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A major question in transcription factor (TF) biology is why a TF binds to only a small fraction of
motif eligible binding sites in the genome. Using the estrogen receptor-o as a model system, we
sought to explicitly define parameters that determine TF-binding site selection. By examining 12
genetic and epigenetic parameters, we find that an energetically favorable estrogen response
element (ERE) motif sequence, co-occupancy by the TF FOXA1, the presence of the H3K4mel mark
and an open chromatin configuration in the pre-ligand state provide specificity for ER binding.
These factors can model estrogen-induced ER binding with high accuracy (ROC-AUC=0.95 and 0.88
using different genomic backgrounds). Moreover, when assessed in another estrogen-responsive
cell line, this model was highly predictive for ERa binding (ROC-AUC=0.86). Variance in binding
site selection between MCF-7 and T47D resides in sites with suboptimal ERE motifs, but modulated
by the chromatin configuration. These results suggest a definable interplay between sequence
motifs and local chromatin in selecting TF binding.
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Introduction

Despite the primary importance of transcription factor (TF)-
DNA interaction, little is known about how specificity and
selection are determined during TF recruitment on a genomic
scale (Farnham, 2009). In order to drive their transcriptional
programs, TFs bind to specifically recognized DNA segments,
commonly short and degenerative sequence-recognition
motifs, which are often represented frequently in the genome
and exert their action over variable distances to interact with
the basal transcriptional machinery. However, TF proteins
occupy only a very small fraction (typically <2%) of all their
potential recognition motifs found in the genome. Moreover,
this limited number of occupied sites might be significantly
different between different cell types (Lupien et al, 2008).
Access of regulatory proteins such as TF to DNA is regulated by
chromatin and is an important aspect in controlling transcrip-
tional regulation of specific gene loci and TF function (Gregory
and Horz, 1998; Morse, 2003). DNA packaging into nucleo-
somes may also physically restrict the accessibility of the
genome to regulatory proteins such as TFs (Cairns, 2007;
Rando and Ahmad, 2007; Petesch and Lis, 2008). This
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restriction is dynamic and changes during development and
in response to exogenous cues (Lee et al, 2007; Schones et al,
2008).

Taking estrogen receptor-o. (ERa) as a model of an inducible
TF (Ali and Coombes, 2000), we address how ER utilizes
specific binding sites from its genomic repertoire. ERa acts by
directly binding to a 13-19 bp canonical palindromic-recogni-
tion motif, the estrogen response element (ERE) or, less
frequently, by indirectly binding DNA via interaction with
another TF in a ‘tethered’ mode. Genome-wide positional
analysis (Carroll et al, 2006; Lin et al, 2007; Hurtado et al,
2008; Welboren et al, 2009) showed that the vast majority of in
silico predicted ERa-binding sites are not occupied in vivo in
the MCF-7 human breast cancer cell line. These ERa studies
also suggested the need for cooperating TFs such as the
Forkhead protein, FOXA1 (Carroll et al, 2005), in facilitating
ER binding to chromatin. Nuclear co-regulators, which often
possess chromatin-modulating activities, appear to act co-
operatively with ERa to establish patterns of gene expression
and thus provide considerable functional flexibility in specify-
ing transcriptional regulation (Strahl and Allis, 2000; McKenna
and O’Malley, 2002; Cheng et al, 2006). However, these studies
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have not systematically addressed the predictive value of
specific genomic features, either individually or in combina-
tion, in defining ligand-induced ER binding across the human
genome.

To investigate this further on a genome-wide scale, we set
out to map the epigenetic signatures that are important for
ERa-binding site utilization. Here, using massive parallel
sequencing, we analyzed the areas of open chromatin, and
genome-wide occupancy of six histone methylation/acetyla-
tion marks in MCF-7 cells, and two factors likely to be
co-localized with ER binding, FOXA1 and AP1 (FOS and JUN).
RNA polymerase II (RNA Pol II) was also included in the
analysis given the observation that ER-binding sites interact
with the transcription start sites (TSSs) through a looping
mechanism (Pan et al, 2008; Fullwood et al, 2009). We
surmised that functionally active binding sites might be
marked by RNA Pol II interaction. Overlapping these marks
with an ERa-binding site map, we sought to define rules of
ERE-binding site usage leading to downstream transcriptional
regulatory control of ERa.

Results

Genome-wide mapping of ERa-binding sites

We first identified all ERea-binding sites by a chromatin
immunoprecipitation (ChIP)-sequence strategy and generated
more than 7 and 12 million uniquely mapped tags for estradiol
(E2) and vehicle-treated samples, respectively, in MCF-7 cells
and T47D cells (Supplementary Table I). As ChIP-seq is
sensitive to biases engendered by gene amplification, we
removed all sites residing in positions exhibiting significant
copy number variation in MCF-7 cells (Shadeo and Lam,
20006). Using a global intensity threshold corresponding to
a P-value of 0.001 and subsequent filtering by local normal-
ization to a control input DNA library, we identified 16 043
peaks that were defined as binding sites in the non-amplified
MCEF-7 genome (De Santa et al, 2009) (see Supplementary
Methods).

