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ABSTRACT

Methodology for mapping quantitative trait loci (QTL) has focused primarily on treating the QTL as a
fixed effect. These methods differ from the usual models of genetic variation that treat genetic effects as
random. Computationally expensive methods that allow QTL to be treated as random have been explicitly
developed for additive genetic and dominance effects. By extending these methods with a variance
component method (VCM), multiple QTL can be mapped. We focused on an F2 crossbred population
derived from inbred lines and estimated effects for each individual and their corresponding marker-
derived genetic covariances. We present extensions to pairwise epistatic effects, which are computationally
intensive because a great many individual effects must be estimated. But by replacing individual genetic
effects with average genetic effects for each marker class, genetic covariances are approximated. This
substantially reduces the computational burden by reducing the dimensions of covariance matrices of
genetic effects, resulting in a remarkable gain in the speed of estimating the variance components and
evaluating the residual log-likelihood. Preliminary results from simulations indicate competitiveness of
the reduced model with multiple-interval mapping, regression interval mapping, and VCM with individual
genetic effects in its estimated QTL positions and experimental power.

MAPPING procedures often treat the effects of
quantitative trait loci (QTL) as fixed, in particular

the maximum likelihood-based method of interval map-
ping (IM) of Lander and Botstein (1989) and the least-
squares regression interval mapping (RIM) of Haley and
Knott (1992) and Martı́nez and Curnow (1992).

Single-QTL approaches with fixed effects were later
extended to multiple QTL to avoid the so-called ‘‘ghost-
QTL’’ phenomenon (e.g., Haley and Knott 1992) and
to improve the power to detect linked QTL in repulsion
(e.g., Kao 2000) as well as epistatic QTL (e.g., Jannink

and Jansen 2001; Carlborg and Haley 2004). The
multiple-interval mapping (MIM) approach of Kao and
Zeng (1997) and Kao et al. (1999) as an extension of IM
considers fixed additive genetic, dominance, and epi-
static QTL effects as parts of the likelihood function for a
mixture model in experimental populations. Both MIM
and RIM are known to be powerful and well suited to
identifying multiple, possibly interacting QTL in map-
ping experiments. However, the accuracy of the estimates
of the positions and effects of the QTL from RIM is less
compared with MIM in some situations [e.g., QTL in
repulsion (Kao 2000; Mayer et al. 2004; Mayer 2005)].

Considering QTL effects as random in a linear mixed
model (LMM) leads to the variance component method
(VCM) for QTL mapping. This is often applied in
scenarios with a large number of small families as is fre-
quently found in humans (e.g., Haseman and Elston

1972; Xu and Atchley 1995) or in livestock (e.g.,
Grignola et al. 1996), where a mixture of families with
parents of different QTL genotypes is expected to occur.
Experiments with multiple line crosses, e.g., F2, are often
advocated because of their potential to avoid non-
detection of QTL by representing genetic variability of
a population by only a few lines—the so-called ‘‘genetic
drift error’’ (Xu 1996). Although fixed effect appro-
aches are equivalent in power, at least in situations with
a single QTL, VCM are easier to implement and have
computational advantages in this context (Xu 1998).
Rules for setting up the required QTL allelic relation-
ship matrices from marker data were given by Wang

et al. (1995) and Abdel-Azim and Freeman (2001).
Marker-based relationship matrices for QTL with addi-
tive genetic and nonadditive genetic (dominance, epi-
stasis) gene action in noninbred populations were
applied by Liu et al. (2002).

The focus of Xie et al. (1998) was on backcross (BC)
and F2 designs descending from inbred lines. For these
types of experiments additive genetic and dominance
relationship matrices can be calculated from condi-
tional QTL genotype probabilities (given the flanking
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marker genotypes) for all individuals of the mapping
population (as used as regressor variables in RIM).
Crepieux et al. (2004) provided a general extension to
any type of multicross designs from inbred parents.
Furthermore, Li and Cui (2009) demonstrated how
VCM can be employed for mapping imprinted QTL in
a combination of different BC populations derived
from inbred lines.

In this article we first propose extensions of the
variance component approach of Xie et al. (1998) to
multiple interacting QTL with pairwise epistatic effects.
Then, maintaining the focus on inbred line-derived F2

populations, a reduced model is suggested, in which
individual genetic effects are replaced by average genetic
effects for different marker classes. The covariance matrix
of the phenotypes is approximated in different ways,
leading to less computational effort.

THEORY

Linear mixed model: From an F2 generation derived
from a cross between inbred lines, one observation per
individual is considered. The vector of phenotypes Y
(length n) is modeled with respect to additive genetic,
dominance, and pairwise epistatic effects of the QTL,
whose total number is n. A pair of QTL is indexed by l
and k. The LMM in matrix notation is given as

