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Abstract
Bias and variance errors in motion estimation result from electronic noise, decorrelation, aliasing,
and inherent algorithm limitations. Unlike most error sources, decorrelation is coherent over time
and has the same power spectrum as the signal. Thus, reducing decorrelation is impossible through
frequency domain filtering or simple averaging and must be achieved through other methods.

In this paper, we present a novel motion estimator, termed the principal component displacement
estimator (PCDE), which takes advantage of the signal separation capabilities of principal
component analysis (PCA) to reject decorrelation and noise. Furthermore, PCDE only requires the
computation of a single principal component, enabling computational speed that is on the same
order of magnitude or faster than the commonly used Loupas algorithm. Unlike prior PCA
strategies, PCDE uses complex data to generate motion estimates using only a single principal
component. The use of complex echo data is critical because it allows for separation of signal
components based on motion, which is revealed through phase changes of the complex principal
components. PCDE operates on the assumption that the signal component of interest is also the
most energetic component in an ensemble of echo data. This assumption holds in most clinical
ultrasound environments. However, in environments where electronic noise SNR is less than 0 dB
or in blood flow data for which the wall signal dominates the signal from blood flow, the
calculation of more than one PC is required to obtain the signal of interest.

We simulated synthetic ultrasound data to assess the performance of PCDE over a wide range of
imaging conditions and in the presence of decorrelation and additive noise. Under typical
ultrasonic elasticity imaging conditions (0.98 signal correlation, 25 dB SNR, 1 sample shift),
PCDE decreased estimation bias by more than 10% and standard deviation by more than 30%
compared with the Loupas method and normalized cross-correlation with cosine fitting (NC CF).
More modest gains were observed relative to spline-based time delay estimation (sTDE). PCDE
was also tested on experimental elastography data. Compressions of approximately 1.5% were
applied to a CIRS elastography phantom with embedded 10.4-mm-diameter lesions that had
moduli contrasts of −9.2, −5.9, and 12.0 dB. The standard deviation of displacement estimates
was reduced by at least 67% in homogeneous regions at 35 to 40 mm in depth with respect to
estimates produced by Loupas, NC CF, and sTDE. Greater improvements in CNR and
displacement standard deviation were observed at larger depths where speckle decorrelation and
other noise sources were more significant.

I. Introduction
The determination of the time delay between two signals—one reference and one shifted—is
a fundamental task in areas of research including medical imaging, radar, sonar, and speech
processing. In medical ultrasound, motion estimation is performed in applications including
phase aberration correction [1], [2], elastography [3]-[8], Doppler blood flow estimation [9],
[10], and radiation force imaging [11]-[14]. In all of these applications, the physical
principle underlying motion estimation is that changes in the path length between a group of
acoustic scatterers and an ultrasound transducer will introduce a time delay in the
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backscattered ultrasound pulse. Along with fixed imaging parameters such as the center
frequency and bandwidth, the performance of motion estimation is dependent upon the
imaging environment. Signal correlation and SNR are especially important determinants of
performance as expressed in the Cramer-Rao lower bound [15].

Motion estimators can be classified based upon the domain in which they operate. The most
common phase domain techniques are the 1-D autocorrelator, developed by Kasai et al. [9],
and the 2-D autocorrelator, developed by Loupas et al. [10]. Both techniques were
developed to measure a single velocity estimate from an ensemble of echo data; however,
they are also well suited to estimate pair-wise displacements, which can be combined to
yield displacement profiles. The Loupas algorithm improved upon Kasai’s by accounting for
local variations in the center frequency of the echo signal.

Although generally exhibiting a higher computational cost, several time-domain
displacement estimators exhibit superior performance relative to Loupas [11], [13]. The
spline-based time delay estimator (sTDE), developed by Viola and Walker, operates by
forming a spline representation of the echo signal. The delay between a splined reference
signal and a sampled shifted signal is located by minimizing an analytical mean squared
error function.

