical inverse models), there is an equivalent Bayesian 
interpretation of the model. 

Regularization methods attempt to stabilize the solution of the inverse problem by 
extending the objective function used to minimize the problem by adding additional penalty 
terms. For example, in conventional least squares inverse models, the least-squares cost 
function minimizes the mean squared error of the model to fit the data. In the case of the 
linear model Y = H·β, the least squares solution is given by 

 
2

arg min   
N

Y H


   (9) 

In other words, Eq. (9) aims to find the value of the parameter set (β) that minimizes the 

error to the measured data. The notation 
2

N
X denotes the weighted norm 
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(
2 T

N
X X N X   ). Generalized Tikhonov regularization extends this least-squares cost 

function by adding a penalty for deviations of β from some prior expected value of the 
parameter (β0) and is given by the minimization expression 

 
2 2

0arg min   
N P

Y H


         (10) 

The term λ is a hyper-parameter, which is used to tune the model. In the case that λ is 
small, the solution favors minimizing the residual error with the measured data and likewise 
when λ is large, the solution is biased towards matching the prior (β0). A typical assumption in 
the optical inverse model is that β0 is zero, which results in what is called the minimum norm 
solution. The regularization model can be extended to add additional penalty terms. For 
example, Li et al [13] extended this model with a second penalty term which applied only to 
parameters outside of a predefined region-of-interest (for example regions selected from MRI 
segmentation). The cost function proposed by Li et al was: 

  
22 2

1 2arg min   1
I I I

Y H M M


              (11) 

where M specifies a binary mask of a predefined region-of-interest such that 

 
1 if in region-of-interest

0 else

M   (12) 

The Li et al model thus had two regularization hyperparameters (λ1 and λ2), which applied 
penalties to the parameters inside and outside of the region-of-interest respectively. 
Alternative regularization models have been proposed to add low-pass or high-pass operators 
to impose smoothness on the solution. In regularization models, the L-curve technique and 
generalized cross-validation can be used to optimally select the hyperparameters of the model. 
However to date, many optical reconstruction methods have used λ as a manual tuning 
parameter allowing images to be adjusted in a subjective optimization. In general terms, the 
regularization hyperparameter (λ) is a weight that is assigned to that penalty term in the cost 
function. 

Linear quadratic regularization models are a subset of regularization cost functions that 
only contain L2 norm penalty terms such as those described in Eqs. (9)–(11). The cost 
function can be viewed as a weighted penalization for the distance of the solution from the 
priors (either the measurement itself or the prior on the solution; e.g. β0). In the regularization 
model, these distance penalties (e.g. N and λ·P in Eq. (10) can be somewhat arbitrary 
provided that they are symmetric matrices. In contrast, the Bayesian model offers an 
alternative interpretation by suggesting that the optimal distance weight should be the inverse 
of a covariance matrix. For example, in Eq. (10), the weighted norm penalty N should be the 
inverse of the measurement noise covariance and from the second term, the value of λ·P 
should be the inverse of the parameter covariance. In terms of the optical inverse model, these 
two terms are the covariance of υ and ω respectively from Eq. (7). 

Whether one interprets Eq. (10) from a (linear-quadratic) regularization or Bayesian 
prospective, the solution to the linear model (Y = H·β) is the same and is given by the Gauss-
Markov equation: 

    
1

0 0

T TH N H P H N Y H   


           (13) 

In the case of the Bayesian model, N and λ·P would be given by the inverse of the 
measurement and parameter covariance models (which we will later denote CN and CP 
following the convention of the SPM software). 
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Restricted Maximum Likelihood (ReML) 

While regularization models are not restricted to linear quadratic expressions and are thus 
more general than Bayesian models, the Bayesian point-of-view offers additional optimization 
methods to select the hyperparameters of the model (e.g. λ) as alternatives to L-curve or cross-
validation methods. In particular, under the Bayesian point-of-view and the interpretation of N 
and P as the inverse of covariance matrices, additional objective functions such as the 
maximum likelihood of the model can be used to optimize the hyperparameters. Restricted 
maximum likelihood was introduced by Harville [14] as a method to produce unbiased 
estimates of the covariance parameters of a linear mixed model under Bayesian assumptions. 
This approach is implemented in several commercial statistical packages such as SPSS in the 
MIXED function. In the context of neuroimaging ReML was introduced by Friston et al for 
the stabilization of the temporal deconvolution model used for analysis of brain activity 
images in functional MRI [15,16]. This is implemented in the software SPM (Statistical 
Parametric Mapping [11]; ). This method was later implemented in the context of the ill-posed 
image reconstruction inverse model for magnetoencephalography (MEG) and 
electroencelography (EEG) also within the SPM software [10]. 