Y ¼ Xb 1
Xn

l¼1

Zlðual
1 udl

Þ

1
Xn�1

l¼1

Xn

k¼l11

Zlkðuaalk
1 uadlk

1 udalk
1 uddlk

Þ1 e: ð1Þ

The vector of fixed effects b has the related design
matrix X. The random vectors ut with t 2 {al, dl, aalk, adlk,
dalk, dalk} denote the additive genetic, the dominance, and
the four pairwise epistatic effects (first-order interactions)
at QTL l and k. For each t the length of ut equals the
number of F2 individuals n; i.e., all QTL effects differ
between individuals. The incidence matrices Zl and Zlk

with dim(Zl) ¼ dim(Zlk) ¼ n 3 n relate the observations
to genetic effects. The residuals are assumed to be
independently and identically normally distributed with
e � N ð0; Is2

e Þ, where I is the identity matrix of order
n and s2

e is the residual variance. The covariances between
normally distributed random genetic effects ut and the
residuals e are assumed zero as well as the covariances
between different types of genetic effects ut. The expect-
ations of the QTL effects are E(ut) ¼ 0 and the variances
are VarðutÞ ¼ Vts2

t , where s2
t is the related QTL variance

and Vt is the corresponding expected QTL relationship
matrix conditional on the marker genotypes. The phe-
notypic vector therefore follows a multivariate normal
distribution with Y�N (Xb, V ). The covariance matrix V

is derived conditional on the observed marker genotypes
and can be written as

V ¼
Xn

l¼1

ZlðVal
s2

al
1 Vdl

s2
dl
ÞZ9l 1

Xn�1

l¼1

Xn

k¼l11

Z lkðVaalk
s2

aalk

1 Vadlk
s2

adlk
1 Vdalk

s2
dalk

1 Vddlk
s2

ddlk
ÞZ9lk 1 Is2

e :

ð2Þ

Calculation of covariance matrices: We follow the
approach of Xie et al. (1998) and derive the required
genetic covariance matrices of (2) from conditional
QTL genotype probabilities and elementary covariance
matrices.

Conditional QTL genotype probabilities: For a particular
QTL the F2 generation can be partitioned into nine
different marker classes (see Table 2 column headings)
conditional on the observed genotype of the flanking
markers. QTL alleles originating from the first line are
denoted by uppercase letter indexes (Q, H) and those
from the second line by lowercase indexes (q, h), and for
marker alleles the respective line origins are indicated
by numbers (1 and 2). Conditional QTL genotype
probabilities depend on flanking marker genotypes
and the recombination rates between the markers and
QTL and can be derived as described by, e.g., Carbonell

et al. (1992, Table 1). We allow for double recombinations
and assume Haldane’s mapping function (Haldane

1919).
Probabilities for the genotypes GQQ, GQq, and Gqq of an

individual at the lth QTL conditional on flanking marker
information Mi can be collected in a row vector lli with

lli ¼
�

PrðGQQ jM iÞPrðGQq jM iÞPrðGqq jM iÞ
�

¼ ðpQQ
i p

Qq
i p

qq
i Þ;

where Mi denotes the observed flanking marker geno-
type i 2 {1, . . . , 9} of an individual. We assume that in
each marker interval either no or only a single QTL
exists. The joint conditional probability for two linked
QTL is just the product of both single probabilities if at
least one completely informative marker is in between
(Rönnegård et al. 2008). Thus, the probability of a two-
locus QTL genotype, e.g. GQQHh, given the particular
marker genotypes Mi and Nj (i, j 2 {1, . . . , 9}) at QTL l
and k, respectively, is defined as Pr(GQQHhjMi,Nj) ¼
Pr(GQQjMi)Pr(GHhjNj). We define llkij as the row vector
with all joint conditional QTL genotype probabilities
for a pairwise epistatic effect at QTL l and k.

Elementary covariance matrices: As a second ingredient
we need elementary covariance matrices between all
possible QTL genotypes GQQ, GQq, and Gqq in the F2

populations. The elementary matrices for additive
genetic QTL effects A (Xie et al. 1998) and dominance
QTL effects D (Smith 1984; Xie et al. 1998) are
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GQQ GQq Gqq GQQ GQq Gqq

A ¼
GQQ

GQq

Gqq

2 1 0
1 1 1
0 1 2

0
@

1
A and D ¼

GQQ

GQq

Gqq

1 0 0
0 1 0
0 0 1

0
@

1
A:

We use the Kronecker product (symbol 5) of A and
D to compute the four different 9 3 9 elementary
matrices, A 5 A, A 5 D, D 5 A, and D 5 D, which
include covariances between pairwise epistatic effects
and correspond to nine genotypes (GQQHH, GQQHh,
GQQhh, GQqHH, GQqHh, GQqhh, GqqHH, GqqHh, and Gqqhh) for
pairwise QTL combinations.

QTL relationship matrices: The n 3 n additive genetic,
dominance, and pairwise epistatic relationship matrices
for all F2 individuals can be set up for a putative QTL
position or combinations thereof with conditional QTL
genotype probabilities (lli and llkij vectors) and elemen-
tary matrices (Xie et al. 1998). Relationship coefficients
are averages of possible QTL genotype combinations.
For the additive genetic relationship matrix Val

¼
al

st

� �
n
s;t¼1 we get diagonal elements

al
ss ¼ lli diagðAÞ ¼ 2p

QQ
i 1 p

Qq
i 1 p

qq
i ð3Þ

and off-diagonals

al
st ¼ lli Aðllj Þ9
¼ 2p

QQ
i p

QQ
j 1 p

Qq
i p

QQ
j 1 p

QQ
i p

Qq
j 1 p

Qq
i p

Qq
j 1 p

qq
i p

Qq
j 1 p

Qq
i p

qq
j 1 2p

qq
i p

qq
j

ð4Þ
at the lth QTL. If both individuals s and t belong to the
same marker class i, then al

st can be simplified to

al
st ¼ 2ðpQQ

i Þ2 1 2p
QQ
i p

Qq
i 1 ðpQq

i Þ2 1 2p
Qq
i p

qq
i 1 2ðpqq

i Þ2;
ð5Þ

because the conditional probabilities are equal. The
dominance relationship matrix Vd‘ ¼ dl

st

� �
n
s;t¼1 is set up

equivalently, but instead of A the elementary matrix D is
used, i.e., dl

ss ¼ llidiagðDÞ and dl
st ¼ lliDðlljÞ9.