Time-delay estimation performance can sometimes be improved by applying a pre-
processing step using complex principal component filtering (PCF). With a computational
cost comparable to a finite impulse response (FIR) filter, PCF was shown to reduce echo
decorrelation and noise, thus reducing motion estimation errors [16]. Other PCA and blind
source separation methods have been shown to improve performance in tissue classification,
clutter rejection, physiological motion filtering, and radiation force induced displacement
filtering [17]-[23]. Although PCA-based filtering techniques have been experimentally
validated in a wide range of applications, there are limitations that include high
computational complexity and the need for human input to select which PCs to retain and
reject. PCDE utilizes complex echo data, which allows motion to be captured in a single
principal component, as will be discussed subsequently. With the assumption that the signal
component with the largest energy is also the signal component of interest, which is valid in
most clinical ultrasound environments, PCDE can reduce or eliminate some of the
limitations associated with other PCA-based techniques.

In this paper, we describe and characterize a novel estimator technique, termed the principal
component displacement estimator (PCDE). This technique combines the decorrelation
reduction of PCF with the modest computational cost of phase-domain estimators and the
high performance of time-domain techniques. PCDE is compared against the Loupas
algorithm, sTDE, and normalized cross correlation with cosine fitting (NC CF).

II. Methods
A. Principal Component Displacement Estimation (PCDE)

PCDE operates on an ensemble of complex data sampled in both range and pulse number.
Complex data can be formed via hardware or software demodulation, including Hilbert
transformation of RF data. The complex principal components of the data matrix, X, are
determined using the covariance method of principal component analysis [24]. To illustrate
this technique, first consider the matrix of complex echo data X, with T observations
(samples through depth) and N variables (A-lines). The matrix X is mean-reduced so that
each column in X has zero mean. The sample autocorrelation matrix, R̂ is computed by
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(1)

where X* is the conjugate transpose of X. The complex PCs are then found by performing an
eigenvalue decomposition to diagonalize R̂:

(2)

where V is a matrix with eigenvectors arranged in columns. Although the precise definition
of what are considered to be the PCs of X has varied between different authors, a common
notation is to define the PCs as the eigenvectors of the autocorrelation matrix or the
eigenvectors weighted by the corresponding eigenvalues [24]. In this paper, we will define
the PCs as the eigenvectors of the autocorrelation matrix. Therefore, the first complex PC of
X, υ1, is defined as the first column of V. The estimate of time delays through ensemble
length, Δτ̂ [samples] (with dimensions N × 1), are calculated from υ1 using

(3)

The numerator of (3) represents the phase of the first principal component, whereas the
denominator is an estimate of the local center frequency via the lag-1 autocorrelation of the
ensemble. Note the similarity to Loupas’ algorithm, with the first PC being used instead of
the signal autocorrelation (we discuss the relationship between the two algorithms in Section
IV-E).

Fig. 1 illustrates the signal separation capabilities of PCDE when operating on an ensemble
of echo data. Fig. 1(a) shows multiple signal components with different motion
characteristics, which are summed and weighted according to their relative positions within
the point spread function (psf) of the acoustic beam (i.e., w1 > w2 > w3). Differential motion
within the acoustic beam is a major source of estimation bias and variance errors, which are
particularly common in elasticity imaging [14], [25]. Although sources of electronic noise
can be partially eliminated using conventional frequency-domain filtering, decorrelation
sources have spectra that overlap with the signal of interest [s1(t) from Fig. 1]. Thus,
averaging or filtering in the frequency domain cannot reject undesirable signal components,
yielding corrupted motion estimates. In contrast, PCDE operates in the time domain where it
is possible to separate signals of overlapping spectra.

An example of simulated RF data resulting from the mixing of three signal components is
shown in Fig. 1(b). After processing with PCDE, the mixed signals are separated from the
ensemble data. This enables motion estimation on the desired signal component, s1(t). Time
delay estimates can also be performed on secondary signal components, s2(t) and s3(t) [Fig.
1(c)].

