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Abstract
Two homologous 29 amino acid-long highly hydrophobic membrane mini-proteins were identified
in the Bligh-Dyer lipid extracts of Escherichia coli and Salmonella typhimurium using liquid
chromatography/tandem mass spectrometry (LC/MS/MS). The amino acid sequences of the
proteins were determined by collision-induced dissociation tandem mass spectrometry, in
conjunction with a translating BLAST (tBLASTn) search, i.e. comparing the MS/MS-determined
protein query sequence against the six-frame translations of the nucleotide sequences of the E. coli
and S. typhimurium genomes. Further MS characterization revealed that both proteins retain the N-
terminal initiating formyl-methionines. The methodologies described here may be amendable for
detecting and characterizing small hydrophobic proteins in other organisms that are difficult to
annotate or analyze by conventional methods.

INTRODUCTION
Only a handful of proteins and peptides that have been reported to be soluble in chloroform,
including subunit c of the F1F0 ATP synthase [1], Escherichia coli multidrug resistance
protein E (EmrE) [2], myelin proteolipid protein (PLP) [3], lung surfactants [4], and several
small peptides [5]. These unusually hydrophobic proteins and peptides play diverse and
critical cellular functions. Here, we report the unexpected identification of two small
chloroform–soluble proteins (3 kDa) in the Bligh-Dyer lipid extracts [6] of the Gram-
negative bacteria E. coli and Salmonella typhimurium. The full sequences of these
homologous proteins were determined by using the partial amino acid sequences determined
by collision-induced dissociation tandem mass spectrometry in database searches. Further
characterization by accurate mass measurement and MS/MS revealed that both proteins
retain their N-terminal initiating formyl-methionines.

EXPRIMENTAL PROCEDURES
Materials

All solvents were of HPLC grade and were obtained from VWR (West Chester, PA).
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Bacterial Growth Conditions
Wild type strains E. coli W3110 and S. typhimurium χ3761 were grown in Luria-Bertani
(LB) broth (1% tryptone, 0.5% yeast extract and 1% NaCl). Typically, a 100 ml cell culture,
inoculated from an overnight culture grown to A600 = 0.02, was grown to A600 = 2. The
cells were collected by centrifugation and washed with phosphate-buffered saline (PBS, pH
7.4). The cell pellets were resuspended in 152 ml of a single-phase Bligh-Dyer mixture
consisting of chloroform/methanol/water (1:2:0.8, v/v/v), incubated at room temperature for
60 min, and centrifuged at 3000 × g to remove insoluble debris. The supernatant was
transferred to a new glass tube and converted to a two-phase Bligh-Dyer system by adding
chloroform and water to generate a mixture consisting of chloroform/methanol/water
(2:2:1.8, v/v/v). The lower phase was dried under a stream of nitrogen and stored at −20 °C
until analysis.

Electrospray Ionization/Mass Spectrometry
For negative ion ESI/MS analysis [7], each of the dried Bligh-Dyer lipid extracts of E. coli
and S. typhimurium cells was first re-dissolved in 200 μl of chloroform. Typically, 5 μl of
the solution was diluted into 200 μl of chloroform/methanol (2:1, v/v), followed by the
addition of 1 μl of piperidine (Sigma-Aldrich). The solutions were infused at flow rates of
5–10 μl/min into the ESI source of the high-resolution QSTAR XL quadrupole time-of-
flight tandem mass spectrometer (Applied Biosystems/MDS Sciex, Foster City, CA). The
negative electrospray voltage was −4200 V. Other MS settings were as follows: Curtain Gas
= 20 psi (pressure), Ion Gas Source = 20 psi, Declustering Potential = −55 V, and Focusing
Potential = −265 V. Data acquisition and analyses were performed using Analyst QS
software (Applied Biosystems/MDS Sciex).

Liquid Chromatography/Tandem Mass Spectrometry
LC/MS/MS analysis was performed in the positive ion mode using a Shimadzu LC system
(comprising a solvent degasser, two LC-10A pumps and a SCL-10A system controller)
coupled to a QSTAR XL quadrupole time-of-flight tandem mass spectrometer (as above).
LC was operated at a flow rate of 200 μL/min with a linear gradient as follows: 100% A was
held isocratically for 2 min and then linearly increased to 100% B over 14 min and held at
100% B for 4 min. Mobile phase A consisted of methanol/acetonitrile/aqueous 1 mM
ammonium acetate (60/20/20, v/v/v). Mobile phase B consisted of 100% ethanol containing
1 mM ammonium acetate. A Zorbax SB-C8 reversed-phase column (5 μm, 2.1 × 50 mm)
was purchased from Agilent (Palo Alto, CA). The post-column split diverted ~10% of the
LC flow to the ESI source. Positive ion mass spectra were acquired with an electrospray
voltage of +5500 V. The collision-induced dissociation tandem mass spectra were obtained
with collision energy of +50 V (laboratory frame of reference) and with nitrogen as the
collision gas.