We suggest that the pairwise epistatic relationship
matrices Vaalk

; Vadlk
; Vdalk

; Vddlk
at the lth and kth QTL

are computed analogously to Val
using the appropriate

Kronecker product of elementary matrices (e.g., A 5 A).
Computation of matrix elements is done as in Equations
3 and 4, employing corresponding row vectors llkij . Note
that this is equivalent to using Hadamard products of
QTL relationship matrices Val

and Vdl
given that there is

at least one completely informative marker between
both QTL or no linkage between them (Rönnegård

et al. 2008), which is always fulfilled by our assumptions.
To ensure positive definiteness of covariance matrices,
we assume that locations of putative QTL and markers
do not coincide.

Equivalent model with average genetic effects: What we
have outlined so far is termed ‘‘individual model,’’
because each individual receives its own genetic effects
for the different kinds of genetic components. For a

particular QTL l the LMM of (1) with only additive
genetic effects becomes

Y ¼ Xb 1 Zl ual 1 e; ð6Þ

with covariance matrix of the phenotypes conditional
on the observed marker genotypes

V ¼ Zl Val
Z9l s

2
al

1 Is2
e : ð7Þ

A model equivalent to (6) is

Y ¼ Xb 1 Z̃l ũal
1 mal

1 e; ð8Þ

where a vector ũal
with length nl ¼ 9 (number of

different marker classes) of average additive genetic
effects for all possible marker genotype classes is
considered. An additional random effect mal

of length
n appears, termed ‘‘additive genetic sampling effect,’’
and it describes the deviations of the individual additive
genetic effects from the average additive genetic effects
of marker classes. The dimension of Z̃l is n 3 nl.
Accordingly, the covariance matrix of the phenotypes
can be expressed as

V ¼ Z̃l Ṽal Z̃9l s
2
al

1 Vmal
s2

al
1 Is2

e ; ð9Þ

where Ṽal
¼ fãl

ijg
nl

i;j¼1 denotes the reduced nl 3 nl

relationship matrix of the average additive genetic
effects at the QTL. The additive genetic variance of
the individual model (7) is s2

al
, which is identical to s2

al
in

(9). The variance of the additive genetic sampling effect
is Var(mal

) ¼ Vmal
s2

al
, where Vmal

denotes the relation-
ship matrix of the additive genetic sampling effect.
There are nl

i individuals with the same marker genotype
i at the QTL. The variance of the average additive
genetic effect of a certain marker class i, averaged over
nl

i individuals, is given in the reduced model as

ã l
ii ¼

lli diagðAÞ if nl
i ¼ 0;

1
nl

i
lli diagðAÞ1 1� 1

nl
i

� �
lli AðlliÞ9 else:

(

ð10Þ
Equation 10 is valid, because there are nl

i diagonal
elements and nl

i

� 	2�nl
i off-diagonal elements in the re-

lationship matrix of the individual additive genetic effects.
The three possible cases appearing in the additive

genetic relationship matrix of the individual model are
further investigated (see Equations 3–5). First, the
variance of an individual additive genetic effect with
marker class i is 2pQQ

i 1 p
Qq
i 1 2p

qq
i :¼ ṽl

ii and second,
the covariance between two additive genetic effects
with the same marker class i is 2ðpQQ

i Þ2 1 2p
QQ
i p

Qq
i 1

ðpQq
i Þ2 1 2p

Qq
i p

qq
i 1 2ðpqq

i Þ2 :¼ vl
ii . Then the element ãl

ii

for nl
i . 0 can be written as

ãii
l ¼ 1

nl
i

ṽii
l 1 1� 1

nl
i

� �
vl

ii : ð11Þ

The variance of the average additive genetic effect is
asymptotically equal to the covariance between individ-
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ual additive genetic effects of the same marker class i;
i.e., limnl

i /‘ãl
ii ¼ vl

ii . Third, the covariance of additive
genetic effects with marker classes i and j is 2p

QQ
i p

QQ
j 1

p
Qq
i p

QQ
j 1p

QQ
i p

Qq
j 1p

Qq
i p

Qq
j 1 p

qq
i p

Qq
j 1 p

Qq
i p

qq
j 1 2p

qq
i p

qq
j :¼

vl
ij . Now, the covariance of the average additive genetic

effects of marker genotypes i and j (i 6¼ j) can be
expressed as

ãl
ij ¼ lliAðllj Þ9 ¼ vl

ij : ð12Þ

This is equal to the covariance among the two individual
additive genetic effects of marker classes i and j.

The relationship matrix of the additive genetic
sampling effects Vmal

can be determined as the differ-
ence between the relationship matrices of additive
genetic effects from the individual model (individual
genetic effects) and the reduced model (average ge-
netic effects), which are inferred from Equations 7 and
9; i.e., Vmal

¼ Zl Val
Z9l � Z̃l Ṽal

Z̃9l . Generally, Vmal
(order n)

can be written as

Vmal
¼

Mal
11 Mal

12 . . . Mal
19

Mal
21 Mal

22 . . . Mal
29

..

. ..
.

1 ..
.