B. Sources of Decorrelation and Simulation Signal Model
As predicted by the Cramer-Rao lower bound for displacement estimation [15],
decorrelation is a major limiter of motion estimation performance. In this paper, we define
two types of decorrelation based upon their respective physical sources.
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One source of decorrelation arises from new acoustic targets moving into and out of the
acoustic beam. This type of decorrelation is most significant in applications with large
displacements such as elastography and blood flow estimation. In this paper, we refer to this
type of decorrelation as out-of-beam decorrelation because the underlying acoustic scatterers
move out of the acoustic beam through time. We model this type of decorrelation in our
simulations by specifying a correlation value and using Cholesky factorization to add new,
uncorrelated signal components [11], [26]. This method operates by first forming a 2 × 2
symmetric matrix, A, which is composed of ones along the diagonal entries and the desired
correlation coefficient, ρ along the off-diagonals. Using Cholesky factorization, matrix A is
then factored into the product of an upper triangular matrix, Q and its transpose: A = Q′ Q.
The upper right and lower right entries of Q are then used to weight the initial signal, c1(t)
and another uncorrelated signal of the same power spectrum, c2(t). The output signal, s(t) is
then formed by summing the signal components c1(t) and c2(t) and weighting them by the
upper right and lower right entries of the Cholesky factorized matrix, Q12 and Q22
respectively:

(4)

The signal component c2(t) represents new acoustic scatterers moving into the acoustic
beam, and thus, the source of out-of-beam decorrelation. As a result of this method, the
output signal, s(t) is constructed so that it has a predefined correlation coefficient of ρ with
the initial signal, c1(t).

Another type of decorrelation, which is illustrated in Fig. 1, originates from differential
displacements within the psf. This source of decorrelation is fundamentally different from
out-of-beam decorrelation because the acoustic targets do not necessarily leave or enter the
acoustic beam—they only exhibit differential axial displacement with respect to one
another. Accordingly, we refer to this type as differential motion decorrelation. Differential
motion decorrelation can be associated with what in other contexts is referred to as axial
shear. Although many motion estimation applications are subject to differential motion
within the psf, acoustic radiation force imaging applications are especially susceptible.
Several studies have indicated that this is a major source of motion estimation corruption
[14], [25].

To model differential motion decorrelation, three independent source signals sl(t),
representing echoes from scatterers at different locations within the psf, were weighted and
summed to form the simulated ensemble, Xi,j:

(5)

(6)

where δ is the sampling interval in range, Δτl are transmit to transmit time shifts, wl are
weighting coefficients corresponding to the source scatterers’ relative position in the psf,
and α is a parameter that is varied in simulation to reduce or intensify decorrelation
originating from differential motion. Eq. (6) is a discrete formulation of (4) describing the
Cholesky factorization method for simulating out-of-beam decorrelation. This method is
applied to each sl(t) individually before summation in (5). Each echo signal sl(t) is formed
by summing two uncorrelated signal components, cl,1(t) and cl,2(t). These signal components
are weighted by coefficients Q12 and Q22, which are determined by Cholesky factorization
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as described previously. The ratio of β1 to β2 determines the out-of-beam correlation of sl(t)
through time. In practice, differential motion decorrelation may vary because of non-
uniform mechanical properties across the psf and because of changes in the f-numbers of the
pushing and tracking beams [14].

C. Simulation Methods
Synthetic ultrasound data was generated in MATLAB (MathWorks Inc., Natick, MA). A-
lines were formed by convolving the acoustic targets, modeled as Gaussian white noise, with
the psf of the ultrasound pulse, which was represented as a sinusoid with a Gaussian
envelope:

(7)

(8)

where B is fractional bandwidth, f0 is center frequency, and 0.42466 relates the full-width at
half-maximum value of a Gaussian to its standard deviation.

To produce known subsample or sample delays between a reference and delayed echo
signal, simulated data was generated at a sampling rate 40 times the rate desired for analysis.
These signals were then downsampled starting at different samples to produce reference and
delayed signals with a known subsample delay. Independent Gaussian-distributed white
noise records were added to the reference and shifted signals to produce a desired SNR. Out-
of beam and differential motion decorrelation were introduced to test the robustness of the
various algorithms. Default simulation parameters are listed in Table I.