RESULTS
Two unknown species, each with a molecular weight of 3 kDa, were observed upon ESI/MS
analysis of the total lipid extracts of E. coli and S. typhimurium cells. Figures 1A and 1B
show the negative ion ESI mass spectra of the species present in the Bligh-Dyer extracts of
the E. coli and S. typhimurium cells, respectively. The major ion species, with mass-to-
charge (m/z) ratios ranging from 600 to 800, were identified by MS/MS to be the [M-H]−
ions of the major bacterial phospholipids, including phosphatidylethanolamine (PE) and
phosphatidylglycerol (PG) [8]. In both spectra, there exist unknown 3 kDa species, whose
triply charged ions appeared near m/z 1000. As shown in the magnified ion peaks in the
insets, the charge state (3-) was determined as the reciprocal of the spacing between two
adjacent isotopic peaks (differing by 1 atomic mass unit) [9]. The monoisotopic masses of
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these species, determined by accurate mass measurements of the [M-3H]3− ions, were
3023.740 Da and 2981.686 Da for the E. coli and S. typhimurium proteins, respectively.
These unknown species were also detected by LC/MS operated in the positive ion mode.
Figure 2 shows the zoomed-in spectra of the triply charged (protonated) [M+3H]3+ ions at
m/z 1008.9 and m/z 994.9 for the unknown protein species from E. coli and S. typhimurium,
respectively.

To identify these unknown 3 kDa species, collision-induced dissociation MS/MS was
performed on the triply charged ions (in both positive and negative ion modes). While the
negative ion MS/MS spectra of the [M-3H]3− ions were not structurally informative (data
not shown), the positive ion MS/MS spectra of the [M+3H]3+ ions (acquired through
targeted LC/MS/MS) showed fragmentation patterns characteristic of a peptide. As
illustrated in Figure 3, the partial amino acid sequences deduced from the product ion
spectra of [M+3H]3+ ions at m/z 1008.9 (E. coli) and m/z 994.9 (S. typhimurium) are:
GL(I)L(I)VAVGLTAALH (E. coli) and GVL(I)VAGGL(I)TAALH (S. typhimurium). The
isobaric I and L residues could not be discerned by the low-energy CID MS/MS used in this
study. Our initial attempt at searching these partial sequences against the protein sequence
database (prior to annotation) yielded no matches. We then performed a translating BLAST
(tBLASTn) search, i.e. comparing the partial amino acid sequences against the six-frame
translations of the nucleotide sequences of the bacterial genomes. This yielded matches for
both proteins. The full sequences of the two proteins were identified as:
MSTDLKFSLVTTIIVLGLIVAVGLTAALH (E. coli) and
MSTDLKFSLITTLIVLGVIVAGGLTAALH (S. typhimurium). Differing by only three
amino acid residues, these proteins are apparently derived from orthologous genes. The E.
coli protein was later annotated as YnhF in the EcoGene database (http://www.ecogene.org),
containing updated information on the E. coli K-12 genome and proteome sequences.

It was noted, for both the E. coli and S. typhimurium proteins, that there is a 28 Da
difference between the sequence-predicated monoisotopic masses and those determined by
MS. The sequence-predicated monoisotopic masses are 2995.740 Da (E. coli) and 2953.693
Da (S. typhimurium), while the MS-determined monoisotopic masses were 3023.740 Da (E.
coli) and 2981.686 (S. typhimurium). This 28 Da difference implies that both proteins might
be modified by a formyl (CO) group. Indeed, this possibility was confirmed by accurate
mass measurements and MS/MS. The MS-determined monoisotopic masses (above) are in
agreement with the predicated monoisotopic masses of 3023.735 Da (E. coli) and 2981.688
Da (S. typhimurium) for the formylated forms of both proteins. Furthermore, MS/MS
showed that the formyl group is attached to the N-terminal methionine, as evidenced by the
presence in the MS/MS spectra of the b2 product ions at m/z 247.1 (the predicated b2 ion
mass for each of the N-formylated peptides is 247.1). Figure 4 depicts all inter-residual
cleavage sites observed in the positive ion MS/MS spectra (Figure 3) of the [M+3H]3+ ions.
All sequence fragment ions (b and y) and their masses are listed in Table 1. The
nomenclature used for naming the fragment ions is according to Roepstorff and Fohlman
[10].

Although formyl-methione initiates all protein synthesis in Bacteria [11–13], in most cases
the formyl group is subsequently removed by deformylase [14;15]. This is often followed by
removal of the N-terminal methionine by methionine aminopeptidase [16]. Nonetheless, the
retention of N-terminal formyl-methiones has been reported for several proteins and
peptides, such as the aspartate chemoreceptor [17], the membrane-bound F0 subunit c of
ATP synthetase [18], and the chemotactic peptide, formyl-methinyl-leucyl-phenyanaline (f-
MLF) [19].
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DISCUSSION
Identification and structural characterization of hydrophobic proteins and peptides are
challenging, as they are typically membrane-associated, and are difficult to extract or purify.
The predominant MS-based proteomic techniques have, in fact, been developed for
analyzing soluble proteins and peptides. As a result, hydrophobic proteins and peptides are
under-represented in global proteomic analyses. However, encouraging technical advances
have been made in recent years in the MS analysis of membrane-associated proteins [20–
24]. In particular, the feasibility of high-resolution top-down MS/MS for determining post-
translational modifications (PTM) of integral membrane proteins has been demonstrated
[24].