Mal
91 Mal

92 . . . Mal
99

0
BBB@

1
CCCA ð13Þ

if the individuals are arranged by marker class. To study
the matrices Mal

ij we assume that each marker genotype
appears at least once; i.e., nl

i $ 1.
Concerning the third case, the additive genetic co-

variance between a pair of individuals s and t with dif-
ferent marker genotypes i and j equals the difference of
(4) and (12): mal

ij ¼ vl
ij � vl

ij ¼ 0. Therefore, for i 6¼ j
Mal

ij ¼ 0 in (13) and Vmal
is a block diagonal matrix if the

observations are ordered by marker genotypes. The
diagonal block Mal

ii corresponding to marker class i has
the order nl

i and can be expressed as

Mal
ii ¼

m̃al
ii 1 mal

ii mal
ii . . . mal

ii

mal
ii m̃al

ii 1 mal
ii . . . mal

ii

..

. ..
.

1 ..
.

mal
ii mal

ii . . . m̃al
ii 1 mal

ii

0
BBB@

1
CCCA:

The covariance ma‘
ii of the additive genetic sampling

effects of two individuals s and t given the same marker
genotype i (second case) is the difference of (5) and
(11):

mal
ii ¼ vl

ii � 1
nl

i

ṽl
ii 1 1� 1

nl
i

� �
vl

ii

� �
¼ � 1

nl
i

ðṽl
ii � vl

iiÞ:

ð14Þ

For nl
i $ 1 mal

ii 2 �0:5; 0:0½ �. The variance m̃al

ii 1 ma‘
ii

of the additive genetic sampling effect given the

marker genotype i (first case) is the difference of (3)
and (11),

m̃al
ii 1 mal

ii ¼ ṽ l
ii �

1

nl
i

ṽl
ii 1 1� 1

nl
i

� �
vl

ii

� �
¼ 1� 1

nl
i

� �
ðṽ l

ii � vl
iiÞ

ð15Þ

with m̃al

ii 2 0:0; 0:5½ �. Note that the elements m̃al

ii ¼ ṽl
ii �

vl
ii are independent of nl

i . However, m̃al

ii and mal

ii depend
on conditional genotype probabilities. From (14) and
(15) it is obvious that m̃al

ii is a function of the covariance
of the additive genetic sampling effects from the same
marker class i and the corresponding number nl

i of
observations, m̃al

ii ¼ �nl
im

al

ii .
The calculation of the relationship matrix of the

additive genetic effect of the individual model (6) and
the reduced model (8) as well as the additive genetic
sampling relationship matrix Vmal

is summarized in
Table 1.

If model (6) includes not only additive genetic but
also dominance effects, the genetic parameters for
average dominance effects and dominance sampling
terms can be obtained analogously. The genetic sam-
pling relationship matrices of the pairwise epistatic
effects can also be calculated similarly to the additive
genetic and dominance effects, but the row vectors llkij
that considered the joint conditional QTL genotype
probabilities of the lth and kth QTL have to be used.
Then nlk different marker classes have to be considered,
where nlk ¼ 27 if the QTL are in two adjacent marker
intervals and nlk ¼ 81 otherwise.

If we assume that the number of F2 individuals
approaches infinity (n / ‘), then the number of in-
dividuals per marker class i also increases ðnl

i/‘Þ. The
diagonal elements ãl

ii as well as mal

ii depend on nl
i , where

1=nl
i tends to zero for n / ‘. Hence limni

l/‘Vmal
¼ Dal

,
where Dal

is a diagonal matrix of order n of ele-
ments m̃al

ii . Therefore, the covariance matrix of the
additive genetic sampling effects is asymptotically
diagonal.

Reduced model: Instead of an individual model we
developed a reduced model approach, which is an
approximation of model (8), with decreased dimension
of the relationship matrices. The LMM is Y ¼ Xb 1

Z̃l ũal
1 e, where the residuals are assumed to be in-

dependently and identically normally distributed with
e � N 0; Is2

e

� 	
. Here the F2 individuals are grouped

according to their marker genotypes and average
genetic effects are estimated for marker classes instead
of individual genetic effects, as described in (8). The
dimension of the relationship matrices depends on the
number of marker classes (nl and nlk), but not on the
experiment size n. We call this procedure the reduced
model (vs. the individual model).

In general, the reduced model with respect to
additive genetic, dominance, and pairwise epistatic
effects is
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Y ¼ Xb 1
Xn

l¼1

Z̃l ðũal 1 ũdl Þ

1
Xn�1

l¼1

Xn

k¼l 1 1

Z̃lkðũaalk 1 ũadlk 1 ũdalk 1 ũddlk Þ1 e;

ð16Þ
where the residuals are again assumed to be indepen-
dently and identically normally distributed with
e � N 0; Is2

e

� 	
. The vectors ũt with t 2 al ; dl ; aalk ;f

adlk ; dalk ; ddlkg consider the average additive genetic,
dominance, and pairwise epistatic effects of length nl

and nlk.
The calculation of the reduced dominance relation-

ship matrix Ṽdl
at the lth QTL is done similarly to the

notes above, but A has to be replaced by D. Both Ṽal
and

Ṽdl
are matrices of order nl, where nl ¼ 9 if the flanking

markers are fully informative. The reduced epistatic
relationship matrices Ṽaalk

; Ṽadlk
; Ṽdalk

; Ṽddlk
of the lth

and kth QTL are computed analogously to Ṽal
from (10)

and (12), but the corresponding Kronecker product is
used instead of A and the row vector llkij for the ith and jth
marker class is applied.