D. Elastography Experiments
Experiments were performed on a CIRS Model 049A Elasticity QA phantom (Norfolk, VA )
with 10.4-mm-diameter cylindrical lesions located at 30 mm in depth. Three lesion types,
with elasticity values ranging between 8.7 and 100 kPa embedded in a 25.2 ± 4 kPa
homogeneous background, were imaged. Elasticity values for each lesion type with standard
deviations, as provided by the manufacturer data sheet, are provided in Table II. The
phantom was compressed with a motion controller attached to a Philips 15–6L compact
linear array transducer (Philips Healthcare, Andover, MA), which operated at approximately
5.5 MHz center frequency. RF data frames were acquired after incremental compressions of
50 μm for 10 frames following the multi-compression elastography technique described in
Lu et al. [5], [27]. This compression technique resulted in approximately 1.5% compression
in regions of the 25.2 kPa background. RF data was obtained using an Ultrasonix RP
scanner (Ultrasonix, Vancouver, BC, Canada). Displacements were computed off-line using
a 3-period kernel window, and for sTDE and NC CF techniques, a 5-period search window.
Strains were rendered from the displacement data at frame 10 using a Gaussian staggered
strain filter with a full-width at half-maximum of 1.5 mm [28]. The staggered strain filter
was equivalent to a Gaussian low-pass filter of the displacement data followed by
differentiation along the range dimension using a filter convolution template [29]: [1 −1]T.
A summary of experimental parameters is listed in Table III.

Performance of the proposed algorithms was assessed using two metrics: contrast-to-noise
ratio (CNR) and displacement standard deviation. Using either metric, performance varied
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significantly with depth. Standard deviation measurements were larger at greater depths.
Likewise, CNR values were lower if the background region was placed below, rather than
above, the lesion. To illustrate this trend, we report standard deviation and CNR values at
two representative depths 20 mm apart.

To compute CNR, a circular region of interest (ROI) with a 5 mm diameter, approximately
half the diameter of the lesion, was selected inside the lesion and two ROIs were selected
outside the lesion. The two background regions were located diagonal to the lesion and
centered at 20 and 40 mm in range. The location of the outside ROIs was selected diagonal
to the lesion, rather than directly above or below, to reduce the impact of stress
concentration artifacts on CNR calculations as discussed in Varghese and Ophir [30]. Fig. 3
illustrates the regions used to compute a CNR for each strain image using the following
expression [31]:

(9)

where μ is the mean strain value and σ is the standard deviation of strain values within the
ROI of the target or background.

Measures of displacement standard deviation were computed over regions spanning 15 to 20
mm and 35 to 40 mm in depth following the methods of Du et al. [5]. Briefly, to reduce the
variations in displacement through depth, the mean displacement over depth was subtracted
from the data by fitting the data to a line. Nonstationarities in the lateral direction remained
because of small irregularities from sources such as phantom heterogeneity and non-uniform
boundary effects, so the displacement was fit in the lateral dimension to a fourth-order
polynomial. This function was then subtracted from the data and standard deviations were
computed from this compensated region of displacement estimates.

III. Results
A. Effects of Decorrelation on Motion Estimation Performance

Fig. 3 shows average bias and standard deviation over 1000 trials for PCDE, Loupas, sTDE,
and NC CF in the absence of noise, out-of-beam decorrelation, and differential motion
decorrelation. All other simulation parameters were set according to the default values listed
in Table I. Although no real application will be absent noise and decorrelation, this scenario
highlights intrinsic limitations in the algorithms.

Figs. 4 and 5 illustrate estimator performance with either out-of-beam or differential motion
decorrelation. Row A of Fig. 4 illustrates bias and standard deviation when only out-of-
beam decorrelation is simulated (α = 0), whereas row B includes differential motion
decorrelation (α = 1). Underestimation of the true displacement is more pronounced in row
B, where multiple source signals are included in the signal model. Row A of Fig. 5
illustrates estimator performance when only differential motion decorrelation is simulated (ρ
= 1.0), whereas row B includes out-of-beam decorrelation (ρ = 0.98).

B. Effects of Displacement, SNR, Fractional Bandwidth, and Window Length on Motion
Estimation Performance

Simulations were performed with default parameters listed in Table I, including both out-of-
beam decorrelation (ρ = 0.98) and differential motion decorrelation (α = 1). Results are
displayed in Figs. 6-10 to illustrate estimator performance as a function of subsample shifts
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(Fig. 6), shifts between 1 and 3 samples (Fig. 7), SNR (Fig. 8), fractional bandwidth (Fig. 9),
and kernel window length (Fig. 10).