These ChIP-seq-derived-binding sites overlapped with up to
86% of all sites in previous genome-wide ER-binding mapping
studies (Carroll et al, 2006; Lin et al, 2007; Hurtado et al, 2008;
Welboren et al, 2009) (Supplementary Figure 1, Supplemen-
tary Tables II and III), and had a similar distribution relative to
gene landmarks as previously reported: the majority of
binding sites are located in the intragenic regions (40%) and
distant 5’ and 3’ regions, with only 9% in promoters (within
Skb upstream and 1kb downstream from the TSS) (see
Supplementary Figure 2A and B). We subjected 81 sites to
validation by ChIP-qPCR and found good correlation between
ChIP-seq tag count and qPCR quantification (Supplementary
Figure 3, P=5.0E-8). Other measures of validity such as
correlation of ER occupancy with the presence of an ERE-
recognition motif were also observed confirming the quality of
the library (data not shown). Adjusting the threshold settings
used, we found that majority of the binding sites were already
bound in the absence of E2, albeit often at low levels, but
almost all sites showed significantly augmented binding after
E2 stimulation (Supplementary Figure 4). These data suggest
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that ER occupancy is commonly present before ligand
exposure and this occupancy is enhanced by ligand induction.

Characteristics of chromatin configuration of
ER-binding sites

Using the 16 043 ERa-binding sites, we analyzed the popula-
tion characteristics of the chromatin configuration of these
ERa-binding sites. To this end, we performed ChIP-seq
analysis for the occupancy configuration of each of the
following marks before and after E2 exposure: RNA Pol II,
the activation marks H3K4mel, H3K4me3, H3K9ac and
H3Kl4ac, and the repression marks H3K9me3 and
H3K27me3. As FOXA1 has been suggested to be a pioneering
factor (Carroll et al, 2005, 2006) that potentially can direct ER
binding, we also assessed whether the presence of FOXA1
binding based on ChIP-seq occupancy in the absence of
estradiol exposure might be a predictor of ER binding after
ligand exposure. Because of our finding of AP1 as a common
co-motif at ER-binding sites, we included the two components
of the AP1 complex, FOS and JUN in the ChIP-seq analysis.
The details of the antibodies, the depth and coverage of
sequencing for each of the libraries are shown in Supplemen-
tary Table I. In addition, we assessed the chromatin config-
uration of ERa-binding sites by deeply sequencing the
fragments isolated by Formaldehyde-Assisted Isolation of
Regulatory Elements (FAIRE) (Giresi et al, 2007) which
enriches for nucleosome-free genomic DNA in the aqueous
phase of a phenol extraction. The tag count of FAIRE fragments
reflects the nucleosome depletion at any given site. From the
tag profile of FAIRE libraries we found an open chromatin
conformation within 1 kb around ER-binding sites after as well
as before E2 application (Figures 1 and 2B). We observed a
gradient for this open chromatin conformation with each
quartile of ER-binding sites, with quartile 1 (highest ER
occupancy) binding sites showing the maximum openness,
and quartile 4 (least occupancy) binding sites showing the
least. In contrast, the EREs with no ER binding (unbound sites)
lacked this open chromatin conformation, either in the E2
induced (Figure 1) or non-induced state (data not shown).
H3K4 mono- and trimethylations, and H3K9 or H3K14
acetylations are generally associated with regions of tran-
scriptionally active chromatin (Bernstein et al, 2004). The
presence of these activation histone marks pointed precisely at
the ERa-binding site and was correlated with ERa binding
(Figure 1). Of note is that H3K4mel signals in the absence of
ligand were correlated with ERa occupancy (Figure 2A), which
is consistent with the association of H3K4mel with sites of
enhancer function. Such an association has been noted in
human HeLa cells for the p300-binding sites (Heintzman et al,
2007; Robertson et al, 2008), STAT1, predicted enhancers and
FOXA2 sites from mouse adult liver cells (Robertson et al,
2008). Similarly, the H3K9 and H3K14 acetylation marks were
also progressively enriched around the ERa-binding sites. The
signal for activation histone marks correlated with ER
occupancy at ER-binding sites (Figures 1 and 2A, Supplemen-
tary Figure 5). In contrast to the ERa-bound sites, none of these
histone activation marks were enriched in non-bound EREs.
Previous studies suggested that methylation of H3K27
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Figure 1
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Chromatin activation and repressive mark profiles of ERa-binding sites after E2 stimulation. The 16 043 ERa-binding sites defined by ChIP-seq sequence tag

occupancy were arranged in descending order of their induction and subsequently divided into four quartiles (Q1-Q4). The 1st quartile group contains the strongest
induced ERa-binding sites while the 4th quartile group contains the weakest induced binding sites (colored lines: Q1, Q2, Q3 and Q4). The tags from each ChIP-seq
library (downsampled to 7 M tags) were mapped and then used to calculate the average count per bp inintervals + 2 kb relative to the center of ER-binding sites (ERBS)
identified from ChlP-seq study. For comparison, the same average tag count profile is shown for 10 000 random sites unbound by ER (gray lines).

correlated with gene repression (Lee et al, 2006; Roh et al,
2006) and methylation of H3K9 has been implicated in
heterochromatin formation and gene silencing (Bannister
et al, 2001). Our analyses showed that these signals were very
low for both bound and non-bound sites with no significant
difference between the two states. Thus, the activation marks
are associated with ER binding whereas the repression marks
are not.

As the ChIP-seq technology may possess unknown biases,
we sought to validate the profiles of FAIRE and H3K4mel
signals around ER-bound sites using a custom made Nimble-
Gen array containing 12 966 validated binding sites that had
ERE-like sequences derived from two published genome-wide
studies (Carroll et al, 2006; Lin et al, 2007) and 31468 non-
binding sites bearing computationally predicted high-affinity
binding sites (Vega et al, 2006). These ChIP-chip results
showed the same positive correlation between ER binding and
FAIRE or H3K4mel enrichment (Supplementary Figure 6).