The difference ṽl
ii � vl

ii (asymptotic variance m̃al

ii )
between the variance of an individual additive genetic
effect and the covariance between two additive genetic

effects of the same marker class decreases as the
distance between flanking markers becomes smaller.
Decreasing QTL effects and genetic variances lead to
the same effect. In the extreme case, when the marker
location and the position of the QTL coincide, the
difference ṽl

ii � vl
ii is zero and therefore Vmal

¼ 0. In this
case the covariances of the phenotypes in the reduced
and the individual model are identical. Therefore,
approximating Vmal

s2
a

l

1 Is2
e (or its multilocus equiva-

lent) by Is2
e seems to be a reasonable choice. Note that

Xu and Atchley (1995) and Xu (1998) investigated the
inflation of the residual variance through the within-
marker genotype QTL variance in the RIM, which is
similar to our genetic sampling effects.

The approximation of the individual model by the
reduced model relies on two different aspects. First, the
covariances mal

ii between genetic sampling effects (de-
viation of individual genetic effects from average ge-
netic effects of marker classes) are assumed to be zero.
Second, the asymptotic variances m̃al

ii of the additive
genetic sampling effects are treated as equal for all
marker classes. Covariances mal

ii between additive ge-
netic sampling effects of individuals sharing the same
marker class i are shown in Table 2 for an additive QTL
in the middle of a 10-cM marker interval in dependence
on sample size. The elements mal

ii were calculated using

TABLE 1

Correspondence of elements of additive genetic relationship matrices in the individual model and the
equivalent model with additive genetic sampling effects

Case Individual model Equivalent model

(Zl Val
Z9l )st (Z̃l Ṽal

Z̃l9)st (Vmal
)st

1 ṽl
ii

1
nl

i
ṽl

ii 1 1� 1
nl

i

� �
vl

ii 1� 1
nl

i

� �
ṽl

ii � vl
ii

� 	
2 vl

ii
1
nl

i
ṽl

ii 1 1� 1
nl

i

� �
vl

ii � 1
nl

i
ṽl

ii � vl
ii

� 	
3 vl

ij vl
ij 0

Each variable in the second column (individual model) is the sum from the two expressions of the third and
fourth columns (equivalent model). Case 1: diagonal elements for marker class i 2 {1,. . .,9}; case 2: two indi-
viduals with equal marker class i; case 3: two individuals with different marker classes i and j

TABLE 2

Covariances mal

ii of additive genetic sampling effects within marker class i for different numbers (n) of F2

individuals: QTL in the middle of a 10-cM marker interval

mal

ii

i ¼ 1: i ¼ 2: i ¼ 3: i ¼ 4: i ¼ 5: i ¼ 6: i ¼ 7: i ¼ 8: i ¼ 9:

n G11/11 G11/12 G11/22 G12/11 G12/12 G12/22 G22/11 G22/12 G22/22

500 0.000 �0.012 �0.487 �0.012 0.000 �0.012 �0.487 �0.012 0.000
1000 0.000 �0.006 �0.243 �0.006 0.000 �0.006 �0.243 �0.006 0.000
2000 0.000 �0.003 �0.122 �0.003 0.000 �0.003 �0.122 �0.003 0.000
3000 0.000 �0.002 �0.081 �0.002 0.000 �0.002 �0.081 �0.002 0.000

Flanking marker genotypes G�/� are indexed by their alleles for each i.
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the number of expected proportions for each marker
genotype according to Equation 14. To make sure that
nl

i $ 1, we used n $ 500. For 500 F2 individuals this
covariance mal

ii is #1% of the QTL variance and shows a
further decline when the sample size increases. Only for
marker classes G11/22 and G22/11 is there a very high
(negative) covariance (48.7% of the additive genetic
variance) and an experiment with .2000 F2 individuals
would be required to reach a value ,10%. These marker
genotypes are rare, we expect these marker genotypes to
occur twice in total among 500 F2 genotypes. Therefore,
omitting these covariances mal

ii has little effect on the
likelihood.

The asymptotic variances m̃al

ii of the additive genetic
sampling effects for different marker classes are, how-
ever, larger than their corresponding covariances and,
more importantly, they show considerable variation
between more frequent marker classes. The sixth line
of Table 3 shows the genetic sampling variances for all
marker classes, again for an additive QTL in the middle
of a 10-cM marker interval. For the three most frequent
marker classes, the genetic sampling variance is at #1%
of the additive genetic variance (classes 1, 5, and 9) and
for another four marker classes it equals 25% (classes 2,
4, 6, and 8), while a 50% value occurs only in the very
rare classes (3 and 7). Note that the genetic sampling
variances become smaller when the QTL is located

closer to the boundary of the marker interval. The
genetic sampling effects completely vanish if marker
locations and positions of the QTL coincide (Table 3,
first line). In such cases, the covariances of the genetic
sampling effects are zero and the assumption Var eð Þ ¼
Is2

e of the reduced model (16) is exact.
The latter considerations suggest, as a further alter-

native, a weighted approach, where the second part of
the approximation inherent in the reduced model, i.e.,
equal genetic sampling variances for all marker classes,
is skipped, while the assumption (first part) of zero
covariances for genetic sampling effects within marker
class is maintained. For a single additive QTL this results
in the following mixed model equations (MME):

X9WX X9WZ̃ l

Z̃9l WX Z̃9l WZl 1 Ṽal l

� �
b
ũal

� �
¼ X9Wy

Z̃ l Wy

� �
;

where l ¼ s2
e =s2

al
. The variance of the residuals is

Var eð Þ ¼ Var mal
1 eð Þ ¼ W�1s2

e , where s2
e is defined as

in (8) and all other symbols as in (1) and (16). The
diagonal matrix W of order n has the entries
wss ¼ s2

e m̃al

ii s2
al

1 s2
e

� 	�1
, which differ between observa-

tions from different marker classes and are equal for
observations from the same marker class i. If more QTL
and nonadditive genetic gene actions are considered in
the model, then the genetic sampling variances for