C. Motion Estimation Performance in Elastography Imaging
Displacement maps were rendered from each motion estimator using a 3-period kernel
window with 90% overlap. Example displacement maps of lesion type I are depicted in Fig.
11. Displacement corruption is noticeably worse with increased depth, where noise and
decorrelation was more prevalent because of attenuation of signal amplitude and greater out-
of-beam motion.

Displacement maps were computed in homogeneous regions of the 25.2 kPa background
and average displacement standard deviation was computed for two depths: 15 to 20 mm
and 35 to 40 mm. Average displacement standard deviation over nine trials for each region
and each motion estimator are listed in Table IV. Standard deviation was estimated for each
region as described in Section II-D. The lateral extent of each region was approximately
25.6 mm.

Images of strain, from approximately 0 to 1.5%, are illustrated in Fig. 12 for each motion
estimator (columns) and for lesion type I (row A), lesion type II (row B), and lesion type III
(row C). Elastograms were produced from the displacement data by applying a Gaussian
staggered strain linear filter with a 1.5 mm full-width at half-maximum. Performance of
each algorithm is quantified via CNR calculations using (9) when background ROIs were
centered at 20 mm [Fig. 13(a)] and 40 mm [Fig. 13(b)].

IV. Discussion
A. Computational Cost of PCDE

Computational time is an important feature of motion estimation algorithms as it is generally
desirable to apply them to real-time applications. The computational cost of PCDE is
dramatically lower than sTDE and is very competitive with the Loupas method, depending
on the length of the ensemble. Although eigenvalue decomposition is computationally
expensive, PCDE only requires calculating the first PC, which can potentially be reduced to
an O(N) computation [32]. As implemented in this paper, PCDE used the eigs function in
MATLAB to capture only the first PC from a symmetric autocorrelation matrix.

The time required for each algorithm to compute a displacement profile in MATLAB was
averaged over 1000 trials and is reported in Fig. 14. Results are shown as a function of
ensemble length. Two variations of PCDE are implemented. Although estimation
performance was equivalent, there was a dramatic difference in computation time when
eigenvalues were computed with the MATLAB eigs function versus the eig function. The
eigs function uses routines from Fortran libraries that are better suited for large sparse
matrices, whereas eig uses routines that are better suited for small, non-sparse matrices. Our
simulations show that at a 3-period kernel window length, the eig function is much more
efficient with small ensemble lengths, less than 75 A-lines; eigs becomes more efficient at
ensemble lengths greater than 75.

As anticipated, PCDE was more than an order of magnitude faster than sTDE but slightly
slower than the Loupas algorithm at ensemble lengths less than 4 A-lines using the eig
command. Conclusions from these results are limited because they were performed in
MATLAB, which is more highly optimized for certain operations. Although PCDE showed
computational times on the same order of magnitude or faster than Loupas in this setting, it
is anticipated that the computational complexity of PCDE can be reduced with further
optimization of the algorithm.

Mauldin et al. Page 7

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2011 January 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. PCDE in Simulation
Fig. 3 shows bias and standard deviation for motion estimates performed on simulated
echoes under ideal conditions, which did not include electronic noise or decorrelation. The
periodic trends in the bias of sTDE and NC CF, and the constant growth in bias from Loupas
agree well with past studies [11]-[13].

Simulation results from Figs. 4 and 5 illustrate that PCDE is more robust to decorrelation
than other commonly used estimators. Whether out-of-beam or differential motion
decorrelation were simulated alone [Figs. 4(a) and 5(a)] or together [Figs. 4(b) and 5(b)],
PCDE exhibited lower bias and standard deviation across a wide range of decorrelation
levels. PCDE performance was most superior at higher levels of decorrelation (lower out-of
beam correlation or higher weighting coefficient, α). In agreement with past literature [14],
[25], a negative bias with respect to the true displacement is most prevalent in cases where
differential motion decorrelation exists. Differential motion decorrelation was absent in
Figs. 3 and 4(a).