Details of the derivation and theory behind the ReML model are described in several 
papers by Friston et al [15,16]. In brief, ReML is based on the maximization of the log-
likelihood of the data conditional on the set of hyperparameters (e.g. p(Y|λ)). It can be shown 
that (see appendix 3 of [11]) maximization of the log-likelihood function is equivalent to 
maximizing the free-energy of the model and is given by the expression: 

 
 

2 2

0
, ,

1 1 1 1
arg max   

2 2 2 2N P
N P

N PC C
C C

Y H Log C Log C


          (14) 

Note that this is similar to the previous weighted least-squares cost function expression 
with the addition of log-determinant penalties for the covariance terms and a change in sign of 
all the terms. 

Rather than solving for the full covariance matrices (CN and CP) from Eq. (14), the 
covariance models can be parameterized as a linear combination of covariance components. 
For example: 

 

,

,

N i N i

i

P j P j

j

C Q

C Q

  

  




 (15) 

where QN and QP are symmetric matrices that can be used to build up the covariance model. 
In the example of the optical model, CN represents the covariance of the measurement noise 
and thus, two (or more) diagonal covariance components (QN) might be used with each 
representing the variance on one of the two (or more) measured optical wavelengths. In the 
methods section, we will further detail the selection of these components for the optical 
model. The hyper-parameters (Λ; upper-case lambda) in Eq. (15) adjust the weighting of these 
covariance components. Again, in the context of the two wavelength optical model, there 
would be two hyper-parameters allowing adjustment of the noise at the two wavelengths. 
Note in reference to the work by Friston et al [15] for the derivation of the ReML model, a 
lower-case lambda (λ) is used and has been switched here for distinction from the term as 
used in the context of the regularization model. 

In order to solve the ReML model, the expectation-maximization (EM) algorithm [17] can 
be used. In order to minimize the parameterized form of Eq. (14) for both the parameters (β) 
and the hyperparameters (Λ), the EM model alternates between estimation of both types. First 
given an estimate of the hyperparameters, the Gauss-Markov expression is solved to estimate 
the parameters: 

    
1

1 1 1

0 0

T T

N P NH C H C H C Y H  


            (16) 
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Note, Eqs. (13) and (16) are identical, where we have just substituted to the specific 
Bayesian form of the model. 

Once the parameters of the model are estimated from Eq. (16) (expectation step), the  
Eq. (14) is maximized for the hyperparameters (Λ) in the maximization step. The matrix 
derivative of Eq. (14) with respect to the vector of hyperparameters is set to zero and solved to 
yield an updated estimate of these hyperparameters. These are substituted back into Eq. (16) 
to re-estimate the model parameters. This is repeated until convergence is met. In our model, 
we defined convergence by the change in the free energy of the model [Eq. (14)], which we 
describe further in the methods section. 

3. Methods 

In this paper, we will demonstrate the application of a ReML model to the optical inverse 
problem using several numerical examples. In this section, we will detail the procedure to 
generate these simulations and the practical implementation of the ReML model as 
specifically related to our optical model. 

Calculation of optical forward model 

In this study, we used a semi-infinite homogeneous slab model for the calculation of the 
optical forward model. We have chosen to use this model for computational reasons, because 
this geometry has a known analytic solution, however, this regularization model can be 
extended for any such forward model. For the simulations, we used an overlapping 
(tomography) imaging probe as described in Joseph et al [18]. A total of 8 sources and 15 
detectors were used with a nearest neighbor distance of 2.5mm and a second nearest neighbor 
distance of 4.2mm. The probe geometry used in this study is shown in Fig. 2. Measurements 
were simulated at 830nm and 690nm matching the optical system in our lab. 

 

Fig. 2. Simulation (A) and optical probe geometry (B) used in the construction of sample 
problems in this work. This probe was based on a tomography (over-lapping measurement) 
design described in [18] consisting of eight source positions (circles) and fifteen detector 
postions (squares). 

We generated four types of simulated activations. In the first examples of this model, we 
used a single layered model of size 16x16x1 voxels [6.7mm x 6.7mm x 10mm]. An activation 
spot (13.4mm x13.4mm) was added in oxy-hemoglobin ( + 1.0μM) and deoxy-hemoglobin 

(0.25μM). Measurement noise was added to the measurement vector to reach the desired 
signal-to-noise ratio for each section. In the later set of examples, a more realistic two-layer 
model was used to mimic the superficial skin and brain layers. Low-frequency additive 
image-space noise was placed in the superficial layer to mimic systemic noise in some 
simulations. Finally, in the last examples the reconstruction of multiple loci of brain activity 
was examined. 