After determining the distribution of chromatin marks in E2
and vehicle-treated samples, we then asked whether there was
a gradient of association between each of the histone and
chromatin marks at the pre-ligand state and ERa binding
following ligand activation. Significantly, we observed strong
correlation between ERa occupancy and the intensity of all
marks associated with gene activation, H3K4mel, H3K4me3,
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H3K9ac, H3K14ac, FAIRE and RNA Pol II, either before or after
ligand exposure, based on rank correlation statistics
(Figure 2A). By contrast, the associations between ERa
occupancy and the repression marks were not statistically
significant. Taken together, we surmise that bona fide ER-
binding sites have the general characteristics of exhibiting
open chromatin, harboring activation marks on histone 3 and
co-localizing with RNA Pol II.

We then asked whether the characteristics of the ERa-
binding sites changed upon ligand induction of ER. We
compared chromatin marks on ChIP-seq-defined ER-binding
sites (quartile 1) before and after E2 treatment. The results
(Figure 2B) show that the FAIRE tag profiles are, on average,
the same before and after ligand induction, which suggests
that there is no significant change in the open chromatin
configuration after ligand induction. In contrast, we found
H3K9ac, H3K14ac signals and especially RNA Pol II signals
were increased after ligand exposure (Figure 2B). The
dramatic increase with RNA Pol II after ligand exposure
suggests that Pol II is progressively recruited to ER-binding
sites upon ER activation. The repression marks of H3K9me3
and H3K27me3 did not change with E2 exposure. H3K4me3
showed only a subtle increasing change. H3K4mel decreased
as these sites were probably progressively methylated to
H3K4me2 and/or H3K4me3. The trends of estrogen effect on
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chromatin signals were maintained for binding sites from tion with the ERo binding altering the chromatin state of the
other quartiles (Supplementary Figure 7). These results binding site. RNA Pol II binding after E2 induction was the
suggest that there is a dynamic interplay between ERa binding most correlated with ER binding after ER activation. By
and specific characteristics of the local chromatin configura- contrast, H3K4mel (histone lysine monomethylation) was the
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Figure 2 Estradiol induces chromatin changes around the ERa-binding sites (ERBS). (A) Correlations between ER chromatin immunoprecipitation (ChIP)-seq peak
height and tag counts of chromatin modification marks before (vehicle) and after (E2) stimulation (* indicates significance level at P<0.0001 for all groups). All ChIP-seq
libraries were of equal size (N=7 million tags) to make the signal directly comparable. ChIP-seq signals for repressive histone marks H3K9me3 and H3K27me3 have no
significant correlation with ER-binding intensity. (B) Effect of estrogen on the chromatin signals with respect to different marks. ER-binding sites from quartile 1 were
analyzed for different chromatin marks. (C) The tag density profile for chromatin marks at the ERa-binding sites from different genomic locations relative to RefSeq
genes: promoter (5 kb), intragenic, distal (5-100 kb upstream transcription start site; TSS) and gene desert. For both (B and C) the signal is average tag count in intervals
+ 2kb of the center of the binding sites. Distance is shown in the x axis and the ChlP-seq tag count is presented in the y axis for each panel. Changes after E2 treatment
are shown by arrows. For C, the symbol * indicates bias in ChIP-seq enrichment for promoter ERa-binding sites.
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Figure 2 Continued.

most significantly correlated of these initial factors in the
absence of ligand (Figure 2A).

It is known that certain histone marks are closely linked to
specific gene boundaries such as promoter regions and,
therefore, might be associated with ER binding by virtue of
binding site location relative to gene boundaries. Therefore,
we analyzed whether certain ERa-binding site-associated
marks were specifically localized to such gene boundaries.
We found that two histone modifications, H3K4me3 and
H3K9ac, were present at much higher levels at promoter-
associated ERa-binding sites (within 5kb of TSS, Figure 2C).
However, ChIP-seq enrichment of the remaining activation
mark, H3K4mel, and the other binding site signatures (RNA
Pol II and FAIRE) were significantly associated with ERa-
binding sites regardless of their location relative to gene
boundaries. Because of this positional bias to promoters, we
posited that H3K4me3 and H3K9ac would not be the best
predictive markers for ligand-induced ERa binding in genome
scale, which was confirmed by prediction with cross-valida-
tion (Supplementary Tables VIII-XI).

Co-localizing TFs

According to our motif analysis (see below), 52% of the 16K
ER-binding sites were found to contain half-site ER-binding
motif or no discernible motif. It has been suggested that co-
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Distance from ERBS center, bp

localization of specific TFs with ER on DNA may contribute to
the utilization of any site for ER binding. To this end, we
examined the consensus TF-recognition sequences that are
enriched in close proximity to bona fide ER binding half sites.
Co-motif analysis was performed using MDscan (Liu et al,
2002) after masking out all ER half sites in the binding regions.
Correlating the identified motifs with entries in TRANSFAC
suggested that FOXA (presumably, FOXA1), AP1, AP2 and
CACD (similar to SP1) factors were potentially associated with
these sites (Supplementary Figure 8). When analyzed across
all subcategories of ER-binding sites, the presence of the
consensus motifs for these four TFs remain highly statistically
significant as compared with random genomic segments
except in the 2% of the sites that harbor no ERE motif. In
this ERE-negative category, only FOXA1 and AP2 motifs were
marginally enriched. Of interest is that the presence of AP1,
AP2 and FOXA1l motifs were statistically more commonly
adjacent to definite half sites than in full sites (P=0.0005 for
AP1, P=0.0046 for AP2, and 0.025 for FOXA1 by Fisher’s exact
test) (Supplementary Figure 9, Supplementary Table IV).

