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Manuscript received August 26, 2010
Accepted for publication October 18, 2010

ABSTRACT

Summary statistics are widely used in population genetics, but they suffer from the drawback that no
simple sufficient summary statistic exists, which captures all information required to distinguish different
evolutionary hypotheses. Here, we apply boosting, a recent statistical method that combines simple
classification rules to maximize their joint predictive performance. We show that our implementation of
boosting has a high power to detect selective sweeps. Demographic events, such as bottlenecks, do not
result in a large excess of false positives. A comparison to other neutrality tests shows that our boosting
implementation performs well compared to other neutrality tests. Furthermore, we evaluated the relative
contribution of different summary statistics to the identification of selection and found that for recent
sweeps integrated haplotype homozygosity is very informative whereas older sweeps are better detected by
Tajima’s p. Overall, Watterson’s u was found to contribute the most information for distinguishing
between bottlenecks and selection.

A popular approach to statistical inference concern-
ing competing population genetic scenarios is to

use summary statistics (Tajima 1989b; Fu and Li 1993;
Fay and Wu 2000; Sabeti et al. 2002; Voight et al.
2006). Since the complexity of the underlying models
usually does not permit for a single sufficient statistic,
this led to the development of a considerable number
of summary statistics and consequently to the issue of
which summary statistic should be used for a particular
purpose. Methods that try to approximate the joint
likelihood of several summary statistics via simulations
suffer from the curse of dimensionality and are usually
computationally intractable. Therefore proposals to
combine summary statistics to a single number in a
plausible way can be found in the literature (Zeng et al.
2006, 2007). In recent work, Grossman et al. (2010) use
a Bayesian approach that is capable of combining the
information of stochastically independent summary
statistics.

Boosting (Freund and Schapire 1996; Bühlmann

and Hothorn 2007) is a fairly recent statistical method
that permits one to estimate combinations of summary

statistics such that the sensitivity and specificity of the
resulting classification rule is optimized. In contrast
to the Bayesian approach of Grossman et al. (2010),
boosting does not require independent summary statis-
tics and is therefore more widely applicable. Here we
explore boosting as a method to distinguish between
competing population genetic scenarios. Although boost-
ing could also be used in other settings, we chose positive
selection, neutral evolution, and bottlenecks as our com-
peting scenarios. The choice of such fairly well studied
scenarios permits us to compare boosting with other sum-
mary statistics-based approaches available in the litera-
ture (Tajima 1983, 1989b; Fay and Wu 2000; Voight

et al. 2006). Here the expectation is that boosting might
gain something by deriving novel combinations of site
frequency and linkage disequilibrium-based statistics.
Since they measure different aspects of selection, their
combination is not obvious. A comparison with a re-
cently proposed method (Pavlidis et al. 2010) that uses
support vector machines to combine site frequency
and linkage disequilibrium (LD) information is also
provided.

It may be also of interest to understand how boosting
combines the summary statistics used in the light of
what we know about the traces of selection. By now, the
footprints of positive selection are quite well under-
stood. They include a reduced number of segregating
sites, as well as changes in the mutation frequency
spectrum and the linkage disequilibrium structure
(Biswas and Akey 2006; Sabeti et al. 2006). Besides
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selection, however, there may be other explanations for
the observed deviation from neutrality, such as the
demographic history of the population. Bottlenecks,
for instance, lead to footprints that can be similar to
those caused by selection (Tajima 1989a). In contrast to
the demographic history, however, the effect of positive
selection is usually thought to be local, changing the
DNA pattern only in a limited spatial range. Typically,
summary statistics show their extreme values right at the
selected site and return to their normal values gradually
when moving away from the selected site. This leads to a
characteristic ‘‘valley’’ pattern that can be exploited for
discriminating between selection and demography
(Kim and Stephan 2002).

In methods, we first explain how boosting works and
point out some relevant literature. We then explain how
we implemented boosting for the purpose of detecting
selection.

In results, we present simulations, illustrating the
power of boosting for the detection of selective sweeps.
In comparison with other methods, boosting seems to
perform very well. We then explore the sensitivity of the
method against demographic effects and consider also
bottlenecks with and without a simultaneously occur-
ring selective sweep. An application to real data from
maize is also provided. We discuss furthermore what
can be learned from boosting about the relative impor-
tance of various summary statistics. This may be helpful
also in combination with other methods such as
Approximate Bayesian Computation (ABC) (Beaumont

et al. 2002), where boosting might be used in a first step,
helping to choose a summary information measure to
use in a further statistical analysis. In ABC, the choice of
summary statistics is an important ingredient to ensure a
good approximation to the posterior. Recently Joyce

and Marjoram (2008) proposed to use approximate
sufficiency as a guideline for choosing summary statistics,
but further research is needed on this topic.

METHODS

Boosting: Boosting is a popular machine-learning me-
thod that has recently attracted a lot of attention in the
statistical community. (See Bühlmann and Hothorn

2007 for a recent review.) We use boosting as a classifi-
cation method between competing population genetic
scenarios, but boosting can also be used for regression
purposes.

A boosting classifier is an iterative method that uses
two sets of training samples simulated under two
competing scenarios to obtain an optimized combina-
tion of simple classification rules. In each step, a base
procedure leads to a simple (weak) classifier that is
usually not very accurate. This classifier is combined with
those obtained in previous steps and applied to the
training samples. The training samples are then re-

weighed, giving more importance to those items that
have not been correctly classified. This is done by using
a loss function that measures the accuracy of the in-
dividual predictions. When the iterations are stopped,
the final decision is made by a combination of weak
classifiers in a way that might be viewed as a voting
scheme. The better a weak classifier does, the more it
contributes to the final vote. As a consequence of the
aggregation step, boosting is called an ensemble
method, with the ensemble of simple rules being usually
much more powerful than the base classifiers them-
selves. An alternative way to understand boosting is as a
steepest descent algorithm in function space [functional
gradient descent, FGD (Breiman 1998, 1999)].

Several versions of boosting can be obtained by
choosing among possible base procedures, loss func-
tions, and some further implementation details. We use
simple logistic regression with only one predictor a time
as our base procedure, since this choice leads to results
for which the relative importance of the input variables
is particularly easy to interpret. However, several other
versions of boosting have been proposed (Hothorn

and Bühlmann 2002) and could in principle also be
applied to our setting.

To obtain our boosting classifier, we simulated 500
training samples under each of two competing popula-
tion genetic scenarios such as selection vs. neutrality in
the simplest case. In total, our training data set thus
contained n ¼ 500 1 500 samples. For the ith training
sample, we computed a predictor vector Xi that consists
of all potentially useful summary statistics. The response
variable Yi indicates under which scenario the samples
have been generated. (For instance, Yi ¼ 1 under
selection and Yi ¼ 0 under neutrality.) Values for Yi

are known for the simulated training data but unknown
for real and testing data. The whole data set can be then
represented as

ðX 1;Y 1Þ; . . . ; ðX n;Y nÞ:

We denote our classifier by f and use f(X) to predict
Y. More specifically, we predict that Y¼ 1, if f(X) . g for
some threshold g. We may choose g ¼ 0.5 if type I and
type II errors are to be treated symmetrically. Otherwise
one may want to calibrate g to achieve a desired type I
error probability.