TABLE 3

Asymptotic variances m̃al

ii of additive genetic sampling effects within marker class i for differently sized marker intervals
and different QTL positions within marker intervals (cM)

Marker
interval

Position
of QTL

m̃al

ii

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 i ¼ 7 i ¼ 8 i ¼ 9

0 0 0.00 0.00 0.00
10 1 0.00 0.09 0.18 0.09 0.00 0.09 0.18 0.09 0.00
10 2 0.00 0.16 0.32 0.16 0.01 0.16 0.32 0.16 0.00
10 3 0.00 0.21 0.42 0.21 0.01 0.21 0.42 0.21 0.00
10 4 0.00 0.24 0.48 0.24 0.01 0.24 0.48 0.24 0.00
10 5 0.00 0.25 0.50 0.25 0.01 0.25 0.50 0.25 0.00
20 10 0.02 0.26 0.50 0.26 0.04 0.26 0.50 0.26 0.02
30 15 0.04 0.27 0.50 0.27 0.08 0.27 0.50 0.27 0.04
40 20 0.07 0.29 0.50 0.29 0.13 0.29 0.50 0.29 0.07

TABLE 4

Brief summary of simulated scenarios: the number of QTL n, length of the chromosome lc (cM), QTL positions P1 and P2 (cM),
marker positions (cM), residual variance s2

e , additive genetic effects (a1, a2), and additive-by-additive genetic effects aa12

as well as the relative QTL variance R2 (%)

Scenario n lc P1 P2 Marker positions s2
e a1 a2 aa12 R 2

1 1 50 35 — 0, 10, 20, 30, 40, 50 9.529 1.0 — — 5.0
2 1 50 35 — 0, 10, 20, 30, 40, 50 1.000 1.0 — — 33.3
3 2 50 25 35 0, 10, 20, 30, 40, 50 0.181 1.0 �1.0 — 50.0
4 2 80 35 45 0, 40, 80 1.000 1.0 �1.0 1.0 30.0
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different QTL and different kinds t of genetic effects
have to be summed to get the entire genetic sampling
variance of an observation and wss (sth individual given
the marker class i) becomes

wss ¼
s 2

eP
t

m̃ t
iis

2
t 1 s 2

e

; ð17Þ

where t 2 {al, dl, aalk, adlk, dalk, ddlk}. This weighted
version of the reduced model retains the advantage of a
reduced dimension of the QTL relationship matrices as
in the reduced model, but may provide a better approxi-
mation of the exact residual log-likelihood-ratio test
(RLRT) statistics. If marker location and position of QTL
coincide, the weights of (17) are one and W is an identity
matrix. The weights of (17) are similar to the weights in
the weighted least-squares method of QTL mapping as
shown by Xu and Atchley (1995) and Xu (1998).

Coincidence of markers and QTL results in singular-
ity of Ṽal

(identical to A in this case) and was not further
considered here. However, this situation can be treated,

e.g., by regularization [adding a small quantity to the
diagonal elements of Ṽal

(Neumaier 1998)], which has
little effect on the test statistics and is easy to implement,
by including allelic effects in the model instead of
genotypic effects, or by replacing Ṽal

by a reduced rank
approximation (Rönnegård et al. 2007) obtained by
spectral decomposition.

SIMULATIONS

First, a single F2 family as the simplest case of a
combination of multiple line crosses was considered to
demonstrate the properties of the reduced model in
comparison to the individual model (Xie et al. 1998)
and the fixed-effects methods MIM (Kao and Zeng

1997; Kao et al. 1999) and RIM (Haley and Knott

1992; Martı́nez and Curnow 1992). Experiments from
four different scenarios were simulated with 1000
replications per scenario and n ¼ 200 F2 individuals
per experiment. Scenarios 1 and 2 consisted of a single
additive genetic QTL at 35 cM on a single chromosome

TABLE 5

Average estimates (mean) for QTL positions (P1, P2) with associated root mean squared error (RMSE) and quantiles together with
mean estimates of the residual variance ŝ2

r and the observed power (%) for different scenarios: 200 F2 individuals per simulated
experiment and 1000 replications per scenario

Reduced model Individual model RIM MIM

P1 P2 P1 P2 P1 P2 P1 P2

Scenario 1
Mean 32.58 32.53 32.73 32.40
RMSE 10.71 10.79 10.78 10.89
5% quantile 9.00 9.00 9.00 9.00
95% quantile 48.00 48.00 48.00 48.00
ŝ2

r 9.49 9.38 9.50 9.37
Power 81.70 81.80 81.70 81.90

Scenario 2
Mean 34.82 34.87 34.88 34.68
RMSE 2.80 2.66 2.68 2.57
5% quantile 31.00 31.00 31.00 31.00
95% quantile 39.00 39.00 39.00 39.00
ŝ2

r 1.04 0.99 1.04 0.99
Power 100.00 100.00 100.00 100.00

Scenario 3
Mean 21.67 38.38 23.70 36.70 22.22 37.82 24.70 34.89
RMSE 4.20 4.17 2.03 2.02 4.29 4.25 1.35 1.38
5% quantile 17.00 35.00 22.00 34.00 17.00 32.00 23.00 33.00
95% quantile 25.00 42.00 26.00 38.00 28.00 42.00 27.00 37.00
ŝ2