Results from Figs. 6-10 illustrate that PCDE exhibits lower bias and standard deviation than
NC CF and the Loupas method over a wide range of simulation parameters. PCDE
superiority over Loupas is especially apparent at larger displacements such as in Fig. 7. This
is likely because of the susceptibility of Loupas to aliasing, which occurs when displacement
between consecutive A-lines is greater than half the wavelength. Although PCDE also
breaks down at large displacements because of aliasing, our simulation results show that
PCDE is more robust than Loupas, with performance similar to sTDE in terms of bias and
better than sTDE in terms of standard deviation. Additional simulation results show that
PCDE is robust to several error sources and limitations including random noise (Fig. 8), low
fractional bandwidth (Fig. 9), and short kernel window lengths (Fig. 10). The only condition
under which Loupas exhibited slightly better performance was at 0 dB SNR. Although
PCDE bias was lower than Loupas, the standard deviation of PCDE was slightly higher.
Because PCDE relies on the signal of interest exhibiting the greatest energy, it is likely that
noise was introduced into the first PC at 0 dB and some of the desired signal was pushed
into the second PC, thus resulting in poorer performance.

C. Elasticity Imaging With PCDE
PCDE was applied to experimental multi-compression elastography data to illustrate its
performance when decorrelation and other noise sources limit performance. Displacement
data shown in Fig. 11 illustrates a dramatic reduction in decorrelation artifacts with PCDE
when the type I elastography lesion was imaged. Decorrelation artifacts are particularly
apparent at larger depths. At more shallow depths where displacement is smaller and SNR
and correlation are expected to be high, performance of the techniques was more similar, in
agreement with simulation results.

The standard deviation of displacement estimates at regions between 15 to 20 mm and 35 to
40 mm are reported in Table IV. PCDE, sTDE, and Loupas exhibited similar performance at
the 15 to 20 mm depth, as anticipated. However, at 35 to 40 mm, where noise and
decorrelation were more prevalent, PCDE vastly outperformed rival techniques with a
reduction in standard deviation of at least 67%.

Similar trends are visualized in the elastograms of Fig. 12, where decorrelation artifacts are
reduced in the PCDE image. In general, PCDE exhibited the fewest artifacts, followed by
sTDE, Loupas, and NC CF. Typically, cross-correlation techniques, such as NC CF, have
been used as one-dimensional displacement estimators in elastography [5], [6]. As is
apparent in Fig. 12, at kernel lengths around 3 periods, performance of NC CF is poor and
larger kernel lengths are necessary. Larger kernel lengths, however, degrade resolution and
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increase computational time. Thus, the results from Figs. 12-14 indicate that PCDE achieves
better imaging performance, in terms of SNR and CNR, with better resolution and lower
computational cost than alternative motion estimators examined in this paper.

Image quality is quantified in Fig. 13 and confirms the general trends of the elastography
images of Fig. 12. When the background region was centered at 20 mm (b1 in Fig. 2), CNR
was similar among the displacement estimators. When the background region was placed at
40 mm (b2 in Fig. 2), CNR calculations showed superior performance for PCDE as
compared with sTDE, Loupas, or NC CF. Fig. 13(b) illustrates average CNR improvements
from PCDE that were at least 2.9 dB and as much as 6.9 dB over other estimators.

D. The Significance of Complex Principal Components
The use of complex echo data are critical because it allows the motion of the signal
component of interest to be captured in a single principal component. This capability can
only be achieved using complex echo data because motion is revealed through phase
changes, which appear as complex weightings of the same principal component.

PCDE uses complex echo data with principal component analysis to differentiate desirable
from undesirable signal sources. This separation technique works under the assumption that
the signal component with the most energy is also the most desirable. As illustrated in Fig.
8, this assumption holds until 0 dB SNR, which is below the SNR levels seen in medical
ultrasound applications, with the possible exception of blood flow estimation. Moreover, in
blood flow estimation there is often a spatial overlap of signal from the vessel wall, called
clutter, which dominates the desired blood flow signal. Without a separate clutter filtering
step, our assumption in this environment would be invalid because the signal of interest,
blood flow, would have a lower energy than the clutter signal.