The ER-binding sites were classified into four categories
based on sequence motif (thermodynamic model scores,
see below). Since, as the quality of the ER motif deteriorated
from full sites to intermediate half sites, the likelihood of
co-motif occurrence in the ER binding region increased
uniformly for all four co-motifs (Supplementary Figure 9,
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Supplementary Table IV). Binding regions with no ERE
showed no clear trend, perhaps because of the fact that they
were too few in number to characterize statistically. The
inverse relationship we observed between ER motif quality
and co-motif occurrence is consistent with a model wherein
low-affinity EREs are more likely to require assistance from
other TFs in recruiting ER. This assistance could take the form
of direct protein-protein interactions, as has been suggested
for AP-1 and ER (Safe and Kim, 2008), or a cooperative or
chromatin-modifying role as suggested for FOXA1 (Carroll
et al, 2006).

Given the association of AP1 and FOXA1 with ER-binding
sites described in the literature, we sought to assess the
association of the conjoint Fos-Jun (components of the AP1
complex) and FOXA1 with ER-binding sites. We observed that
the components of the AP1 complex, cFos and cJun, or the
intersect of the two factors (representing the intact AP1) at
vehicle treatment were poorly correlated with ER binding
whereas the presence of FOXA1 was highly correlated. When
taken together, at the pre-ligand state, FOXA1, H3K4mel, RNA
Pol II and FAIRE had the highest correlation with subsequent
E2-induced ER binding (Figure 2A).

Owing to technical variation, ChIP-seq libraries had
different number of mappable binding sites (Supplementary
Table I), which may alter the assessment of individual factors
associated with ERa-bound sites. To account for this variance,
we downsampled all histone modification ChIP-seq libraries to
a consistent minimal available size (N=7 million) by random
removing of reads and verified the obtained correlations and
ROC-AUC scores (Supplementary Table VII).

Energetics in sequence selectivity

ERa binds preferentially to the consensus estrogen receptor
element, a 13-19 bp palindromic sequence consisting of two
oppositely oriented 5-8 bp ‘half sites’ separated by a 3-bp
spacer. ERa can also bind to isolated half sites, though with
less specificity. In order to systematically assess the binding
affinity of half and full sites of the ~16,000 ERa binding
regions, we fitted a widely used thermodynamic model of
TF-DNA binding to the ChIP-seq data (Foat et al, 2006; Zhao
et al, 2009).

Our model was constructed by applying a new algorithm
called Thermodynamic Modeling of chip-Seq (TherMoS) (Sun
et al, manuscript in preparation; MATLAB code available upon
request). The algorithm employs nonlinear regression to fit the
observed distribution of sequence tags in a ChIP-seq library,
and produces an estimate of the position-specific energy
matrix (PSEM), i.e., the matrix of binding free energy changes
induced by all possible single mutations of the consensus-
binding sequence. Once trained, the model provides an
estimate of the G-score, i.e., the binding free energy, of ERa to
any sequence. The G-score can then be converted to an estimate
of TF occupancy, or binding probability, using elementary
statistical mechanics (see Materials and methods). In this
manner, the appropriateness of any sequence to act as a
substrate for ERa binding can be quantified and compared
across sites.

As ERa has been known to bind palindromic EREs and also
isolated half sites (Krishnan et al, 1994; Vega et al, 2006; Safe

6 Molecular Systems Biology 2010

and Kim, 2008), we based our motif search on a two-
dimensional score composed of the G-scores of the left and
right 7-mers within a 17-mer ERa motif (Figure 3A). Enrich-
ment of 17-mers within + 50 bp of ChIP-seq peaks, relative to
randomly chosen non-coding regions, was evaluated in this
two-dimensional score space (Figure 3B). The resulting
enrichment plot shows that perfect or near-perfect matches
to the palindromic ERE consensus (Figure 3B, bottom left
corner) are highly enriched in ERa binding regions. These ‘full
sites’ presumably bind both subunits of an ERa dimer. We also
observe enrichment of half-site motifs, defined as 17-mers
with a low G-score in only one half of the palindrome
(Figure 3B, yellow streaks along the x and y axes), suggesting
that there exists a significant population of binding sites at
which only one ERa molecule is in direct contact with DNA.
We found that the average asymmetry between left and right
half site G-scores (Gp and Gg) decreased smoothly as the
estimated 17-mer occupancy increased, indicating that
ERa-binding sites exist on a continuum between half sites
and palindromic full sites (Figure 3C; see Supplementary
Methods). Based on the inflection point of this half site
asymmetry plot, we defined ‘definite full sites’ as 17-mers with
predicted occupancy >0.05. Intermediate full sites were
defined as 17-mers with lower predicted occupancy than
definite full sites, and more than twofold enrichment along the
dotted diagonal line, i.e., 0.02 <occupancy <0.05 (Figure 3D).
A similar enrichment-based criterion gave Gi,r <1.65 as the
threshold for definite half sites (Figure 3E). Intermediate half
sites were defined with a looser G-score threshold, and ‘no
ERE’ ChIP-seq peaks were defined as binding regions in which
not a single 17-mer above the threshold could be found.

We thus classified the 16043 binding regions into definite
full sites (31%), intermediate or possible full sites (17%),
definite half sites (38%), intermediate half sites (12%) and
binding sites that show no evidence of an ERE (2%)
(Supplementary Figure 10A). Thus, most binding regions
harbor sequences that are energetically recognizable as an ERE
(86%, if one excludes intermediate half sites and no-ERE
regions). We observed a linear relationship between the
quartile assignment of the ERa-binding site and the probability
of harboring a definite full site, suggesting that as the binding
motif becomes progressively weaker, the strength of ER
binding decreases (Supplementary Figure 10B). The appro-
priateness of the full site, half site and no-ERE categories was
independently confirmed by de novo motif analysis using
MEME (Bailey et al, 2009) (Supplementary Figure 10C). ERE-
like sequences were discovered in all but the ‘no-ERE’
category, though the signal in the intermediate half site group
was variable and considerably weaker requiring initialization
from the consensus sequence AGGTCA. Thus, the binding site
categories defined on the basis of free energy scores were
independently confirmed using MEME. Overall, these results
suggest that a significant gradient of progressive degeneracy
exists in the bona fide binding sites for ERa.