Wavelet reparameterization of DOT inverse model 

As noted above, the optical forward model is the product of a non-square sensitivity matrix H 
and the vector of unknowns β. The matrix H projects the hemoglobin concentration changes 
from points in the volume of tissue to the expected optical density changes measured at the 
surface by a particular grid of optical source-detector pairs. In a recent paper [19], we 
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described the use of wavelets as basis set on which to reconstruct optical images. The 
advantage of the wavelet-based reparameterization of the model is that the specific wavelet 
filter banks (low-pass, band-pass(es), high-pass) can be biased in the reconstruction as a 
means of imposing spatial smoothing on the reconstructed image. The wavelet transform can 
be thought of as a reparameterization of a signal or image in a sense similar to a Fourier 
transform. However, unlike the Fourier transform, wavelets allow localization in both spatial 
location and spatial frequency (or time and temporal frequency). By representing the model in 
the wavelet domain, the different levels of spatial frequencies can be separately regularized 
through the ReML method. Thus, in the same way that the choice of two Λ’s can be used to 
adjust the variance (regularization) in the skin and deeper layers, the wavelet model allows us 
to independently adjust the bias towards or away from a specific spatial frequency band. In 
the context of diffuse optical image reconstruction, we will show that the wavelet 
representation offers an ability to distinguish superficial physiology and evoked brain signals 
on the basis of a priori knowledge that these two signals compose different spatial 
characteristics. In our work in [19] we described a detailed wavelet model based on the 
extracted curvature of the cortex. In this current work, we will use a much simpler 
(conventional) set of wavelets as a means to better demonstrate the current model with less 
confusion. In our model, we will find β by first reparametrizing the model using orthogonal 
wavelet transform and then estimating the coefficients βw of the wavelet transform of β. The 
orthogonal wavelet transformation is a reversible rotation which can be expressed in a matrix 
notation such that 

 
W

T

W

W

W

 

 

 

 
 (17) 

where W is the wavelet analysis model (transformation from image to wavelet space). Here, 

. In this work we use the Daubechies wavelet [20] generated by FIR orthogonal 
filters of length 2 coefficients and separable in the x-y (in-plane) dimension. Equation (7) is 
now restated for each layer in terms of wavelets as 

  T

W WY H W         (18) 

Equation (18) is the optical forward model in the wavelet domain. The parameter noise 
term (ωW) is now also in the wavelet domain. Since we intend to use a structure to the 
covariance components, which allows a non-white spatial frequency distribution (particularly 
to model systemic physiological noise), we will define the covariance components of the 
ReML model directly in the wavelet domain. The structure of the wavelet matrix W is shown 
in Fig. 3. The low-pass, band-pass, and high-pass components map to regions of the matrix. 
Figure 3 shows the structure of this model for the one-dimensional with only 2 stages for 
simplicity. The actual model used a two-dimensional structure (in the x/y plane) with three 
stages. 

 

Fig. 3. The optical inverse model was reparameterized in terms of wavelet coefficients. In the 
wavelet representation, the original image is described as a linear combination of low-pass, 
band-pass, and high-pass filter banks (left; for 1-dimensional case). The wavelet transform can 
be implemented in matrix form, which has the same filter structure (right) and will be used to 
apply a frequency bias to the superficial and deeper layers of the reconstruction. 
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Example Covariance Components 

In the parametric Bayesian model, the covariance of the extended measurement vector is 
described as a weighted linear combination of covariance components, which capture specific 
a priori features of the model. In this section, we will detail the covariance components that 
will be discussed in the remainder of this paper. 

Minimum norm prior. In order to compare against the Tikhonov regularization methods, 
the minimum norm (covariance) prior should take the form CN = Λ1·I and CP = Λ2·I where 
both oxy- and oxy-hemoglobin are modeled by a single covariance component and 
hyperparameter. CN and CP define the total noise model via Eq. (15). This produces the effect 
of a single hyperparameter to tune the model and is equivalent to the Tikhonov regularization 
model 

  
1

T TH H I H Y 


       (19) 

where the ratio of Λ1 and Λ2 from the Bayesian model are replaced by the single 
regularization term λ. 

Measurement noise prior. In general, optical recordings will have different noise 
depending on the wavelength. While this is less of a concern for systems with only two 
measured wavelengths, combining more than two wavelengths into estimates of oxy- and 
deoxy-hemoglobin via the modified Beer-Lambert law requires an estimate of the noise at 
each wavelength leading to the weighted least-squares model. In order to model this, CN is 
modeled by a separate component for each of the measurement types with unity values allow 
the corresponding diagonal elements for each wavelength type. Thus, the two-wavelength 
optical model, which we will use in this work, will have two hyper-parameters to define the 
measurement covariance (CN). While this paper is concerned with optical-only 
reconstructions, we note that this approach is amendable to multimodal data as well, for 
example, the joint image reconstruction of brain activity from concurrent optical and 
functional MRI data as shown in Huppert et al [21]. 

Separation of HbO2 and Hb. One of the limitations of the Tikhonov approach is that the 
same level of variance is assumed for the entire parameter space, namely both oxy- and 
deoxy-hemoglobin. To model different noise levels for both oxy- and deoxy-hemoglobin, the 
CP component of the covariance matrix can be modeled as a linear combination of two unity-
diagonal covariance components corresponding to the two chromophores of the model. We 
can also impose additional statistical relationships between oxy- and deoxy-hemoglobin, such 
as the observation that these changes are often anti-correlated (e.g. the typical hemodynamic 
response involves oxy-hemoglobin increasing and deoxy-hemoglobin decreasing). This can be 
modeled by negative-signed off-diagonal elements to the covariance components, e.g. 
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 (20) 

Note that this term will be multiplied by a to-be-estimated hyperparameter, which will 
rescale the covariance. 