A loss function r has to be chosen to measure the
difference between the truth Y and the prediction f(X).
The objective is then to find a function f that mini-
mizes the empirical risk:

1

n

Xn

i¼1

rðY i ; f ðX iÞÞ:

The classifier f is obtained iteratively. Its initial value
f [0] is chosen as the mean of all the response variables in
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the training data set, and then f changes stepwise toward
the direction of r’s negative gradient, to approach the f
that minimizes the empirical risk. Our focus has been
on the squared error loss function r(Yi, f )¼ 1/2(Yi� f )2.
An alternative possible loss measure would be given
by the negative binomial log-likelihood r(Yi, p) ¼
�Yilog(p)� (1� Yi)log(1� p) with p(X)¼ P(Y¼ 1jX)¼
exp( f(X))/[exp( f(X )) 1 exp(�f(X ))] (Bühlmann and
Hothorn 2007).

Algorithm 1: An FGD procedure (Bühlmann and
Hothorn 2007): Algorithm 1 summarizes how a boost-
ing classifier is obtained. The algorithm is available in
the R package mboost (Hothorn and Bühlmann 2002),
and a simple illustrative example is presented in
supporting information, File S1.

1. Give f an offset value

f̂ 0½ �ð�Þ[ arg min
c

Xn

i¼1

rðY i ; cÞ:

Set m ¼ 0.

2. Increase m by 1. Compute the negative gradient
vector (U1, . . . , Un) and evaluate at f̂ m�1½ � X ið Þ; i.e.,

U i ¼ �
@

@f
rðY i ; f Þ

����f ¼f̂ m�1½ � ðXi Þ
:

3. Fit the negative gradient vector (U1, . . . , Un) to X1, . . . ,
Xn by a real-valued base procedure

ðX i ; U iÞni¼1 �������!base procedure
U i � ĝ m½ �ðX iÞ:

4. Update f̂ m½ �ð�Þ ¼ f̂ m�1½ �ð�Þ1 nĝ m½ �ð�Þ, where 0 , n # 1
is a step-length factor.

5. Repeat steps 2–4 until m ¼ mstop.

For the step-length n in the fourth step of Algorithm
1, we chose the default value n ¼ 0.1 of the R package
mboost (Hothorn and Bühlmann 2002). A small value
of n increases the number of required iterations but
prevents overshooting. According to Bühlmann and
Hothorn (2007), however, the results should not be
very sensitive with respect to n.

A further tuning parameter is the number of iter-
ations of the base procedure. The larger the number of
iterations is, the better the classifier will predict the
training data. A better performance on the training
data, however, does not necessarily carry over to the real
data to which boosting should eventually be applied. In-
deed, a classifier may eventually perform worse when ap-
plied to real sequences, if too many iterations are carried
out with the training data. This phenomenon is known
as overfitting. According to the literature (Bühlmann

and Hothorn 2007), however, boosting is believed to
be quite resistant to overfitting and therefore not very

sensitive to the number of iterations. Nevertheless, a
criterion for stopping the iteration process is useful in
practice. As stopping criteria, resampling methods such
as cross-validation and bootstrap (Han and Kamber

2005) have been proposed to estimate the out-of-sample
error for different numbers of iterations. Another com-
putationally less demanding alternative is to use Akaike’s
information criterion (AIC) (Akaike 1974; Bühlmann

2006)or theBayesian information criterion(BIC) (Schwarz

1978).
In our computations, we stop the iterations when

AIC ¼ 2k ðmÞ � 2 lnðLðmÞÞ

attains a minimum. Here k(m) is the number of
predictors used by the classifier f [m] at step m, and L is
the (negative binomial) likelihood of the data given f [m].

Input to the boosting classifier: We consider a sample
consisting of several DNA sequences covering the same
region and partition the region into several smaller sub-
segments. Our predictor variables are different summary
statistics calculated separately for each subsegment. Com-
puting the summary statistics separately for each sub-
segment permits us to identify valley patterns that are
known to be a trace of positive selection. Considering
j summary statistics on k subsegments leads to a total of
k 3 j values that are combined to an input vector. Recall
that the input vector is denoted by Xi for the ith training
sample.

As our basic summary statistics, we choose Watterson’s
estimator (Watterson 1975),

ûw ¼
Xn�1

i¼1

1

i

 !�1Xn�1

i¼1

Si ;

and Tajima’s ûp (Tajima 1983),

ûp ¼
Xn�1

i¼1

2Siiðn � 1Þ
nðn � 1Þ ;

as well as ûh (Fay and Wu 2000),

ûh ¼
Xn�1

i¼1

2Sii
2

nðn � iÞ ;

where Si is the number of derived variants found i times
in a sample of n chromosomes.

We furthermore consider Tajima’s D (Tajima 1989b)
and Fay and Wu’s H (Fay and Wu 2000; Zeng et al. 2006)
that both combine the information of two of the above-
mentioned summary statistics. Therefore they both are
somewhat redundant. As a measure of linkage disequi-
librium, we add the integrated extended haplotype
homozygosity, iHH (Sabeti et al. 2002; Voight et al.
2006).

Figure 1 summarizes how a predictor vector X of
length 120 is obtained for a 40-kb DNA sequence using
these k ¼ 6 statistics on 20 subsegments, each of length
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2 kb. Whereas ûw, ûp, ûh, Tajima’s D, and Fay and Wu’s H
are calculated separately for each subsegment, iHH is
computed from the center up to a distance of 2, 4, . . . ,
20 kb separately on each side. As shown in Figure 1, iHH
is first computed by integrating from the starting point
of the sequence up to 20 kb. The result is denoted by
iHH1. Next iHH2 uses the window from 2 kb up to
20 kb. The final iHH statistic for the left-hand part is
iHH10, going from 18 kb up to 20 kb. For the right-hand
part of the sequence extending from 20 kb up to 40 kb,
10 values of iHH are obtained analogously.

Simulation: Both for training and for testing, we
simulated scenarios involving n ¼ 10 sequences each of
length l ¼ 40 kb with a recombination rate of r ¼ 0.02.
We chose several different values for a and the time t

since the beneficial mutation became fixed (in units of
2N generations) when simulating selection samples and
assumed that the beneficial site is located in the middle
of the sequence (Bsite ¼ 20 kb). For each set of
parameters, 500 neutral samples and 500 selection
samples were simulated as a training data set. The same
sample size was also used for the test data.

We considered two different mutation schemes: (1) a
fixed mutation rate u ¼ 4Nm ¼ 0.005 and (2) a fixed
number of segregating sites (K ¼ 566, which is the
expected number of segregating sites under neutrality
when u ¼ 0.005; see Watterson 1975). In practical ap-
plications, the second mutation scheme corresponds to
a strategy where, under both scenarios, one generates
training samples with the number of segregating sites
being equal to that observed for the actual data.