E. The Relationship to Phase-Based Estimators
The Kasai and Loupas phase domain-based motion estimators have been widely used in
blood flow and other applications [9], [10], [12]. These techniques compute an estimate of
the lag-1 autocorrelation from an ensemble of echo data. In contrast to Kasai, the Loupas
algorithm computes a lag-1 autocorrelation estimate in both dimensions, so that the local
center frequency is estimated. The velocity estimate determined by both techniques is
derived from the phase of the autocorrelation estimate. In a related manner, PCDE computes
a matrix of autocorrelation estimates. The main diagonal is the lag-0 estimate, the first off-
diagonal entries represent estimates of lag-1 autocorrelation, the second off-diagonal entries
represent lag-2 estimates, and so on. Thus, rather than computing an average lag-1
autocorrelation estimate, PCDE incorporates all possible lag-N autocorrelation estimates
from the ensemble of echo data and then identifies the eigenvectors of the symmetric
autocorrelation matrix.

V. Conclusions
We have presented a novel motion estimator termed the principal component displacement
estimator (PCDE). Across a broad range of simulations incorporating decorrelation and
noise, PCDE exhibited more accurate and precise displacement estimates than the Loupas
algorithm and normalized cross-correlation with cosine fitting. Under most conditions,
PCDE outperformed spline-based time delay estimation while showing significant
reductions in computation time in MATLAB. Elastography images were formed using
PCDE-derived displacements and compared against other techniques. PCDE reduced
decorrelation artifacts and improved image quality in terms of displacement standard
deviation and image CNR. These data illustrate that PCDE is accurate and robust with
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modest computational cost, making it a superior approach for many real-time imaging
applications.
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Fig. 1.
Three source signals with variable delay characteristics (panel A) and weightings (panel B)
are summed to form a simulated ensemble of echo data, X, (panel C) which models
decorrelation arising from differential motion across the point spread function (psf).
Resulting echo data, X, is windowed, kw◇ X as denoted by the rectangle. PCDE operates on
this subset of echo data to compute principal components (PCs), which correspond to
different source signals. In panel D, the PCDE estimated displacements of the sources
signals, Δτ̂, are illustrated. In this paper, we are only concerned with the most energetic
source signal and so only the first PC was computed.
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Fig. 2.
Regions of interest used to compute contrast to noise ratio (CNR) from elastograms. The
target region, t was used along with a background region that was centered at either 20 mm
in depth, b1, or centered at 40 mm in depth, b2. Regions of interest were approximately 5
mm in diameter.
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Fig. 3.
Average bias (left) and standard deviation (right) for each estimator over 1000 trials when
subsample shifts are varied and the signal model does not include electronic noise or
decorrelation.
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Fig. 4.
Row (a) illustrates average estimated displacement (left) and standard deviation (right) for
each estimator over 1000 trials when only out-of-beam decorrelation is simulated and
differential motion is not present (α = 0). Resulting echo correlation was varied between 0.8
and 1.0. In row (b), average estimated displacement (left) and standard deviation (right) are
illustrated when both out-of-beam decorrelation and differential motion decorrelation are
simulated. Differential motion weighting was set according to default parameters in Table I
(α = 1). The dashed line is defined as the ‘true’ displacement, which corresponds to the peak
displacement in the beam. For illustrative purposes, the x-axis is not a linear scale.
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Fig. 5.
Row (a) illustrates average estimated displacement (left) and standard deviation (right) for
each estimator over 1000 trials when only differential motion decorrelation is simulated with
no out-of-beam decorrelation (ρ = 1.0). In row (b), average estimated displacement (left) and
standard deviation (right) for each estimator over 1000 trials are illustrated when both out-
of-beam decorrelation and differential motion decorrelation are simulated. The dashed line
is defined as the ‘true’ displacement, which corresponds to the peak displacement in the
beam. Echo correlation resulting from out-of-beam decorrelation was set according to
default parameters in Table I (ρ = 0.98). In all cases, the differential motion weighting
coefficient was varied between 0 and .
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Fig. 6.
Average estimated displacement (left) and standard deviation (right) for each estimator over
1000 trials when subsample shift is varied between 0 and 1 sample. The dashed line is
defined as the ‘true’ displacement, which corresponds to the peak displacement in the beam.
The default simulation conditions of Table I were used such that both out-of-beam
decorrelation and differential motion decorrelation were simulated.
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Fig. 7.
Average estimated displacement (left) and standard deviation (right) for each estimator over
1000 trials when simulated echo shifts are varied between 1 and 3 samples. The dashed line
is defined as the ‘true’ displacement, which corresponds to the peak displacement in the
beam. The default simulation conditions of Table I were used such that both out-of-beam
decorrelation and differential motion decorrelation were simulated.