Depth specific spatial frequency priors. As previously discussed, the reparameterization of 
the optical forward model via the wavelet transform allows statistical priors to impose 
relationships between the levels of spatial frequency. Namely, the variance of the 
corresponding low-pass, band-pass, and high-pass wavelet coefficients can be reweighted 
according to a priori assumptions, such as the expectation that superficial (systemic) signals 
will be low frequency. By weighting the variance between each frequency band, a covariance 
component acting as a low-pass filter can be constructed. 
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The parameter σ is a smoothing factor. In principal, this term could be included in the list 
of hyper-parameters and solved, however, this would create a non-linear model and is beyond 
the current scope of this work. Here, we have used a fixed value of σ = 15mm ( = 2.2 voxel 
dimensions) in the model. 

Incorporating prior knowledge of location of ROI. Finally, the covariance components of 
the ReML model can be used to impose a priori knowledge of regions-of-interest for the 
location of activation. Such prior information can be obtained for example from experience or 
from alternate modality such as functional MRI or atlas based priors. The resulting Q’s can 
then be given by the diagonal matrices for HbO2 and Hb: 

 { , }
1 if {i,j} in region-of-interest

0 else

ROI i jQ   (22) 

4. Results 

In this section, we will demonstrate the utility of the ReML method through several examples 
from simplistic to complex. We will first show that the proposed EM approach produces 
nearly identical results to the Tikhonov model [Eq. (19)] optimized by the L-curve method in 
the trivial case of a single covariance component. From here, we will then show how 
additional covariance components can be used to add information about wavelength and 
hemoglobin specific noise. In the first few examples, we will demonstrate this model with a 
single-layered image. Later, we will switch to a two-layered model simulating the skin and 
brain layers. We will show that the ReML model is able to provide depth-dependent 
regularization in the case of either no superficial noise or the difficult case of spatially 
structured superficial noise. Through this discussion, we will gradually introduce components 
of the model, building to the final most complete model for the most difficult case. While we 
do this in order to emphasize each feature of the method, we do note that the final model we 
will describe performs equally well and in some cases better then the simple model used to 
demonstrate the earlier examples. 

Comparison of ReML and L-curve 

As an initial demonstration of the ReML method, we implemented a covariance model 
consisting of solely the minimum norm prior (CN = Λ1·I and CP = Λ2·I). This model allows 
direct comparison to the L-curve approach to defining λ in Eq. (19) (λ = Λ1/Λ2). A single 
layered image with a depth of 1cm was generated (16 x 16 x 1 voxels 
[6.7mm6.7xmmx10mm]) and a colocalized oxy-hemoglobin [1μM; Fig. 4(A1)] and deoxy-

hemoglobin [0.25μM; Fig. 4(B1)] perturbation was added. In Fig. 4, data was generated 
contrast-to-noise ratio of 100:1 by adding random zero-mean measurement noise and 
reconstructed using the ReML procedure [Fig. 4(A2) and 4(B2)]. A L-curve was generated 
and used to select the optimal regularization [Fig. 4(A3) and 4(B3)]. In Fig. 5, the same model 
is shown but for a lower signal-to-noise level of 5:1. In the higher noise simulations, 
background noise is more clearly pronounced in the reconstructed images. As expected for 
this trivial case of minimum norm (covariance) prior, the L-curve and ReML estimation 
routines produced quantitatively similar reconstructions of both oxy- and deoxy-hemoglobin 
at both 50:1 and 5:1 signal-to-noise levels. In Fig. 6, we further compare the performance of 
the L-curve and ReML models through a range of contrast-to-noise levels from 100,000:1 
(little noise) to 1:10 (more noise than signal). Over the majority of this range, the two methods 
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agree closely with each other and the theoretical optimal parameter. At very low single-to-
noise levels, the L-curve tended to overestimate the regularization, which was the result of 
numerical instabilities in finding the corner of the L-curve. Nevertheless, we concluded that 
the two approaches were comparable over a large range of noise. This result was actually 
expected since discussion in Mattout et al [10] details the theoretical relationship between 
these two methods. 

 

Fig. 4. This figure shows a comparison the ReML and L-curve tuned Tikhonov regularized 
reconstructions for simulations at low noise (signal-to-noise ratio of 100:1). In the top row 
(row-A), the original target (A1), the EM-reconstructed image (A2) and the L-curve 
reconstructed image (A3) of oxy-hemoglobin ( + 1μM simulated) is shown. In the bottom row 

(row-B) the original and reconstructed images of deoxy-hemoglobin (0.25μM simulated). 
Notably, the ReML and L-curve techniques are nearly identical for this trivial case of only a 
single regularization hyper-parameter (λ = Λ1/Λ2). 