To simulate neutral samples and samples under
selection, we used the SelSim (Spencer and Coop 2004)
software. Bottleneck samples were simulated via the
ms program of Hudson (2002). The mbs program by
Teshima and Innan (2009) was adapted to simulate

selective sweeps that occurred with bottlenecks. The
simulation parameters and some notation are summa-
rized in Table 1 and Figure 2.

Controlling the type I error: By default, boosting
treats type I and type II errors symmetrically and predicts
that Y¼ 1, if f(X ) . g¼ 0.5. If one desires to control the
type I error probability under a null model such as
neutrality, this can be achieved by adjusting the threshold
g. For this purpose, we first obtain a boosting classifier on
the basis of training samples as usual. Then we generate
500 independent training samples under the null model
and choose g such that 95% of these samples are clas-
sified correctly. To investigate the efficiency of the result-
ing classifier under the alternative model, we generated
500 further independent test samples.

Figure 1.—Predictor variables used as input X to boosting.
Ta, Tajima’s D; FW, Fay and Wu’s H. We cut up the whole re-
gion (40 kb) into 20 subsegments, each of length 2 kb. For
each subsegment, we compute ûw, ûp, ûh , Tajima’s D, and
Fay and Wu’s H. Overlapping subsegments are used with
iHH. In total, this leads to 6 3 20 ¼ 120 predictor variables
that are used as input vector X to boosting.

TABLE 1

Parameters and terminology

General parameters

n The number of sequences in the sample
l The length of the investigated region
u u ¼ 4Nm, the population mutation rate per

nucleotide, where N is the effective
population size for a diploid population,
and m is the mutation rate per nucleotide
per generation

K Number of segregating sites in a sample
r r ¼ 4Nr, the population recombination rate

per nucleotide, where r is the recombination
rate per nucleotide per generation

Selection parameters
a a ¼ 2Ns, the selective strength, where s is the

selective advantage of the beneficial allele
over the ancient allele

t Time since the beneficial mutation became
fixed, in units of 2N generations

Bsite Distance between the beneficial site and the
left end of the sequenced region

Bottleneck parameters (see Figure 2)
t0 Time since end of bottleneck, in units of

2N generations
t1 Duration of bottleneck, in units of

2N generations
D D ¼ N1/N0, depth of bottleneck
N0 Effective population size before and

after bottleneck
N1 Effective population size during bottleneck

Notation
neu 500 simulated neutral samples
sel(a, t) 500 simulated selection samples with given a

and t

bot(t0, t1) 500 simulated bottleneck samples with given
t0 and t1

N(a, b2) Gaussian distribution, where a ¼ mean and
b2 ¼ variance

F u or FK Simulation with fixed value for u or K
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RESULTS

Discriminatory power: According to Figure 3, all our
summary statistics, except for iHH, show a valley pattern
under the selection scenario only. For iHH, the in-
tegration causes a valley both for the neutral and for the
selection case. However, there are still differences in
level and shape under the two competing scenarios.

We first investigate samples generated under the same
values for a and t both for training and for testing. The
results in Table 2 show that our method is quite efficient
in distinguishing neutrality from selection. Even when
the selective sweep is weak and old (a¼ 200 and t¼ 0.2),
we get an accuracy of 88.0% under a fixed value of u. See
Li and Stephan (2006) for a categorization of strong
and weak selection in Drosophila.

In practice this approach is too optimistic, since the
parameters of the selection scenario are usually un-
known. One more practical strategy is to do the training
over a whole range of parameter values, representing
the prior belief concerning possible parameter values.
For this purpose we use samples generated under pa-
rameters chosen from a normal prior distribution with
support restricted to the range of possible parameter
values. We also generated parameters from a uniform
distribution with very similar results (see Table S1). To
facilitate interpretation, testing is usually done with
samples generated under fixed parameter values. Not
unexpectedly, training our classifier with samples gen-
erated under randomly chosen parameter values leads
to some decrease in accuracy. According to Table 2,
however, the power is still 87.6% in the most difficult test
case (a ¼ 200, t ¼ 0.2, with fixed u).

If the alternative scenario is misspecified, our method
seems to be quite robust at least in the situations we
considered. When we trained the classifier with strong
(a¼ 500) and recent (t¼ 0.001) selection but tested on
a weak (a ¼ 200) and old (t ¼ 0.2) sweep, or vice versa,
the power of the boosting classifier remains quite high
(see the last two rows in Table 2).

Since u is often unknown in practice and may also vary
for reasons other than selection, an option is to simulate
training data for the two competing scenarios under a

fixed number of segregating sites K that equals the one
seen in the actual test data. With this strategy, boosting
is still able to learn the valley pattern. Obviously the
exclusion of information concerning differences in the
overall value of u will lead to some decrease in power.
Table 2 illustrates the amount of power lost. Among our
considered scenarios, the predictive power turned out to
be .75% in all cases.

The results are for boosting with the L2fm loss
function (Bühlmann and Hothorn 2007). Using a
different loss function does not affect the results much.
(See Table S2 and Table S3.)

We also studied the use of AIC as a stopping rule for
our boosting iterations. A typical example is provided in
Figure 4. As the number of iterations increases, AIC
decreases very rapidly at first, and then slows down,
maintaining a steady level for a long period. In the
example, the lowest AIC value is obtained at the 175th
iteration. Stopping at the 1000th or 10,000th iteration
led to almost the same predictive accuracy (results not
shown), providing empirical support for the slow over-
fitting of boosting.

Another quantity influencing the predictive accuracy
is the sequence length. In Table 3, we investigate the
decrease in power when the available sequences have a
length ,40 kb, the length considered so far. The results
suggest that the decrease in power is not dramatic even
when going down until sequences of length 1 kb.

Boosting-based genome scans: It turns out that the
boosting classifier is quite specific with respect to the
position of the selected site. When training the classifier
with the selected site at 20 kb, the power decreases quickly,
if the position of the selected site is moved away from this
position in the testing samples (Table 4). This can be
exploited in the context of genome scans for selection.
Indeed, if sufficiently large sequence chunks are avail-
able, it is possible to slide a window consisting of our 20
subsegments along the sequence. A natural estimate
of the position of the selected location is then the
center of the window with the strongest evidence for
selection.

To learn which summary statistics are most specific
with respect to the selected position, we investigate
them separately by applying the boosting classifier on
the basis of just one of the summary statistics at a time. It
turns out that the effect of smaller deviations from the
hypothetical selected site is particularly strong for ûh,
Tajima’s D, and iHH (Table 5). One might therefore
want to increase the specificity to position by using
only ûh, Tajima’s D, and iHH. See Figure 5 for an ex-
ample of a genome scan based on these three summary
statistics.

If a longer chromosome region is not available, or if a
high specificity with respect to location is not desired,
the specificity of the method can be reduced by cutting
the sequences into fewer subsegments of larger size
(Table 6), which intuitively smoothes the valley pattern.