Mauldin et al. Page 19

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2011 January 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Average estimated displacement (left) and standard deviation (right) for each estimator over
1000 trials when simulated SNR is varied between 0 and 45 dB. The dashed line is defined
as the ‘true’ displacement, which corresponds to the peak displacement in the beam. The
default simulation conditions of Table I were used such that both out-of-beam decorrelation
and differential motion decorrelation were simulated.
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Fig. 9.
Average estimated displacement (left) and standard deviation (right) for each estimator over
1000 trials when fractional bandwidth is varied between 5% and 100%. The dashed line is
defined as the ‘true’ displacement, which corresponds to the peak displacement in the beam.
The default simulation conditions of Table I were used such that both out-of-beam
decorrelation and differential motion decorrelation were simulated.
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Fig. 10.
Average estimated displacement (left) and standard deviation (right) for each estimator over
1000 trials when kernel length is varied between 0.5 and 10 periods. The dashed line is
defined as the ‘true’ displacement, which corresponds to the peak displacement in the beam.
The default simulation conditions of Table I were used such that both out-of-beam
decorrelation and differential motion decorrelation were simulated.
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Fig. 11.
Experimental elastography displacement maps formed using a) principal component
displacement estimation, b) spline time delay estimation (sTDE), c) the Loupas algorithm,
and d) normalized cross-correlation with cosine fitting (NC CF). Experiments used a CIRS
Model 049A phantom with type I lesion of approximately 8.7 kPa and background stiffness
of approximately 25.2 kPa.
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Fig. 12.
Elastograms formed using principal component displacement estimation (column I), spline
time delay estimation (column II), the Loupas algorithm (column III), and normalized cross-
correlation with cosine fitting (column IV). Rows are elastograms of lesion type I (row aA),
lesion type II (row b), and lesion type III (row c). In all instances, kernel length was 3
periods with 90% overlap.
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Fig. 13.
Average contrast to noise ratio (CNR) values when the background region is centered at a)
20 mm and b) 40 mm. Error bars illustrate the mean CNR plus or minus one standard
deviation over 3 trials.
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Fig. 14.
Time to compute one displacement profile averaged over 1000 trials. Ensemble lengths are
varied between 2 and 300 A-lines. ‘PCDE – Eig’ denotes PCDE estimates when MATLAB
function ‘eig’ is used to compute eigenvectors. Similarly, ‘PCDE – Eigs’ denotes PCDE
estimates when MATLAB function ‘eigs’ is used to compute eigenvectors.
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TABLE I

Default Simulation Parameters.

Parameter Value

Center frequency (f0) 8 MHz

Sampling frequency (fs) 40 Mhz

Signal to noise ratio (SNR) 25 dB

Fractional bandwidth (BW) 50%

Kernel length 3 periods

Out-of-beam correlation (ρ) 0.98

Differential motion weighting (α) 1

Differential motion parameters Value

Δτ1 : Δτ2 : Δτ3 1: 1/2 : 1/4 samples

w1 : w2 : w3
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TABLE II

Elastography Phantom Stiffness.

Lesion type Elasticity (kPa)

Type I 8.7 ± 3

Type II 12.8 ± 4

Type III 100 ± 10

Background 25.2 ± 4
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TABLE III

Elastography Parameters.

Parameter Value

Center frequency (f0) 5.5 MHz

Sampling frequency (fs) 40 MHz

Fractional bandwidth (BW) 50%

Kernel window length 3 periods or 432 μm

Search window length 5 periods or 674 μm

Kernel window overlap 90%

Median filtering None

Staggered strain filter width 1.5 mm
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TABLE IV

Elastography Displacement Standard Deviation.

Algorithm 15 to 20 mm STD (μm) 35 to 40 mm STD (μm)

PCDE 4.21 13.1

Spline TDE 4.47 39.8

Loupas 4.20 84.5

NC CF 89.1 152
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