 

Fig. 5. This figure shows a comparison the EM and L-curve tuned Tikhonov regularized 
reconstructions for simulations at high noise (signal-to-noise ratio of 5:1). The definitions of 
the subplots are identical to Fig. 4. 
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Fig. 6. In this figure, we compare the value of the hyperparameter (λ) determined by the L-
curve and ReML technique (REML λ = Λ1/Λ2) for simulations with a contrast-to-noise ranging 
from 1:10 to 100,000:1 (half decade intervals). The L-curve and ReML techniques agree 
closely over this range implying that the ReML technique performs as well as the L-curve 
method for the trivial example of a single covariance component. 

Incorporation of physiological priors 

As previously noted, one of the limitations of the single minimum norm regularization prior 
[Tikhonov prior; Eq. (19)] is that the same variance is assumed across all parameters. For 
example, oxy- and deoxy-hemoglobin maps will have the same level of regularization 
(minimum norm) penalty. In the context of DOT, measurements at different wavelengths are 
expected to have different levels of noise. However, the level of noise in each may not be 
known a priori. In addition, oxy- and deoxy-hemoglobin changes are also subject to different 
noise contributions from superficial and systemic physiology; e.g. cardiac pulsation which 
preferentially contributes to noise in oxy-hemoglobin. In order to account for this, the 
covariance of oxy- and deoxy-hemoglobin parameters can be independently estimated through 
the inclusion of separate covariance components for each. In the context of our current 
simulations, this introduces a total of four covariance components (one per each of the two 
wavelengths measured and one per oxy- and deoxy-hemoglobin across the image). 

To demonstrate separate regularization for oxy- and deoxy-hemoglobin, a perturbation in 
oxy-hemoglobin (only) was added to the simulation as before and reconstructed using the 
ReML and L-curve models. Additive measurement noise was again simulated at a signal-to-
noise ratio of 5:1. The reconstructions based on the Tikhonov prior [Eq. (19)] demonstrate this 
limitation of the approach [Fig. 7(A3) and 7(B3)]. In this reconstruction, the value of λ is 
selected via the L-curve method to provide reasonable reconstruction of the oxy-hemoglobin 
component. However, because this λ is also applied to the deoxy-hemoglobin component, the 
reconstructed doxy-hemoglobin image [Fig. 7(B3)] shows significant noise and artifacts of 
similar magnitude to λ. In contrast, in the ReML method, because the regularization of oxy- 
and deoxy-hemoglobin is individually determined, a lower variance in the deoxy-hemoglobin 
model is adapted and the resulting artifacts are considerably lower. In the case of the EM 
model, the cross-talk in the deoxy-hemoglobin is close to negligible (<0.1%). 
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Fig. 7. In this figure, a perturbation in oxy-hemoglobin only (row A) was simulated. No deoxy-
hemogobin changes were simulated (row B). In the Tikhonov regularized inverse [Eq. (19)], 
which applies the same regularization factor to both the oxy- and deoxy-hemoglobin 
parameters, the L-curve technique (A3 and B3) gave a reliable estimate for oxy-hemoglobin, 
but this same level of regularization resulted in a very noisy deoxy-hemoglobin image. The 
ReML approach (A2 and B2) used separate hyperparameters to regularize the two hemoglobin 
species and resulted in close estimation of both images. Row B shows the deoxy-hemoglobin 
results. 

As a further example of the incorporation of physiological priors into the optical inverse 
model, one of the common observations of evoked brain activity signals is that oxy- and 
deoxy-hemoglobin change in opposite directions. Typical of a change in blood flow, oxy-
hemoglobin increases are accompanied by decreases in deoxy-hemoglobin. This can be 
statistically imposed upon the model by the inclusion of a further covariance component of 
the model consisting of negative covariance between the oxy- and deoxy-hemoglobin entries 
of the model. The advantage of this component is particularly realized in the case of data with 
a very low signal-to-noise ratio. In Fig. 8, we show the reconstructions for data simulated with 
a signal-to-noise ratio of 2:1 for the 830nm simulated measurements and 1:2 (more noise than 
signal) for the 690nm simulated measurements. This model used separate oxy- and deoxy-
hemoglobin components [Fig. 8(A2) and 8(B2)] plus a component to explicitly model the 
covariance between oxy- and deoxy-hemoglobin [Fig. 8(A3) and 8(B3)]. This example is 
experimentally realistic since the body absorbs about twice as much light at the 690nm 
wavelength resulting in a generally lower signal-to-noise ratio at this wavelength. For this 
reason, the deoxy-hemoglobin estimate is generally higher in noise. By adding the additional 
covariance term, the oxy- and deoxy-hemoglobin changes are statistically related and thus the 
quality of both images improves by virtue of reducing much of the disinformation between the 
two images. 
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Fig. 8. In this figure, measurements were simulated to have a signal-to-noise ratio of 2:1 at the 
830nm wavelength and only 1:2 at the 690nm wavelength. The resulting image reconstructions 
obtained via the ReML regularization using separate covariance components for oxy- and 
deoxy-hemoglon (A3 and B3) was very noisy (as expected at this very low SNR). The noise in 
the images was reduced when a third covariance component modeling the negative-covariance 
between oxy- and deoxy-hemoglobin was also included (A2 and B2). Row A and B show the 
oxy- and deoxy-hemoglobin images respectively. Subplot A1 and B1 are the simulated (truth) 
images. 