Figure 2.—Terminology for bottleneck scenarios. A bottle-
neck scenario that ended at time t0 and lasted for t1 is shown.
Both the present and ancient effective population sizes are
N0. During the bottleneck the effective population size de-
creases to N1 chosen such that N0/N1 ¼ 100.
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Since the range of influence of a selective sweep
depends on the strength of selection (a), the sensitivity
of the classifier with respect to spatial position depends
also on a. The smaller a is, the narrower the affected
nearby region and the higher the sensitivity with respect
to the assumed position of the sweep.

Sensitivity toward bottlenecks: Demography leaves
traces in genomic data similar to those caused by selective
events (Tajima 1989a,b), making it difficult to distinguish
between these competing scenarios (Schlötterer 2002;
Schmid et al. 2005; Hamblin et al. 2006; Thornton and
Andolfatto 2006). To investigate how often selective
sweeps and bottlenecks are confounded, we applied the
boosting classifier, previously trained on neutral and
selective sweep samples, and tested it on bottleneck
samples. When simulating bottleneck samples, we fixed
D ¼ 0.01, and tried different values of t0 and t1.

When training under neutrality and selection with
fixed identical values for u, bottlenecks and sweeps cannot
be distinguished reliably [see the ‘‘First step (F u)’’ column
in Table 7]. The reason is that a reduced number of
segregating sites is observed both under bottlenecks and
under sweeps but not under neutrality. One way to avoid
this is to train the boosting classifier conditional on the
observed number of segregating sites. With this strategy,
the number of misclassifications (i.e., classifying a bottle-
neck as a sweep) goes down considerably [see the ‘‘First
step (FK )’’ column in Table 7].

To make our method even more specific, we propose
a two-step method, which is in the spirit of Thornton

and Jensen (2007). For this purpose, we use two clas-
sifiers (C), denoted by C1 and C2. C1 is trained under
neutrality vs. selection, whereas C2 is under bottleneck
vs. selection. For a test sample, we first apply C1. If se-
lection is predicted, then we use C2, to classify between
selection and bottleneck. The results [see in particular
the ‘‘Second step (FK )’’ column in Table 7] indicate that
this approach is quite efficient in the sense that misclas-
sifications of bottleneck samples were very rare. On the
other hand, the price for this is a somewhat decreased
power of sweep detection when K is chosen equal in
training and testing.

If a bottleneck sample and a selection sample are
similar such that they produce similar overall values of a
certain summary statistic, our method still works. In fact,
the fixation of K implies that ûw is identical both for
selection and for bottleneck samples when computed
over the whole sequence. Ignoring subsegments, we also
generated selection and bottleneck samples with an
identical average value of the overall ûp. This was done
by first generating sel(500, 0.001) samples and then
choosing the bottleneck parameter D to get the same
value of ûp under both scenarios. It turned out that
even in this situation the false positive still remained low
(see the ‘‘Bot no.’’ line in Table 7).

Comparison with other methods: Currently there are
several methods available to identify genomic regions
affected by selection. Our main focus has been on
comparing boosting with other approaches that also
combine different pieces of information. More specif-

Figure 3.—Spatial patterns of summary statis-
tics. The spatial effect of selection (vs. neutrality)
on different summary statistics is shown. Each
point corresponds to an average over 1000 inde-
pendent samples with fixed u. The x-axis gives the
position within the sequence, whereas the y-axis
displays the value of the summary statistic calcu-
lated at a subsegment centered at this position.
For the selection scenario, the beneficial site is
again assumed to be at 20 kb.
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ically, we considered both summary statistic-based ap-
proaches and the support vector machine approach of
Pavlidis et al. (2010) that combines site frequency
information [SweepFinder (Nielsen et al. 2005)] with
linkage disequilibrium information [v-statistic (Kim

and Nielsen 2004)]. Further approaches, which we
did not consider here, include the composite-likelihood
method of Kim and Stephan (2002) and selection
scans based on hidden Markov models (Boitard et al.
2009).

As tests that use summary statistics, we considered
Tajima’s D (Tajima 1989b) and Fay and Wu’s H (Fay

and Wu 2000), as well as their combined form, the DH
test (Zeng et al. 2006). We calibrated all methods to give
a type I error probability of 5% and then applied them
to the same test data sets. In Table 8, we provide a
comparison of the predictive accuracy between boosting
and the above-mentioned methods that use summary
statistics. We consider different selection scenarios, as
well as bottleneck scenarios with randomly chosen
parameters. Boosting always distinguished better be-
tween neutrality and selection than the other three
methods. While one-step boosting often interpreted
bottlenecked samples as evidence for selection, even
when the DH test did not, the two-step boosting al-
gorithm has a much better specificity than the DH
test.

Since the above-mentioned test statistics were com-
puted only once across the whole 40-kb region, one
might wonder whether the selective signal was weak-
ened due to an averaging effect. We therefore recom-
puted the test statistics using only the center section of
the region. This improved the performance of the test

statistics, but boosting still performed better (Table 8).
While the DH test that uses only the central window did
better than the version using the whole sequence
information, two-step boosting still provided the highest
specificity toward bottlenecks. While two-step boosting
can easily distinguish almost all the bottleneck events
from selection, it can still recognize at least 87.6% of
true selection events when u is fixed and 75.8% when K
is fixed (Table 8).

Additionally, we compared our method with another
recently published method developed by Pavlidis et al.
(2010). The method uses support vector machines,
another machine learning method, to combine a site
frequency-based statistic obtained from SweepFinder
with the v-statistic that measures linkage disequilibrium.

We first investigated the behavior when distinguish-
ing neutrality from selection and also bottlenecks from
selection. For our simulations, we used the same pro-
gram ssw (Kim and Stephan 2002) as Pavlidis et al.
(2010) and chose identical parameters (n ¼ 12, l ¼
50 kb, Bsite ¼ 25 kb, r ¼ 0.05). The bottleneck samples
were simulated with ms (Hudson 2002). For further
parameters please refer to Table 9. To permit for a fair
comparison, we followed Pavlidis et al. (2010) and used
the same parameters for both training and testing. The
results (Table 9) show that our method performs better
under all considered scenarios.

Our next comparison with Pavlidis et al. (2010)
involves a class of scenarios where a selective sweep

Figure 4.—AIC. A typical AIC curve from a boosting run
(500 neutral samples and 500 selection samples with a ¼
200, t ¼ 0.2, and fixed u) is shown. The x-axis indicates the
number of iterations and the y-axis the value of AIC. At the
175th iteration AIC reached its minimum. We can see that
AIC decreases very fast at first, but changes only very slowly
later on, which is in accordance with the slow overfitting fea-
ture of boosting.