Factors predicting ER-binding site utilization

It has been estimated that there are over 1 million potential ER-
binding sites in the human genome as computationally
identified by motif scans (Vega et al, 2006), but we noted only
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Modeling of chip-Seq (TherMoS) from MCF-7 ChiP-seq data. (B) Binding free energy of 17-mers relative to that of the consensus-binding sequence is decomposed into
contributions (G-scores) from the left (G, ; x axis) and right (Gg; y axis) half sites. The plot shows log;o-scale enrichment of G-score pairs in 100 bp regions centered on
ChlP-seq peaks, relative to randomly chosen non-coding regions in the genome. Predicted probability of binding, i.e., occupancy = % 1=2.3396. Area |:
definite full site (occupancy > 0.05); area II: intermediate full site (0.02 < occupancy < 0.05); area llI: definite half site; area IV: intermediate half site; area V: no ERE.
(C) Occupancy threshold for definite full (palindromic) sites was defined as the value below which G, and Gg become anti-correlated, i.e., asymmetric. (D) Occupancy
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define the G-score threshold for intermediate half sites (dashdot line in B). (E) G-score threshold for definite half sites is the point on the dashed vertical line in B where

the enrichment is twofold.

16043 true binding sites in the MCF-7 genome. Using a
stringent TherMoS-based predicted occupancy threshold of
0.05 which represents only optimal or near-optimal full ERE
motifs, we calculated that there are 229 663 sequence-optimal
binding sites in the reference human genome. As the MCF-7
genome was found to contain only 5105 of these full-ERE
regions that were bound by ERa, we estimate that only ~2%
of ‘full EREs’ in the genome are detectably bound in that cell
type. Given that we had genome-wide data on epigenetic
signatures of ER-binding sites, and a robust module for
assessing DNA sequence characteristics for optimal ERa
binding, we sought to identify specific characteristics of a
DNA segment before E2 exposure that determine whether the
site would be subsequently bound by ER after ligand addition.
We constructed logistic regression models for characteristics
best associated with ligand-induced ER binding using the
ChIP-seq tag densities from the pre-ligand state in 500 bp
windows for all chromatin marks (H3K4mel, H3K4me3,
H3K9ac, H3K9me3, H3K14ac and H3K27me3), for FOXAI,
c-Fos, c-Jun, FAIRE and RNA Pol II, and the occupancy score
for the TherMoS-derived ER PSEM.

We assessed the classification performance of our predictive
models using receiver-operator characteristic (ROC) curves
(Figure 4). We fitted logistic regression models for all possible
combinations of the 12 (see Supplementary Tables VIII-XI)
features and recorded the best area under the ROC curve

© 2010 EMBO and Macmillan Publishers Limited

(ROC-AUC score) for each N-feature combination. The
problem of modeling ER site selectivity can be approached
from different angles depending on the specific question one
wants to ask. First, we asked whether regions that are bound
by ER in MCF-7 cells on E2 treatment could be distinguished
from random genomic background. To eliminate any possible
bias related to proximity to promoters, we used 14 338 non-
TSS-proximal ER ChIP-seq determined binding sites (whether
they contained an ERE or not) and used as control, 820000
regions that neither overlapped with ER ChIP-seq peaks nor
were near TSSs.

We assessed all possible combinations of all factors and
found that a four-parameter model that included the TherMo$S
ER affinity score, FOXA1, H3K4mel, and FAIRE represented
the most efficient in terms of identification of ligand-induced
ER-binding sites resulting in an ROC-AUC of 0.95, as judged by
testing on an independent test set (Supplementary Table VIII).
This four-parameter combination had essentially the same
area under the curve (AUC) for the ROC as the model using six
features while the addition of more than six features caused
the ROC-AUC to deteriorate because of over-fitting to the
training set (Figure 4A). In addition, these four selected
features always (five out of five validations) represented the
top-scoring four-parameter model, while the best 5-, 6-,
7-feature (etc.) models varied between the five runs (Supple-
mentary Table VIII). Thus, the four-parameter model is the
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Figure4 Predictive factors of ERa: binding. The values are averages of five runs and bars show standard errors. The curves are ROC curves for (A) logistic regression
models (the best-performing one-, two-, three-, four-, and six-feature models; see Supplementary Table VIII) that discriminate between distal ER-bound (N=14 338) and
random genomic (N=820 000) sites in MCF-7, (B) the performance of the best models (Supplementary Tables X and XI) versus three-parameter models using FOXA1,
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(TherMoS)-predicted EREs (transcription start site; TSS-proximal and distal EREs are plotted separately) in MCF-7, and (C) a validation of the logistic regression model

derived from MCF-7 data tested on T47D data.

most stable and parsimonious predictive model for ER-binding
site selection. After having established that it is possible to
model with a considerable degree of accuracy which distal
regions will be occupied by ER after E2 treatment, we asked
whether ER-bound proximal promoters could be distinguished
from non-ER-bound proximal promoters. In this scenario, the
best resulting logistic regression model (which used all the
features) had a ROC-AUC in excess of 0.92 (Supplementary
Figure 13). A model using only TherMoS score, H3K4mel and
FOXA1, though, reached the almost equivalent ROC-AUC score
of 0.915 owing to the open chromatin nature of promoter
proximal regions (Supplementary Table IX).