Example of depth-specific regularization 

In all the previous examples, a single layered model was used in order to compare the ReML 
and L-curve approaches to optimal regularization. In this section, we used a multiple layered 
forward model (16 x 16 x 2 voxels [6.7 x 6.7 x 10 mm]) to mimic the layered structure of the 
head. Changes in oxy- and deoxy-hemoglobin were simulated in the deeper layer (10-20mm) 
and in this initial example, no additional image-space noise was added to the upper layer. 
Random measurement noise was added to generate a signal-to-noise ratio of 10:1. In order to 
account for depth-dependent (or region-dependent) regularization in the model, covariance 
components for each region are used. In our simulated example, a total of six covariance 
components are included (one per each of the two measured wavelengths; and 2 x 2 for oxy- 
and deoxy-hemoglobin in the top and bottom layers of the model). 

In Fig. 9, we show the reconstructed images from the superficial (row A) and deep layers 
(row B). In Fig. 9(A2) and 9(B2), the reconstruction based on the L-curve tuned Tikhonov 
prior [Eq. (19)] is shown which applies the same regularization level to both layers. As 
anticipated, the minimum norm solution is heavily biased to the upper layer and results in an 
underestimation of the magnitude of the activation pattern. The image is over an order of 
magnitude diminished from the target. In Fig. 9(A3) and 9(B3), we show the reconstructions 
from the ReML approach using the four-covariance component matrices. Here, the 
reconstruction is correctly placed in the deeper layer, while the upper layer remains close to 
(but not entirely equal to) zero. One of the key features of this model is that, while in this case 
the reconstructed values are correctly near-zero in the upper layer, this is not inherent to the 
model. As we will demonstrate in the next section, the same models can also estimate non-
zero superficial noise signals if supported by the data. In contrast, depth-dependent 
regularization has been demonstrated using cortically constrained solutions (e.g [22].). This 
approach assumes that the signal from the upper layer is zero and can produce accurate 
images provided that this assumption is correct. Namely, the cortically constrained model 
does not allow for non-zero superficial noise as any such noise would artificially projected 
into the brain layer. Our ReML reconstruction of the two-level model is quantitatively similar 
to a cortically constrained solution [Fig. 9(B4)] in which the superficial layer was masked and 
a L-curve tuned regularization was applied. 
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Fig. 9. In this figure, we compare reconstructions of the two-layered model. In rows A and B 
the superficial and deeper layers are shown. Only the oxy-hemoglobin results are shown. A 
perturbation was simulated only in deeper layer (B1). In A2 and B2, we show the 
reconstruction using a covariance component that spans both layers (akin to conventional 
Tikhonov regularization). Here, the same regularization is applied to both layers and the 
reconstructed image is heavily biased to the upper layer and underestimated. In A3 and B3, we 
show reconstructions using separate covariance components for the upper and lower level, 
which allows a total of four (2 layers x oxy- and deoxy-hemoglobin) hyperparameters to be 
estimated via the ReML method. This allows an empirically determined spatially distributed 
regularization of the model that results in correct placement of the reconstructed object in the 
bottom layer. This result is nearly identical to a cortically constrained reconstruction (B4) 
where the top layer is masked and only the bottom layer reconstructed. 

Contamination from superficial noise 

In this example, a low spatial-frequency noise image was added to the upper layer of our 
model in order to simulate superficial systemic physiology. Here, we will assume that the 
superficial image represents largely low spatial-frequency information and use this prior 
information to design the covariance components of the wavelet levels to impose a bias 
towards superficial low-frequency solutions. In this case, we model the covariance 
components such that they attenuate the spatial frequency-bands of the wavelet components in 
the two layers at different rates. Since it is known a priori that the upper layer has lower 
spatial frequency activities than in the lower layer, we impose covariance components that act 
as low-pass filters in this layer as described in Eq. (21). The wavelet coefficients for a given 
layer are increasingly attenuated as the spatial frequency increases. The two layers are 
assigned different attenuation rates, with the upper layer having σ = 2.2 voxels (15mm), and 
the lower layer with σ = 1 voxels (no low-pass filtering). This leads to a total of four 
covariance components, taking into account HbO2 and Hb with the general form as given in 
Eq. (21). 