r 0.27 0.18 0.28 0.19
Power 100.00 100.00 100.00 100.00

Scenario 4
Mean 34.03 46.22 33.56 46.70 34.13 46.09 32.29 44.44
RMSE 5.36 5.50 5.26 5.47 5.51 5.55 6.47 3.72
5% quantile 24.50 41.00 24.00 41.00 24.00 41.00 21.00 41.00
95% quantile 39.00 56.50 39.00 57.00 39.00 57.00 39.00 52.00
ŝ2

r 1.21 0.93 1.23 1.04
Power 99.20 99.40 99.60 100.00
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of 50 cM length, whereas in the other scenarios (3 and
4) there were two linked QTL with equally sized QTL
effects in repulsion. In the fourth scenario chromosome
length was extended to 80 cM and an interaction effect
was included. For further characteristics of all scenarios
see Table 4. The observations were simulated using
Cockerham’s F2-metric model (Cockerham 1954; Kao

and Zeng 2002, Table 3). The relative QTL variance R 2

is the proportion of the phenotypic variance s2
p ex-

plained by the QTL and is R2 ¼ s2
QTL=s2

p.
In the second part our small simulation study focused

on the performance of the reduced vs. the individual
model in a situation with multiple families. Four inde-
pendent F2 families, each with 50 progeny (n¼ 200), were
derived from a population consisting of four different
inbred lines, representing all pairwise combinations of
QTL genotypes (GQQHH, GQQhh, GqqHH, Gqqhh). For each
family F1 individuals were generated from a random pair
of inbred lines. Markers were always assumed to be fully
informative. In the LMM family means were treated as
fixed. Remaining parameters were chosen as previously
described for the third scenario (Table 4). For each ge-
netic effect a single (population-specific) variance was
assumed. The simulated data can be found in File S1.

Significance thresholds for the null hypothesis of no
linked QTL were determined by simulating 1000 experi-
ments of the same size for each scenario, where QTL
with the same kind and size of effects were present, but
unlinked to the markers. After analyzing these experi-
ments, the 95% quantile of the maximum values of the
test statistic from all replications was taken as a signifi-
cance threshold, specific for each scenario and method,
which allowed the determination of experimental
power. We performed the residual log-likelihood-ratio
test for the reduced and the individual model, the log-
likelihood-ratio test for MIM, and the F-test for RIM.
Mean QTL positions, root mean squared error (RMSE)
of the QTL positions, and their 5% and 95% quantiles
were evaluated to characterize the precision of location

estimates. For each replication we analyzed positions or
combinations thereof, where marker locations and
QTL positions did not coincide (step width 1 cM, both
QTL in different marker intervals). Therefore, we
applied RIM and MIM with the same restrictions as
the VCM. Our analyses used the true genetic model for
testing for segregating QTL; i.e., the model included
only the simulated effects of QTL and no model selection
was performed. All calculations were done with self-
written Fortran 95 programs in combination with ASReml
(Gilmour et al. 2008) for estimation of variance compo-
nents and evaluation of the restricted maximum-likelihood
function (Patterson and Thompson 1971).

DISCUSSION

Results for all simulated single-QTL scenarios are
summarized in Table 5. The experimental power was
100% (scenarios 2 and 3) or nearly so (scenario 4), with
the exception of scenario 1, where the experimental
power was uniformly at 82% for all methods. There was
almost no variation between methods in the mean
estimated position in the single-QTL scenarios (1 and
2); even the distributions of the estimates showed
identical 5% and 95% quantiles. Differences between
methods became, however, apparent in the two-QTL
scenarios. For scenario 3 (two QTL in repulsion, no
interactions), MIM resulted in average estimated QTL
positions at 24.7 and 34.9 cM, nearly identical to the
simulated values at 25 and 35 cM. The RMSEs for
positions of the QTL were ,1.4 cM for both QTL for
MIM and �2.0 cM for the individual model, while the
reduced model and RIM performed very similarly with
RMSEs of �4.2 cM. In scenario 3 the reduced model,
the individual model, and RIM on average placed the
QTL somewhat more toward the ends of the chromo-
some compared to MIM and the true values, resulting
in an overestimation of the distance (true distance:
10 cM) between both QTL, ranging from 2.7 cM (in-
dividual model) to 6.7 cM (reduced model). For scenario
4 (two QTL in repulsion with interactions) this over-
estimation of the distance between the QTL was, how-
ever, very similar for all methods at �2.0–3.1 cM. The
RMSEs for estimated positions of the QTL were between
5.3 and 5.6 cM with little difference between the first and
second QTL for RIM as well as the reduced and the
individual model. However, the RMSE of MIM at the same
time showed the highest deviation of 6.5 cM for the first
and the smallest deviation of 3.7 cM for the second QTL.

Note that MIM was applied according to the original
approach of Kao and Zeng (1997) and Kao et al. (1999),
which ignores double recombination events (complete
interference) within the marker interval. However, double
recombinations were taken into account for RIM and the
VCM.