Next, we asked the following question: Given the presence
of optimal thermodynamically predicted EREs, can we
distinguish, based on chromatin marks, which will actually
be ER bound after E2 treatment? To answer this, we took the
229663 thermodynamically assigned full EREs as the ‘uni-
verse’ of EREs and attempted to predict the 5105 sites that
would be experimentally bound. As the TherMoS affinity score
had been used to define the training and test data sets, this
parameter was omitted in the predictor. This restricted
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analysis revealed that the ROC-AUC values reached 0.88 for
distal sites (see Supplementary Table X for the best
N-parameter models) and 0.80 for TSS-proximal sites
(Figure 4b and Supplementary Table XI). Thus, using the best
ERE motifs, the presence of FOXA1 co-occupancy, H3K4mel
histone modification and open chromatin could identify the
majority of the sites that would be selected by activated ER.
Interestingly, FOXA1 was the most informative feature for
discriminating TSS-proximal sites, while H3K4mel was the
most informative feature for the distal sites.

To validate this predictive model, we performed ChIP-seq
analysis of ERo and FOXA1 binding, H3K4mel and FAIRE
status before and after ligand induction in a different ER
positive breast cancer cell line, T47D. We then tested the four-
parameter-binding site predictive model derived from MCF-7
on T47D cells using all T47D ChIP-seq ER peaks and found an
ROC-AUC of 0.86 (Figure 4C). When the model was tested on
only the TherMoS-predicted EREs in T47D and assessed for the
ability to discriminate bound versus not bound ERE sites in
T47D (using only the three features H3K4mel, TherMoS score
and FOXA1), the resulting ROC-AUC for this task was 0.93.
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Elements (FAIRE), FOXA1 in MCF-7 (A-C) and T47D cells (D-F) correspondingly at ERa-binding sites ( £ 250 bp proximity of ER site center) for common and specific
sites for MCF-7 and T47D cell lines. ChIP-seq data before E2 activation and normalized to the ChlP library size. ERa-binding sites common to the cell line (common) are
significantly highly enriched by chromatin marks from cell line specific binding sites in both cell types, as well as have higher sequence affinity (panel G, free energy-
based ER affinity score). Common and MCF-7-specific sites are enriched by (A) H3K4me1 (B) FOXA1 and (C) FAIRE marks in MCF-7 cells, while T47D-specific ERo-
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signal as compared with MCF-7 unique sites.

Thus, our ER binding model is predictive in two independent
cell lines.

Interplay of ERE and chromatin state in
determining ERa-binding sites in different cell lines

We asked the question whether differences in the binding sites
selected in ER positive breast cancer cell lines could uncover
any systematic hierarchies that control binding site selection.
Of particular interest is whether ER-binding sites common in
the two cell lines are systematically different from those sites
found uniquely in either MCF-7 or T47D. Our results showed
that of the 5421 binding sites in T47D, 3597 or 66% were in
common with MCF-7-binding sites, while 12446 sites were

© 2010 EMBO and Macmillan Publishers Limited

MCF-7 unique, with only 1824 sites being T47D unique. The
specificity of these binding sites as common or cell line unique
was confirmed using qPCR in 73 selected sites (Supplementary
Figure 14). The ER-binding sites common to both cell lines had
the highest levels of each of the four predictive parameters:
TherMoS score, H3K4mel, FOXA1 occupancy and FAIRE. In
the cell line unique sites, the thermodynamically modeled ER
affinity scores, which reflect the fixed parameter dictated by
sequence, were discernibly lower than in the common sites
(Figure 5G). Consistent with this, we found that the common
sites harbor the highest proportion of full and intermediate full
EREs (62%) whereas the cell line unique sites have a lower
proportion (from 25% in the case of T47D unique sites to 42%
for MCF-7 unique sites) (Supplementary Figure 15). The
distinction between the two cell line unique categories,

Molecular Systems Biology 2010 9



Integrative model of transcription factor binding
R Joseph et a/

however, is that despite similar low ER affinity scores, all other
parameters (H3K4mel, FAIRE, and FOXA1 occupancy) were
significantly enriched in the MCF-7 unique sites as compared
with the T47D unique sites in MCF-7 cells (Figure SA-C; see
also Supplementary Figure 16 and 17). Our parallel ChIP-seq
experiments in T47D cells confirmed higher enrichment of
FAIRE and FOXA1 marks in the T47D unique ER-binding sites
as compared with the values at the same sites in MCF-7 cells
(Figure 5D-F, as compared with MCF-7 unique sites). Thus,
these two factors clearly determine cell line specificity of ER
binding. H3K4mel has in average, lower enrichment in T47D
unique ER-binding sites, although statistically higher than
unbound ERE sites or background genomic segments in T47D
cells. Taken together, this suggests that sites with optimum
ERE motifs will be preferentially used across cell lines of the
same lineage (breast cancer), and that sites with weaker
recognition motifs will depend more greatly on the chromatin
‘milieu’ for site selection which may vary from cell line to
cell line.