The identification here of small membrane proteins from E. coli and S. typhimurium
benefited unexpectedly from methods that were developed for lipid analysis. We envision
that the methodologies described here could be equally amendable for the identification of
unusually hydrophobic proteins in other organisms or cells. It is possible that by subjecting
total Bligh-Dyer extracts (or other organic solvent extracts) to additional steps of
fractionation, more hydrophobic proteins, especially those of very low abundance, could be
uncovered.

A second distinctive feature of these small proteins is that they are encoded by genes defined
by very small open reading frames. Small proteins and peptides play key roles in cellular
processes including transport, intermediary metabolism, translation regulation, chromosome
segregation, genome stability, and other biological and physiological functions [25].
However, correct annotation of genes encoded by small open reading frames (smORFs) is
difficult. First, computational methods do not reliably predict small genes, as there are an
enormous number of meaningless short ORFs. Second, their small size makes smORFs
elusive targets for mutagenic screens [25;26]. As a result, knowledge of smORF function is
rather limited, as compared to their longer counterparts. Detection by MS at the protein or
peptide level, as demonstrated in this study, provides the most direct and convincing
evidence for identifying the products of genes defined by small open reading frames. This is
yet another example illustrating the important roles of proteogenomics, which typically
utilizes MS-determined protein/peptide sequences to define novel open reading frames [27–
29]. Currently, there are less than 60 proteins comprising fewer than 50 amino acids
identified or predicted in the E. coli K-12 genome [30].

The fact that these membrane mini-proteins could be detected by direct infusion ESI/MS in
the total lipid extracts of E. coli and S. typhimurium without any pre-fractionation is quite
remarkable, implying that they may exist in significant quantities, playing crucial roles in
these bacteria. The E. coli protein was annotated as YnhF. In the E. coli genome, ynhF is
located upstream to ydhP, encoding a 389 amino acid-long protein predicted to be a
transporter, containing 12 trans-membrane helices (Figure 5). It is possible that ynhF,
predicted to have one trans-membrane segment, may function as a subunit of this transporter
complex, similar to the role played by the membrane-bound subunit c (8 kDa) of the F1F0
ATP synthase complex, or the role of the KdpF subunit (3 kDa) in the K(+) translocating
Kdp complex [31].

A recent study by Storz and co-workers [32] showed that YnhF is one of the small stress
response proteins in E. coli. The expression level of ynhF, measured using a sequential
peptide affinity (SPA) tag [30], is over 4-fold higher when cells were grown under aerobic
versus low oxygen conditions, and is lower in minimal glycerol-grown cells, as compared to
what is seen in minimal glucose-grown cells. These observations call for study on the
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functions of these membrane mini-proteins, possibly to be approached initially through gene
deletion.
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ABBREVIATIONS

ESI/MS electrospray ionization/mass spectrometry

LC/MS liquid chromatography/mass spectrometry

MS/MS tandem mass spectrometry

ORF open reading frame

PE phosphatidylethanolamine

PG phosphatidylglycerol
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Figure 1.
Negative ion ESI mass spectra of the Bligh-Dyer extracts of E. coli (A) and S. typhimurium
(B). The insets show the magnified ion peaks for the [M-3H]3− ions of the small 3 kDa
proteins.

Guan et al. Page 7

Anal Biochem. Author manuscript; available in PMC 2012 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Positive ion ESI mass spectra showing the [M+3H]3+ ions of the small proteins in the Bligh-
Dyer extracts of E. coli (A) and S. typhimurium (B). These positive ion mass spectra are
averaged from the spectra acquired by LC/MS (during the LC elution times indicated in the
figures).
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Figure 3.
Assignment of partial amino acid sequences based on the collision-induced dissociation MS/
MS spectra of the small 3 kDa proteins from E. coli and S. typhimurium. LC/MS/MS spectra
of [M+3H]3+ ions at m/z 1008.9 (A and C) for E. coli, and m/z 994.9 (B and D) for S.
typhimurium. Peaks labeled with iv, iL/I and iH correspond to the immonium ions of valine,
leucine/isoleucine and histidine.
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Figure 4.
Inter-residual cleavage sites observed in the MS/MS spectra of the [M+3H]3+ ions at m/z
1008.9 and m/z 994.9 for the small proteins from E. coli and S. typhimurium, respectively.

Guan et al. Page 10

Anal Biochem. Author manuscript; available in PMC 2012 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Prediction of trans-membrane regions in YnhF and YdhP, encoded by adjacent genes. It is
possible, given their genomic and membrane locations, that YnhF forms a complex with
YdhP, a putative transporter.
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