As theory indicated, estimated residual variance
components from methods coping better with genetic

TABLE 6

Average estimates (mean) for QTL positions (P1, P2) with
associated root mean squared error (RMSE) and quantiles
together with mean estimates of the residual variance ŝ2

r

and the observed power (%) for the third scenario with 50 F2

individuals for each of the four families per simulated
experiment (1000 replications per scenario)

Reduced model Individual model

P1 P2 P1 P2

Mean 22.38 35.99 23.00 35.59
RMSE 6.77 4.78 6.26 4.27
5% quantile 8.00 28.00 9.00 28.00
95% quantile 28.00 45.00 28.00 44.00
ŝ2

r 0.21 0.18
Power 99.50 99.60
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deviations from the mean of a marker class (MIM,
individual model) were smaller in the two-QTL scenar-
ios compared to RIM and the reduced model, where the
genetic sampling variance (QTL genotype variability
within marker genotype) is part of the residual variance.

The results of the analysis of the multiple families are
shown in Table 6. The accuracy of the estimated QTL
positions of the individual model under consideration
of four families was slightly better than that of the
reduced model. However, when multiple families were
considered, the difference between both models (re-
duced and individual model) was less than that of the
single family (scenario 3). The RMSEs for positions of
the QTL as shown in Table 6 were increased compared
to the RMSEs of the third scenario of Table 5, because
not all families are fully informative. The observed
power of the individual and the reduced model again
almost reached 100%. As expected, the estimated
residual variance was inflated by the within-marker
genotype QTL variance.

The required CPU time for ASREML (Gilmour et al.
2008) of the reduced and the individual model was 26.7
and 80.1 sec for each repetition recorded on an HP
DL380 G6 (72 GB RAM, 23 XEON X5570, 2.93 GHz,
multiuser environment) in a two-QTL scenario with
only additive genetic effects (four families); i.e., the
individual model required threefold more computing
time. The run time required for the evaluation of a
single QTL (scenario 1 or 2) was sevenfold for the
individual model compared with the reduced model for
each repetition. If the number of individuals and the
number of variance components increase, the speed
gain of the reduced model relative to the individual
model is expected to increase.

Average RLRT profiles from the reduced and the
individual model were almost identical for the first
scenario with a single QTL (Figure 1A). For two QTL in
scenario 3 (Figure 1B), the shapes of the RLRT surfaces
from both methods were again very similar, but the
average size of the maximum was higher for the
individual model (60.62 compared to 44.52). The RLRT
surfaces of scenario 4 of the reduced and the individual
model as well as the weighted reduced model are nearly
identical (results not shown). The likelihood profile of
the weighted approach was smaller than that of the
reduced model, but QTL positions seemed to be
estimated more accurately.

The considerable advantage of the reduced model
with respect to computing time is achieved by a smaller
number of genetic effects accompanied by a smaller
dimension of their associated covariance matrices.
Moreover, this dimension does not depend on the size
of the experiment, in contrast to the individual model.
The amount of savable computing time can be expected
to vary somewhat between different REML algorithms.
Average information (AI) REML (Gilmour et al. 1995;
Johnson and Thompson 1995) may be implemented

either in an MME-based version or as a variant requiring
the inversion of the covariance matrix V of pheno-
types, termed the ‘‘direct method’’ by Lee and Van

Der Werf (2006). These authors recommend the
direct method if genetic covariance matrices are dense
because of both speed and numerical stability. Appli-
cation of the Sherman–Morrison–Woodbury matrix
identity (e.g., Henderson and Searle 1981; Xu 1998)
to determine the inverse of V results in

Figure 1.—For a single QTL (scenario 1) average RLRT
profiles (A) of the individual model (dashed line) and the re-
duced model (solid line) nearly coincide, and so do their sig-
nificance thresholds. When two QTL were present (scenario
3), contour plots (B) of the RLRT surfaces from the reduced
model (below diagonal) and the individual model (above di-
agonal) showed a similar shape, but different absolute heights
(respective RLRT maxima 44.52 and 60.62). Averaging was
over 1000 replications.
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V�1 ¼ ðHGH9 1 RÞ�1 ¼ R�1 � R�1H

�
G�1 1 H9R�1H

��1

H9R�1;

where R denotes the covariance matrix of residuals, G is
the covariance matrix of all genetic effects (block
diagonal), and H is the corresponding incidence
matrix. To obtain V�1 the inversion of a dense matrix
of the same order as G is required, which usually is
considerably smaller than the number of observations
for the reduced model (e.g., dim(G)¼ 9 3 9 for a single
QTL with additive genetic effects and dim(G)¼ 36 3 36
for two QTL with additive genetic and dominant
effects). In conclusion, the increase in computing speed
obtained by the reduced model may differ between
algorithms, but is substantial when compared with the
individual model, thus broadening the general applica-
bility of the VCM for mapping purposes.

The amount of possible improvement of the reduced
model obtained by accounting for genetic sampling
variation within marker classes remains to be investi-
gated. A more comprehensive comparison of methods
than presented here is underway to obtain a more
complete picture. Despite the limited number of
scenarios in our simulations, it can already be con-
cluded that the proposed reduced model may be
competitive with other standard methods for mapping
of (multiple) QTL not only in terms of computing time,
but also in terms of detection power and precision of
estimated positions of the QTL.

The authors thank the reviewers for their helpful comments and
suggestions. This research was supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft, MA 1553/3-1).

LITERATURE CITED

Abdel-Azim, G., and A. E. Freeman, 2001 A rapid method for comput-
ing the inverse of the gametic covariance matrix between relatives
for a marked quantitative trait locus. Genet. Sel. Evol. 33: 153–173.

Carbonell, E. A., T. M. Gerig, E. Balansard and M. J. Asins,
1992 Interval mapping in the analysis of nonadditive quantita-
tive trait loci. Biometrics 48: 305–315.
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