Discussion

A central problem in TF biology is how binding sites are
selected given the near ubiquity of short and degenerate
recognition motifs and the small fraction of high-affinity sites
that are actually bound. Investigations in different TFs and
their individual binding sites point to co-factors, heterodimeri-
zation partners and enhanceosome organization as potential
contributors. Herein, we assess, on a genome-wide basis, the
potential rules for binding sites selection using the nuclear
hormone receptor, ERa, as the model system. We used logistic
regression modeling on 12 features to characterize the binding
site selection by ERa: the ChIP-seq tag densities from the pre-
ligand state in 500bp windows for all chromatin marks
(H3K4mel, H3K4me3, H3K9ac, H3K9me3, H3Kl4ac and
H3K27me3), for FOXA1, c-Fos, c-Jun, FAIRE and RNA Pol II,
and the occupancy score for the thermodynamically derived
ER PSEM which is based on the primary genomic sequence.
The advantage of this system is the natural biochemical
inducibility of ERa by its ligand, estradiol, which allows for
assessment of potential binding sites in the uninduced state of
the TF. This avoids the possibility that certain chromatin
characteristics may have been recruited by the TF binding
itself. This possibility was seen in our data set wherein RNA
Pol II was dramatically recruited to ER-binding sites after
ligand induction and would have been considered a major
predictive factor. However, RNA Pol II binding in the pre-
ligand state in genome scale was significantly more modest
and its importance disappeared in the combined analysis.
Taken together, our observations reveal that the fixed
presence of an optimal ERE, the pre-ligand state presence of
the enhancer mark, H3K4mel, pre-ligand occupancy by the
pioneering factor FOXA1, and an open chromatin configura-
tion provide optimum prediction of ER binding at any specific
site. Though the open chromatin configuration as determined
by FAIRE had a role in the model building, its impact was
modest compared with the other parameters. Previous work
has shown that H3K4mel is associated with enhancer function
(Heintzman et al, 2007) and, therefore, is consistent with the
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action of ERa.. Though there is an association with activation
marks H3K9ac, H3K14ac and ERa binding, these marks do not
add further predictive power to the four-parameter model.
This predictive model was validated on another estrogen-
responsive cell line, T47D with a similarly high performance
characteristic (ROC-AUC=0.86).

The comparisons between experimental binding sites that
are shared between the two ER positive breast cancer cell lines
(common to MCF-7 and T47D), and those sites that are present
only in the individual cell lines (cell line unique binding sites)
provide evidence for a differential impact of chromatin
configuration depending on the strength of the binding site
motif. This suggests a hierarchy of site usage such that those
sites with energetically optimal binding motifs will be
preferentially used across different cell types assuming the
presence of the appropriate TFs. Instead of a clear binding/
non-binding demarcation of sequences for the ERE, there
appears to be a continuous probability gradient for ERE-like
sequences of considerable degeneracy to bind with ERa. We
observed that the less optimal motifs, which still represent a
significant number of sites, are subject to greater influence by
chromatin effects for ER-binding site utilization. This observa-
tion was underscored by the fact that binding sites with full
ERE motifs were marginally aided by the other chromatin
characteristics in the predictive model. By contrast, the
binding sites with lower motif scores (e.g., half-ERE sites)
needed the addition of chromatin information to achieve
optimal prediction. Primary sequence is the structurally
immutable component of the four parameters that define our
binding site model. Of note is that even FOXAl binding
appears to be guided by the common presence of a FOXA1
response element in close vicinity to the ER-binding site. This
suggests a model wherein the sites that have the best ERa
binding by sequence may be destined to be the preferred
binding sites across different cell lines. The variations across
cell lines would then reside in those binding sites with
suboptimal motifs (e.g., definite and intermediate half-ERE
sites). If we assume that the union of ERa-binding sites in
T47D and MCF-7 represent the universe of detectable ER-
binding sites using our conditions, then up to 80% of these
sites harbor less ‘optimal’ binding motifs. The ERa binding at
this set would be significantly modulated by the chromatin
configuration and the presence of activation and enhancer
histone marks.

A few studies have previously reported integration of
chromatin structure, epigenetic marks, TF binding and
sequence motifs into predictive models of binding site
selection. Cheng et al (2009) performed a study focused on
the erythroid TF GATA1 based on two histone marks and
restricted the cofactor ChIP experiments to chromosome 7. In
addition, their analysis was correlative rather than discrimi-
native. Ernst et al (2010) introduced the concept of ‘General
Binding Preference’ (GBP)—a TF-independent measure of
genomic properties that can be combined with a specific motif
to more sensitively detect binding sites. In contrast to our ER-
and MCF-7-centric study, this is a general approach to TF
binding. In order to compare our method to that of Ernst et al,
we defined more than 280000 high-scoring putative ER-
binding sites using the ER_Q6 PWM from TRANSFAC, and
attempted to predict which of those that would actually be
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bound in MCF-7 genome (after E2) using either the GBP or our
MCF-7-specific data (Supplementary Table XII). The compar-
ison showed that while the GBP is a good predictor of binding
(ROC-AUC=0.788) despite its cell type independence, it is
not good at H3K4mel occupancy before E2 (ROC-AUC=0.848)
or the combination of the signals we have identified as the
most predictive (H3K4mel combined with FOXA1 occupancy;
ROC-AUC=0.861). It is clear that the GBP score captures
some aspects of chromatin structure which are partly
predictive of TF binding, and this score may be a helpful tool
for binding prediction when combined not only with motif
information (as in Ernst et al, 2010) but also with cell-type-
specific information.

When taken together, we have developed a highly predictive
model for ERa-binding site selection that takes into account
binding site motif degeneracy and specific chromatin char-
acteristics. The use of a ligand inducible TF such as ERa
permits the ascertainment of the relative impact of factors that
determine the binding of the TF under pre-ligand and
inactivated conditions. Our observations point to an interplay
between the strength of recognition motifs and the intensity
and combinations of chromatin characteristics at putative
binding sites especially at the majority of sites not bearing
optimal recognition motifs. Integrating these data defines a
system that uses definable rules to achieve the common
outcome of ERa binding to specific genomic sites.