TABLE 2

Performance of boosting under different training strategies

Training data Testing data
Acc

(Fu) (%)
Acc

(FK) (%)

neu 1 sel(500, 0.001) sel(500, 0.001) 100.0 100.0
neu 1 sel(500, 0.2) sel(500, 0.2) 99.4 96.4
neu 1 sel(200, 0.001) sel(200, 0.001) 98.6 97.8
neu 1 sel(200, 0.2) sel(200, 0.2) 88.0 82.2
neu 1 sel(N(500, 2002),

N(0.2, 0.12))
sel(500, 0.001) 99.8 98.4

sel(500, 0.2) 98.4 96.6
sel(200, 0.001) 93.8 86.2
sel(200, 0.2) 87.6 75.8

neu 1 sel(500, 0.001) sel(200, 0.8) 86.6 77.2
neu 1 sel(200, 0.8) sel(500, 0.001) 100.0 99.6

The type I error probability (probability of incorrect classi-
fication of neutral samples) was adjusted to 5% according to
500 independent neutral samples. The predictive accuracy
(Acc) is in terms of the percentage of correct classification.
We consider two mutation schemes: F u and FK. The training
and testing samples were independently generated under
identical parameters. See Table 1 for the notation.
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happened within a bottleneck. We again simulated under
identical parameters (n¼ 12, l¼ 50 kb, Bsite¼ 25 kb, r¼
0.01) and used the same software mbs (Teshima and
Innan 2009) to generate data. The results as well as
further implementation details are shown in Table 10.
Our method always provided better results in terms of
both false positives (FP) and accuracy (Table 10).

To avoid a too optimistic picture of the performance
in practice, we also present cross-testing results where
training and testing parameters differ. The FP rates have
been adjusted to 0.05 (Table 11). When testing for old
sweeps (older than the bottleneck) (b_s4 and b_s8) while
training with other scenarios, or vice versa, the power
tends to be low. Classification tends to be particularly
difficult in cases where the selective sweep happened
much earlier than the bottleneck (see b_s4 and b_s8),
and an explanation might be that the signal of the sweep
gets diluted by the bottleneck event.

In many situations, however, the power remains at an
acceptable level, indicating to some extent the robust-
ness of our method.

We also checked the robustness of the false positive
rate with respect to the null scenario. For this purpose
we again adjusted the boosting classifier to get a false
positive rate of 5% under the null training scenario.
When training is done under short and deep bottlenecks
(bot1), long and shallow bottlenecks (bot2) without a
simultaneous selective sweep are rarely misclassified and
the false positive rate remains small except for bot1 1

b_s4, where the sweep happened much earlier than the
bottleneck (Table 11). The results in the opposite
direction are less robust: Under training with long and
shallow bottlenecks (bot2), short and deep bottlenecks
(bot1) lead more frequently to false signals of selection.
Depending on the specific alternative scenario used for
training, we get false positive rates between 3 and 17%
(Table 11).

As a further check for robustness, we trained under
bottleneck vs. selection but tested on selection within
a bottleneck without adjusting the false positive rate.
Compared to the results shown in Table 10, the power

decreases in b_s4 and b_s8, but remains higher than the
one obtained by Pavlidis et al. (2010) in most cases.
Detailed results can be found in Figure 12.

Application to real data: We applied boosting to a
small region of the maize genome. We follow an analysis
by Tian et al. (2009), where they investigate 22 loci
spanning �4 Mb on chromosome 10 and identify a
selective sweep that affected this region. We imple-
mented the two-step method and used the real sequence
data as our testing data. For training, we simulated
samples under the parameters estimated in Tian et al.
(2009). We used in particular the estimated mutation
rate u ¼ 0.0064 and the estimated recombination rate
r ¼ 0.0414.

We chose to investigate 12 of their 22 loci located at
85.65 Mb on chromosome 10, each of length 1 kb. Since
the number of individuals varied slightly from 25 to 28
between the loci (Tian et al. 2009), we simply set n¼ 25.
Training data under selection were generated with
parameters chosen randomly according to sel(N(500,
2002), N(0.2, 0.12)).

According to previous studies, maize experienced a
bottleneck event and the bottleneck parameter k
(population size during bottleneck/duration of bottle-
neck in units of generations) was 2.45 (Wright et al.
2005; Tian et al. 2009). We set t0¼ 0.02 and t1¼ 0.02 (in
units of 2N generations, where N is the effective
population size). We then chose D ¼ 0.098 such that
D 3 N/(t1 3 2N ) ¼ 2.45.

In Tian’s article, ûp, ûw, and Tajima’s D were com-
puted for each locus (values at certain loci were un-
available). We used these three statistics and ignored
missing values. Then we applied the two-step method
using the L2fm loss. The threshold between neutrality
(Y¼ 0) and selection (Y¼ 1) was 0.462, and the first-step
result was f¼ 1.382; since f ? 0.462, this provides strong
evidence for selection. The threshold between bottle-
neck (Y ¼ 0) and selection (Y ¼ 1) was 0.407, and the
second-step result was 4.700, indicating that the signal at
the considered locus cannot be explained by a bottle-
neck only. The result supports the findings in Tian et al.

TABLE 3

Detection power in dependence of the sequence length

Testing samples l ¼ 20 kb (%) l ¼ 8 kb (%) l ¼ 4 kb (%) l ¼ 2 kb (%) l ¼ 1 kb (%)

sel(500, 0.001) 99.8 98.8 99.2 95.2 93.4
sel(500, 0.2) 99.0 97.8 96.8 96.2 89.0
sel(200, 0.001) 95.4 94.8 89.8 86.0 87.8
sel(200, 0.2) 88.4 84.0 78.8 80.8 79.6

We consider samples of sequences of length l and fixed u to the same value in training and testing. Train-
ing was done with neu 1 sel(N(500, 2002), N(0.2, 0.12)). The type I error probability (probability of incor-
rect classification of neutral samples) was adjusted to 5%. When l ¼ 20, 8, or 4 kb, the length of the
subsegments was chosen as 2 kb; when l ¼ 2 or 1 kb, each subsegment was 0.5 kb. The summary statistics
were computed independently for each subsegment. The predictive power remains quite high even for
short regions.
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(2009), where a selective sweep was also identified.
There a was estimated to be 22187.8, which is much
larger than the value we used in our training data
generated from (N(500, 2002)).

Learning about the relative importance of summary
statistics: One advantage of the version of boosting we
used is that the approach leads to coefficients for each
of the considered summary statistics. The coefficients
can be used to measure the relative importance of each
summary statistic. It is important to standardize the
coefficients, since otherwise the estimated coefficients
will depend on the scale of variation of the respective
summary statistics. For the jth component of the pre-
dictor variable, X (j), the coefficient is b̂

jð Þ
, and the

standardized coefficient is b̂
jð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var̂ X jð Þð Þ
p

. The impor-
tance of a statistic is indicated by the absolute value of its
standardized coefficient. The closer a coefficient is to
zero, the smaller the contribution of the statistic to the
classifier. To make the results fairly independent of
the randomness of an individual data set, we report
the average coefficients over 10 trials, with each trial
involving boosting with 500 neutral (or bottleneck)
samples and 500 selection samples.