Figure 10 depicts the reconstructed images with activities in the upper layer.  
Figures 10(A1) and 10(B1) show the images to be estimated. In Figs. 10(A2) and 10(B2) the 
image reconstruction based on the L-curve tuned Tikhonov prior is shown where, as in the 
above example, the same regularization level is applied to both layers. As to be expected, the 
minimum norm solution is heavily biased to the upper layer and results in underestimation of 
the magnitude of the activation pattern in the lower layer. In Figs. 10(A3) and 10(B3), we 
show the reconstructions from the EM approach using the four-parameter covariance 
component matrices described above. Here, the reconstruction correctly identifies and 
separates the upper form the lower layer where we have exploited the wavelet components’ 
properties at different frequencies. As in the above example we next restrict our 
reconstruction to the cortically constrained solution [Fig. 10(B4)]. Clearly, this model does 
not allow for non-zero superficial noise, as any such noise would artificially be projected into 
the brain layer. This example makes it clear that in order to properly reconstruct the functional 
activities the superficial layer must be taken into account. 
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Fig. 10. In this figure, we compare image reconstructions in the case of a two-layered model 
with non-zero noise structure ( + 1μM) in the superficial layer (A1). Row A shows the top layer 
and row B shows the deeper (―brain‖) layer. Only oxy-hemoglobin results are shown. In A2 
and B2, we show the results using the reconstruction using the ReML approach with 
covariance components for the two layers but without any frequency bias (e.g. σ1 = σ2 = 1 
voxel). In A3 and B3, the reconstruction using a low-frequency bias in the top layer is shown 
(σ1 = 2.2 voxels and σ2 = 1 voxel). In B4, the reconstruction with a cortical-constraint is shown, 
which artificially pulls the superficial noise into the bottom layer and results in a grossly 
overestimated signal. 

Incorporation of a priori region-of-interest information 

Incorporating a prior knowledge about a region of interest, when available, can be greatly 
helpful for accurate reconstruction of the image. If the region-of-interest was known with 
certainty, then this can be imposed with a hard-constraint allowing only these regions and 
nowhere else to possess non-zero values. However, the hard-constraint is rather trivial and 
unrealistic since most of the time, the region-of-interest is not known with absolute certainty. 
Using the ReML approach, regions-of-interest can be statistically imposed and the weight of 
this imposition can be empirically determined. In this first example, we will demonstrate the 
case where the a priori regions-of-interest are correct. In the second example, we will show 
that the model can also handle the more difficult case where the regions-of-interest are 
incorrect. 

Using the covariance components given in Eq. (22), where the Q matrices describe the 
wavelet transform of the functional activities, a region-of-interest derived structure can be 
imposed on the covariance of the model. This leads to a total of two measurement noise (CN) 
and six parameter noise (CP) related hyperparameters. Four covariance components are used 
to model HbO2 and Hb in the top and bottom layers (same as previous example). The final 
two covariance components describe the region of interest for both HbO2 and Hb as given in 
Eq. (22). 

We first consider an example where we have two active regions and with no activities in 
the upper layer as shown in Fig. 11. We consider the case where the regions-of-interest are 
near (2 voxels) and far (7 voxels) from each other. For comparison, we also reconstructed 
images using ReML with only covariance matrices for the HbO2 and Hb for each layer (as 
shown previously). Figure 11(A1) shows the case of the image to be estimated with two 
distinct regions of activities, while Fig. 11(B1) shows the case of two regions of interest 
located near each other. Figures 11(A2) and 11(B2) depict the reconstructed images for the 
case where only covariance matrices separating the layers and HbO2 and Hb for each layer. In 
Fig. 11(A2) the recovered image shows accurate recovery of the functional activities. In  
Fig. 11(B2) the spatially close regions of activities lead to a degree of ambiguity in the 
reconstructed image, where the boundaries of the two regions of activities tend to overlap. By 
using in addition covariance components describing the regions of interest for both oxy and 
deoxy-hemoglobin, visibly improved reconstruction is possible, as shown in Figs. 11(A3) and 
11-B3 where in the latter it is possible to discriminate the two reconstructed activities. 
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Fig. 11. In this figure, a two layer model with two perturbations placed either 6 voxels (40mm; 
row A) or 2 voxels (1.3 mm; row B) apart. Only the deeper layer and only the oxy-hemoglobin 
results are shown. In A2 and B2, we show the reconstructions using the ReML model without 
any specific region-of-interest priors. In A3 and B3, we show the reconstructions using a 
statistical region-of-interest prior. The arrows indicate the magnitude of the simulated values. 

 

Fig. 12. Here, we show cross-sections of the reconstructions shown in Fig. 11. 

Figure 12 shows cross sections of the reconstructed images in this example. Figure 12(A1) 
and 12(A2) depict the cross sections of the original image, the reconstruction without region 
of interest prior, and the reconstruction with ROI prior. It can be seen in Fig. 12(A2) that the 
addition of the ROI prior improves the separation of the two regions of interest. 