Materials and methods

Cell culture, estradiol treatment, and preparation
of FAIRE and ChIP DNA samples

MCF-7/T47D cells were grown to 70-80% confluence in D-MEM/F-12
(Invitrogen/Gibco) (for MCF-7) or RPMI medium 1640 (for T47D)
(Invitrogen /Gibco) supplemented with 10% FBS (Hyclone) in 150 mm
dishes. In preparation for the 17 beta-estradiol (‘estrogen/E2’, Sigma)
treatment, cells were then split into 1:3 into serum starving medium
(phenol red-free D-MEM/F-12 medium (Invitrogen/Gibco) or RPMI
medium 1640 supplemented with 5% charcoal-dextran stripped FBS;
Hyclone) and cultured for 72h to 70-80% confluence. Hormone-
depleted cells were treated with E2 to a final concentration of 10 nM for
3 h before the ChIP/FAIRE procedure. The control cells were treated
with an equal volume and concentration of vehicle, DMSO (Merck), for
3h. For a ChIP/FAIRE experiment, we routinely used ~1 x10% cells
from 5 to 6, 150 mm diameter cell culture plates. For isolating the open
chromatin regions in the genome we performed FAIRE as described
previously (Giresi et al, 2007). All chromatin immune precipitation
(ChIP) experiments were carried out as described earlier (Lin et al,
2007). Details of the antibodies used for ChIP preparations are given in
Supplementary Table 1.

Sequencing of ChIP/FAIRE enriched DNA samples
and data analysis

ChIP or FAIRE enriched DNA was further processed before subjecting
to ChIP-seq library construction as per the Illumina Solexa ChIP-seq
sample processing methods. The processed ChIP or FAIRE-enriched
DNA fragments were then used for Illumina single read sequencing
analysis. The sequence tag data was mapped to hgl8 genome, and
enrichment peaks for corresponding libraries were identified using
ChIP-seq peak calling algorithm as previously described (Chen et al,
2008). For the ERx libraries, the identified peaks were filtered in three
steps (see Supplementary Methods) and resulted in 16043 ERa-
binding sites (under E2 stimulation) from non-amplified regions, for
the downstream analysis.
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ChIP-seq data are available from the Gene Expression Omnibus
database  (http://www.ncbi.nlm.nih.gov/geo) under accession
numbers GSE23701 and GSE23893.

Chromatin profiles

The tag density profile for each chromatin mark was constructed in
intervals of *2kb of the centre of ER-binding sites at the same scale.
The signal for each chromatin mark represents the average number of
ChIP-seq tags for each group of binding sites. To compare profiles
across ChIP-seq libraries for each library data were normalized
(sampling to minimal available library size by removing excess
sequence reads from the count).

Motif search

We initially analyzed the presence of the ERE motif in the ERa-binding
sites identified in this study, according to a previously described
method (Lin et al, 2007). We then sought to leverage our ChIP-seq data
to construct the ERE motif in greater detail using the TherMoS
algorithm (Sun et al, manuscript in preparation). Instead of the
traditional position-specific scoring matrix, the algorithm fits an
explicit thermodynamic model of TF-DNA binding (PSEM) to ChIP-
seq data. The PSEM AAG ] represents the free energy contribution of
each possible nucleotide i at position j in the binding site. The total
binding energy (G-score) of any particular n-mer is simply obtained by
summing over the free energy contributions from each nucleotide in
the n-mer. In the case of palindromic motifs for homodimer binding, it
is convenient to split the G-score into the contributions from the left
(Gp) and right (Gg) half sites. The probability that a given DNA
sequence is bound, i.e., the ‘occupancy’ of the sequence, is given by
21e—(GL+Gr)
intranuclear TF concentration (Zhao et al, 2009). We used this
thermodynamic model to quantify ER-binding affinity at 16043
binding regions identified by ChIP-seq in the non-amplified MCF-7
genome (see Supplementary Methods). We also systematically
analyzed the set of TFs that modulate estrogen receptor function, by
examining co-occupant proteins that might be enriched at the ERE half
sites or no-ERE sites defined by TherMoS analysis, using MDscan
(Bailey et al, 2009) (see Supplementary Methods). Genome coordi-
nates of ER-binding sites in MCF-7 and T47D cells and corresponding
background ERE sets together with binding affinity scores are available
at the website http://www.gis.a-star.edu.sg/ ~liue/sup/ and as
Supplementary Dataset 1.

where t is a scale factor proportional to the

Predicting sites that will be bound by ER after
ligand induction

We used logistic regression to assess how well various chromatin
features were able to discriminate between ER bound and non-bound
regions in three different scenarios or ‘classification tasks’. The
features were either an ER affinity score (see main text) or tag count
from a ChIP-seq library downsampled to minimal size 7 million tags
(for MCF-7 libraries) or 12.5 million tags (for T47D libraries) for
unbiased comparison of predictive chromatin marks. Logistic regres-
sion was performed using the ‘Irm’ command in R. The predictive
performance of the resulting models was summarized using precision/
recall and receiver operating characteristic (ROC) curves generated
using the ROCR package for R (Sing et al, 2005). In classification task 1,
70% of the data was used for model construction and 30% was then
used as the test set. For the TherMoS ER affinity scores, we needed to
make sure that data that had been used to fit the thermodynamic model
was not in any way involved in the fitting or evaluation of the
predictive models. Therefore, we fitted a PSEM five times, each time
using 80% of the data set, and used the resulting PSEM to score the
remaining 20%. These five non-overlapping sets of 20% each were
then divided into a training set (70%) for fitting the logistic regression
model and a test set (30%) for evaluating the accuracy of the model.
The resulting ROC and precision-recall curves are thus averages of five
rounds of this procedure.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com,/msb).
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