When considering the statistics at all positions simul-
taneously, the relative importance will depend on two
components: the relative importance of different posi-
tions and the relative importance of different statistics.
To get a clearer picture, we consider the different sub-
segments separately and use the boosting classifier on the
information of only one subsegment at a time. The re-
sults can be found in Figure 6. Because iHH uses not
only local information (see Figure 1), the information
content for a given subsegment is higher than that
for other summary statistics, especially at the border
subsegments.

Figure 6 provides the standardized coefficients for
several scenarios. Here, we note some observations
concerning the patterns shown in Figure 6:

1. For classifying between neutrality and selection, ûp

plays an important role, consistently over all scenar-

ios. On the other hand, ûw plays a role only when
selection happened recently, but not for old sweeps.
A reason might be that the occurrence of new mu-
tations after selection makes the relative amount
of low-frequency mutations increase. But as age
increases, some low-frequency mutations drift to
intermediate-frequency mutations, and thus the
proportion of low-frequency mutations decreases.
Since ûw should be more affected by such low-frequency
mutations than ûp (Fay and Wu 2000), ûw becomes
less important when selection gets older.

2. When discriminating against a neutral scenario, the
iHH statistic seems particularly important for recent
selective sweeps. If the fixation of the beneficial allele
happened a longer time ago, the iHH statistic is
much less important. A possible explanation is that
the LD is then broken up by recombination or by the
recurrent neutral mutations that occur after the
fixation of the beneficial mutation.

3. When discriminating between bottlenecks and selec-
tion, ûw seems most important, and its importance
increases toward the border of the observation
region. This indicates a larger difference in the
number of low-frequency mutations between bottle-
necks and selection farther away from the beneficial
mutation. Linkage disequilibrium tends to contrib-
ute less in such a setup.

4. We also investigated the situation for samples where
the number of mutations K is fixed (Figure 7).
Compared with the previous samples where u was
fixed (Figure 6), there is not much difference when
distinguishing between neutrality and selection.
When classifying between bottleneck and selection,
however, we observe differences. Since the overall
number of segregating sites is now the same for the
two scenarios, the classifier uses the spatial pattern of
variation, leading to the spatial pattern of the
coefficients shown in Figure 7.

TABLE 4

Accuracy depending on the position of the selected site

Bsite (kb) Acc (F u) (%)

20 100.0
15 80.6
10 44.2

Training was done with neu 1 sel(500, 0.001) and Bsite ¼
20 kb, and the type I error probability was adjusted to 5%.
Testing was done on sel(500, 0.001) with different positions
Bsite of the beneficial mutation. It can be seen that the sweep
detection power decreases quickly with increasing distance of
the positions of the selected site between training and testing
samples. Acc: percentage of cases where a sweep is detected.
See Table 1 for details of the notation.

TABLE 5

Accuracy depending on the position of the selected site for
different summary statistics

Acc (Fu) (%)

Bsite (kb) ûw ûp ûh Ta FW iHH

20 100.0 100.0 67.6 82.6 90.6 98.0
15 84.8 80.8 10.0 45.2 89.6 42.8
10 51.6 44.6 6.4 15.4 75.0 17.6

We show the power of detecting a selective sweep depend-
ing on the position Bsite of the selected site. To investigate the
sensitivity of the individual statistics with respect to position,
we used only one of the mentioned statistics at a time both in
training and in testing. We trained with neu 1 sel(500, 0.001),
F u, and Bsite ¼ 20 kb and adjusted the type I error probability
to 5%. ûh , Tajima’s D, and iHH are particularly sensitive to the
selected position. Ta, Tajima’s D; FW, Fay and Wu’s H.
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DISCUSSION AND CONCLUSION

Boosting is a fairly recent statistical methodology for
binary classification. It permits one to efficiently com-
bine different pieces of evidence to optimize the
performance of the resulting classifier. In population

genetics, a natural choice for such pieces of evidence is
individual summary statistics. By choosing an appropri-
ate boosting method, one can actually learn about the
relative importance of different summary statistics by
looking at the resulting optimized classifier. For sum-
mary statistics that are otherwise difficult to combine
(such as site frequency spectrum and LD measures), this
seems to be particularly interesting.

It is well known that single population genetic sum-
mary statistics are usually not sufficient. For methods such
as ABC that rely on inference from summary statistics, an
important issue is the choice and/or combination of
summary statistics to obtain precise estimates. A promis-
ing approach seems to be to use boosting as a first step:
The situation remains challenging, though, since differ-
ent summary statistics could in principle be important in
different parameter ranges.

Although boosting could be applied for any set of
competing population genetic scenarios, we focused on
the detection of selective sweeps both within a bottle-
neck and within a neutral background. Such scenarios
have been fairly well studied and several methods have
already been proposed. It is therefore possible to judge
the performance of boosting, given what is known about
the performance of other methods. Our simulation
results indicate that boosting performs better than
other summary statistic-based methods. This indicates
that boosting is able to come up with efficient com-

Figure 5.—Boosting-based genome scans. In each of the
three diagrams, each column represents an independently
simulated 100-kb chromosome region where a beneficial mu-
tation (a ¼ 500, t ¼ 0.001) occurred. The rows indicate the
position within the sequence. The dot to the right of each
graph marks the position 50 kb where the beneficial mutation
occurred. Within a column, each pixel indicates the classifica-
tion result based on a 40-kb window sliding along the chromo-
some region (step length 2 kb). Training was done with neu 1
sel(500, 0.001). A solid pixel indicates that boosting predicted
the considered position to have experienced a selection
event. As desired, the solid pixels are concentrated at the se-
lected position. In the top diagram, six different summary sta-
tistics were used, whereas in the middle diagram, only ûh,
Tajima’s D, and iHH were used. The type I error probability
was adjusted to 5% in both cases. In the bottom diagram,
the same six summary statistics were used as in the top dia-
gram, but the type I error probability was reduced to 0.2%,
corresponding to a threshold of g ¼ 0.5 for the boosting
classifier. Both using position-specific summary statistics and
decreasing the type I error probability lead to decreased false
positive rates in a genome scan.