As a final example, we consider the robustness of the ReML reconstruction scheme to 
incorrect regions-of-interest. A single perturbation was added to the target image  
[Fig. 13(A1)]. This data was then reconstructed using no region-of-interest information  
[Fig. 13(A2)], the correct region-of-interest [Fig. 13(B1)] and an incorrect region-of-interest 
[Fig. 13(B2)]. The correct and incorrect regions are also overlain on the target image  
[Fig. 13(A1)]. While clearly, the ReML scheme benefits from the prior region-of-interest 
information leading to an improved reconstruction, the method is not harmed by the incorrect 
region support. The case of false ROI depicted in Fig. 13(B2) still leads to a reconstruction 
comparable with that of Fig. 13(A2) where no region-of-interest prior was supplied. The 
ReML reconstruction scheme empirically learned not to use the false region-of-interest prior. 

#133504 - $15.00 USD Received 19 Aug 2010; revised 2 Oct 2010; accepted 2 Oct 2010; published 6 Oct 2010
(C) 2010 OSA 1 November 2010 / Vol. 1,  No. 4 / BIOMEDICAL OPTICS EXPRESS  1101



 

Fig. 13. In this figure, we demonstrate the effects of using an incorrect region-of-interest prior. 
The simulated true image (A1; SNR = 10:1) had a single perturbation in the second layer. The 
top layer and deoxy-hemoglobin results are not shown. In A2, we show the reconstructed 
image without any region-of-interest priors. In B1, we show the reconstructed image using the 
correct region-of-interest as a prior (prior is outlined in black). Finally in B2, we show the 
reconstruction using an incorrectly placed region-of-interest prior (outlined in black). Using the 
incorrect prior produced nearly identical results to the case in which no prior was used 
demonstrating that the ReML method correctly assigned a near-zero weight to the incorrect 
prior. 

5. Discussion 

In this study, we have described the application of restricted maximum likelihood (ReML) 
methods to determine the optimal weighting of multiple statistical priors into the 
reconstruction of diffuse optical imaging data. While this approach offers similar results to an 
optimally chosen regularization via traditional weighted minimum norm or multiple priors 
(e.g [13].) penalties, this new approach derives the optimal weights by an empirical algorithm 
that maximizes the log-likelihood of the data. The advantage of this approach is that it is fully 
objective in comparison to the manual tuning applied to many DOT reconstructions; 
particularly using multiple priors. This provides a means to introduce multiple priors or even 
select between multiple competing models. Even in the case where improper assumptions 
were made, such as the incorrect region-of-interest or presence of non-zero noise in the 
superficial layer, the EM model obtained accurate solutions. 

It is important to recognize that we have not invented this technique anew for the 
application to DOT, but rather have merely adapted this method from a broad range of uses 
for the EM and ReML algorithm, including its application to functional MRI analysis in the 
program SPM (Statistical Parametric Mapping [11];) and for image reconstruction of 
magnetoencephalography (MEG) as demonstrated by Mattout et al [10]. Although the 
application of this method to DOT required a few modifications to account for mixed noise 
statistics inherent in optical measurements at multiple wavelengths and the estimation of 
multiple chromophores, this approach does not fundamentally differ from these previous 
papers. 

This approach offers the potential for several extensions as a method to incorporate a 
range of prior information into the ill-posed inverse problem. One of the applications for this 
method is the field of diffuse optical mammography where the blood oxygenation and optical 
scattering properties of breast tissue are estimated by a similar inverse model to the one 
demonstrated here for the case of brain imaging (see [23] for review). The ReML algorithm 
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can be extended to the non-linear case (an iteratively linearized inverse model is usually used 
in optical mammography) and used to statistical priors about structure from MRI or x-ray 
images. While Li et al [13] demonstrated the utility of multiple such priors, they used a 
manual adjustment of the weights which could now be replaced with the proposed ReML 
method outlined here for optimal selection. Using this approach, physiological priors can also 
be introduced such as a priori expectations to the blood oxygen saturation levels or relative 
magnitudes of changes (similar to the imposition of a negative correlation between oxy- and 
deoxy-hemoglobin offered here). 

A second application for this method is the analysis of multimodal data. In Huppert et al 
[21] we described pseudo-Bayesian joint-reconstruction for concurrent optical and functional 
MRI data, showing that the high temporal resolution of the optical data could be combined 
with the spatial information of the MRI to generate movies of brain activity matching the 
benefits of both modalities. In that early work, however, the measurement and parameter 
covariance were modeled using a priori estimates of these terms. Now, using ReML, the 
relative noise of the two modalities can be empirically estimated and an optimal combination 
of the two modalities can be fused to yield the same sorts of movies. 

In conclusion, we have shown that the EM and ReML methods offer an empirical method 
for optimizing the inclusion of multiple prior information in the reconstruction of images from 
diffuse optical tomography. 
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