TABLE 6

Accuracy with respect to the number of subsegments

Subsegments

Bsite (kb) 20 (%) 10 (%) 8 (%) 4 (%) 2 (%) 1 (%)

10 51.6 65.8 71.0 86.4 97.2 97.2
11 52.8 72.0 76.8 91.6 97.2 96.0
12 63.8 81.6 86.4 96.6 97.6 96.8
13 69.8 85.2 87.6 97.6 97.0 96.0
14 73.2 87.4 92.2 98.4 96.8 96.4
15 86.4 96.0 98.8 99.6 98.6 98.4
16 89.4 98.2 99.6 99.2 98.4 97.6
17 95.4 98.8 99.4 99.0 98.4 98.0
18 98.8 100.0 100.0 100.0 98.8 98.6
19 99.8 100.0 100.0 99.8 96.8 96.8
20 100.0 100.0 99.6 99.0 97.8 98.0

The percentages of correctly identified sweeps when the
sequence is sliced into different numbers of subsegments
are shown. We trained with neu 1 sel(500, 0.001), F u, and
Bsite ¼ 20 kb. The type I error probability was adjusted to
5%. Testing was performed on sel(500, 0.001) with different
positions Bsite of the beneficial mutation. Each sequence was
cut into subsegment(s) of equal size. We do not use iHH here.
As iHH is very sensitive with respect to the sweep position
Bsite, the decrease in power is now smaller than in Table 4
when the actual value of Bsite does not match the one simu-
lated in the training samples. The percentage of times a sweep
is called increases in most cases when the number of subseg-
ments decreases.
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binations of summary statistics. We also applied boost-
ing to the scenarios in Pavlidis et al. (2010), where
the authors used support vector machines (SVMs) to
combine the composite likelihood-ratio statistic ob-
tained from a modified version of the SweepFinder
software (Nielsen et al. 2005) with a measure of linkage
disequilibrium. For sweeps both within and without
bottlenecks, boosting usually provided a higher power
of detection while the false positive rate was equal or
lower.

Using a sliding-window approach, boosting may also
provide a way to carry out genome scans for selection.

So far, our focus has been on an ideal situation where
both the mutation rate and the recombination rate were
constant; we considered only completed selective sweeps
and no alternative types of selection; the population size
was taken as either constant or affected by a bottleneck.
However, in reality, a much more complex population
history may have left its traces in our summary statistics,
influencing the accuracy of our method. On the basis of
knowledge from the current literature, we discuss how to
carry out boosting-based scans for selection in the
presence of such additional factors. Further simulations
are needed to confirm our suggestions:

Mutation heterogeneity: We considered regions of
length 40 kb. If the mutation rates are heterogeneous
within such a segment, this can lead to reduced values
of up and K and a positive Tajima’s D, depending on

how severe the heterogeneity is (Aris-Brosou and
Excoffier 1996). If the extent of heterogeneity is
large, this may lead to false detections of selection,
since a reduced up and a reduced K are also
encountered under positive selection. If one suspects
mutation rate heterogeneity as a possible alternative
explanation for a positive classification result, one
may try to resolve the issue by training the boosting
classifier with mutation rates that vary from site to site
according to a gamma distribution (Uzzell and
Corbin 1971; Aris-Brosou and Excoffier 1996) to
mimic mutation heterogeneity. On a genomic scale,
the mutation rate may also vary. Scanning the whole
genome with a classifier that has been trained under
one single mutation rate may then give misleading re-
sults. Think, for instance, of a classifier that has been
trained under a high mutation rate but is subse-
quently applied to DNA segments where the mutation
rate has been much lower. A low level of polymor-
phism may then be viewed as a signal of selection.
One possible solution is to divide the whole genome
into segments and to scan each segment indepen-
dently with a classifier that is trained under an ap-
propriate mutation rate. Another approach that we
investigated in this article is to carry out training
under the same number K of mutation events that is
observed at the currently scanned genome segment.

TABLE 7

Rate of predicting selection with bottlenecks as an alternative scenario

Testing data
First step
(F u) (%)

Second step
(Fu) (%)

First step
(FK) (%)

Second step
(FK) (%)

sel(500, 0.001) 99.8 99.8 98.4 76.0
sel(500, 0.2) 98.4 98.4 96.6 72.0
sel(200, 0.001) 93.8 93.8 86.2 62.2
sel(200, 0.2) 87.6 87.6 75.8 48.6
bot(0.002, 0.002) 46.0 43.2 7.8 1.6
bot(0.002, 0.02) 99.8 0.0 56.0 2.2
bot(0.002, 0.2) 100.0 0.0 30.2 0.4
bot(0.02, 0.002) 44.4 43.2 7.8 2.8
bot(0.02, 0.02) 99.8 0.6 61.6 1.8
bot(0.02, 0.2) 100.0 0.0 64.6 0.0
bot(0.2, 0.002) 32.6 32.6 8.0 1.4
bot(0.2, 0.02) 98.6 91.0 49.4 0.0
bot(0.2, 0.2) 100.0 97.2 27.4 0.0
bot no. 48.6 41.2 4.0 1.4

We investigate how often selection is predicted by the two-step boosting classifier discussed in Sensitivity toward
bottlenecks. For selection scenarios, these cases contribute true positives; for bottleneck scenarios, they are false
positives. First step, the percentage of testing samples classified as selection by classifier (C)1; second step, the
percentage of testing samples classified as selection by both C1 and C2. C1 was trained with neu 1 sel(N(500,
2002), N(0.2, 0.12)) and the type I error probability was adjusted according to 500 independent neutral samples.
C2 was trained under bot(N(0.02, 0.012), N(0.02, 0.012)) 1 sel(N(500, 2002), N(0.2, 0.12)) and the type I error
probability was adjusted according to 500 independent bot(N(0.02, 0.012), N(0.02, 0.012)). Bot no. indicates
that the bottleneck samples have the same average ûp-value (computed once across the whole region) as
sel(500, 0.001). For F u, bot no. was bot(0.002, 0.002), and D ¼ 0.0085; for FK, bot no. was bot(0.002,
0.002), and D ¼ 0.07. See Table 1 for further notation.
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Recombination heterogeneity: In the human genome,
for instance, there is a recombination hotspot of
length 1 kb approximately every 100 kb of sequence

(Kauppi et al. 2004; Calabrese 2007). If the inves-
tigated region contains recombination hotspots, this
will reduce the LD and may consequently reduce the

TABLE 8

Comparison of boosting with other summary statistic-based methods

Testing data One-step (%) Two-step (%) Ta (%) FW (%) DH (%) Ta c (%) FW c (%) DH c (%)

F u

sel(500, 0.001) 99.8 99.8 26.6 79.0 41.6 73.8 71.8 67.8
sel(500, 0.2) 98.4 98.4 26.8 23.2 28.0 66.4 12.2 20.4
sel(200, 0.001) 93.8 93.8 11.0 25.8 21.4 51.0 52.0 50.0
sel(200, 0.2) 87.6 87.6 11.6 8.4 12.0 42.6 11.2 17.0
bot random 97.0 3.8 51.2 62.8 26.2 52.4 23.2 12.6

FK
sel(500, 0.001) 98.4 76.0 26.2 79.8 41.6 72.6 72.0 69.8
sel(500, 0.2) 96.6 72.0 29.8 26.4 37.0 69.4 9.4 19.0
sel(200, 0.001) 86.2 62.2 9.8 27.2 19.8 51.4 54.0 48.8
sel(200, 0.2) 75.8 48.6 13.2 8.2 13.2 42.6 7.8 15.2
bot random 55.8 3 52.8 62.4 26.4 62.4 24.0 12.0

The percentage of times selection was predicted for testing samples that were simulated under different selective and bottleneck
scenarios is shown. We compared the following approaches that use summary statistics: Ta, Tajima’s D; FW, Fay and Wu’s H; DH,
DH test; c, center. First, these statistics were computed only once across the whole 40-kb region, which may lead to a weakened
selective signal according to an averaging effect. Since the signal in the center of the region will usually be the strongest, we then
tried to use only the 4-kb center section of the region to compute the statistics. The results can be found under Ta c, FW c, and DH c.
‘‘One-step’’ and ‘‘two-step’’ indicate one-step boosting and two-step boosting, respectively. These results are the same as in Table 7.
bot random¼ bot(N(0.02, 0.012), N(0.02, 0.012)). The type I error probability of boosting (both for one-step and for two-step) was
adjusted to 5%, and we chose cutoff points for the other tests also according to the 5% quantile estimated from 50,000 simulated
neutral samples. The samples were generated under both fixed u (F u) and fixed K (FK). We can see that boosting always performed
much better for distinguishing neutrality from selection, although the difference between the methods was reduced slightly when
Tajima’s D, Fay and Wu’s H, and the DH test were calculated only from the center section of the region. Under the more difficult
situations the advantage of boosting is particularly visible. Note that one-step boosting predicted most of the bottleneck samples as
selection whereas the DH test did not. The application of two-step boosting, however, solved this problem.

TABLE 9

Comparison of boosting with the method proposed by PAVLIDIS et al. (2010) under neutrality and bottlenecks vs.
selective sweeps

Training data Testing data FP (%) Acc (%) Pavlidis’s FP (%) Pavlidis’s Acc (%)

neu1 1 sel1 sel1 0 98 3 90
neu2 1 sel2 sel2 0 100 0 98
bot1 1 sel1 sel1 1 100 26 75
bot2 1 sel2 sel2 0 99 18 84

sel1, sel(500, 0.0001); sel2, sel(2500, 0.0001). To make the setup equal to that in Pavlidis et al. (2010), we
generated 2000 training samples for each parameter set. (The results were almost identical when we followed
our standard training procedure and used only 500 training samples.) Both sel1 and sel2 were generated under
u ¼ 0.005. For each sample taken according to sel1, we computed Watterson’s estimate ûw (Watterson 1975)
and generated a neutral sample with u ¼ ûw. The training data neu1 consisted of 2000 neutral samples obtained
in this way. We obtained neu2 analogously by matching u to sel2. bot1 and bot2 were bottleneck samples with
the parameters as in Li and Stephan (2006). This is a 4-epoch bottleneck model: Backward in time, a bottle-
neck happens from 0.0734 time units to 0.075 time units (in 2N0 generations, where N0 is the current effective
population size), and the population size reduces to 0.002N0, then instantly the population size changes to
7.5N0, and finally it becomes 1.5N0 at 0.279 time units. For each realization of sel1, u was again estimated,
and a corresponding bottleneck sample was obtained using u ¼ û. See Pavlidis et al. (2010) and Zivkovic

and Wiehe (2008) for details. Again bot1 consists of samples obtained in this way and bot2 was obtained anal-
ogously. FP, false positive rate; Acc, accuracy (power of detecting a selective event). The FPs of the four rows
were computed according to neu1, neu2, bot1, and bot2, respectively. The samples of the same parameter set
for training, testing, and FP computing were independently generated. The Pavlidis’s FP and Pavlidis’s Acc col-
umns show the accuracy of the support vector machine-based method of Pavlidis et al. (2010). Rows 1 and 2 of
these columns are taken from Table 1 in Pavlidis et al. (2010), whereas rows 3 and row 4 are from Table 2.
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power of sweep detection. Nevertheless, since the
other summary statistics that use polymorphism and
site frequency spectrum information are not affected,
the decrease in power may be limited. An obvious
option would again be to take potential recombina-
tion hotspots into account when training the boosting
classifier.

Ongoing selection (incomplete sweeps): In our simu-
lations, the beneficial mutation was fixed when the
samples were taken. If selection is ongoing, the
mutation frequency spectrum will be notably differ-
ent from the one under neutrality when the fre-

quency of the beneficial allele reaches 0.6 (Zeng et al.
2006). Thus there should be a chance to detect
selection when the frequency of the beneficial allele
is .0.6.

Recurrent selection: According to Pavlidis et al. (2010)
recurrent selective sweeps will lead to a loss of the
characteristic local pattern of selection events. On
average, the sweep events will also often be quite old
( Jensen et al. 2007; Pavlidis et al. 2010). Both effects
suggest that the power of detecting recurrent sweeps
in a region will be somewhat lower than with a single
selective event.

TABLE 10

Comparison of boosting with the method proposed by PAVLIDIS et al. (2010): detecting a sweep within
a bottleneck

Training data Testing data FP (%) Acc (%) Acc* (%) Pavlidis’s FP (%) Pavlidis’s Acc (%)

bot1 1 b_s1 b_s1 8 98 96 51 71
bot1 1 b_s2 b_s2 11 95 85 20 73
bot1 1 b_s3 b_s3 0 98 99 8 97
bot1 1 b_s4 b_s4 19 84 60 56 63
bot1 1 b_s5 b_s5 6 97 95 27 50
bot1 1 b_s6 b_s6 8 97 94 22 60
bot1 1 b_s7 b_s7 2 99 100 35 67
bot1 1 b_s8 b_s8 15 88 69 25 46

As in Pavlidis et al. (2010), we used a broad uniform prior for u and accepted only those realizations with K¼
50 both for training and for testing. We considered the following scenarios: bot1, bot(0.02, 0.0015), D ¼ 0.002;
bot2, bot(0.02, 0.0375), D¼ 0.05; b_s1, . . . , b_s8, selective sweep within a bottleneck with Bsite¼ 25,000 bp; b_s1,
t0 ¼ 0.002, t1 ¼ 0.0015, D ¼ 0.002, s ¼ 0.002, t_mut ¼ 0.02. Here s is the selective coefficient, and t_mut is the
time when the beneficial allele occurred in the population. Note that all the time indicators in Pavlidis’s article
are in the units of 4N generations, but 2N generations in this article. b_s2, t0 ¼ 0.02, t1 ¼ 0.0015, D ¼ 0.002, s ¼
0.002, t_mut¼ 0.0214; b_s3, t0¼ 0.02, t1¼ 0.0015, D¼ 0.002, s¼ 0.8, t_mut¼ 0.0214; b_s4, t0¼ 0.02, t1¼ 0.0015,
D ¼ 0.002, s ¼ 0.002, t_mut¼ 0.23; b_s5, t0 ¼ 0.02, t1 ¼ 0.0375, D¼ 0.05, s ¼ 0.002, t_mut ¼ 0.02; b_s6, t0¼ 0.02,
t1 ¼ 0.0375, D ¼ 0.05, s ¼ 0.002, t_mut ¼ 0.0214; b_s7, t0 ¼ 0.02, t1 ¼ 0.0375, D ¼ 0.05, s ¼ 0.1, t_mut ¼ 0.0214;
b_s8, t0 ¼ 0.02, t1 ¼ 0.0375, D ¼ 0.05, s ¼ 0.002, t_mut ¼ 0.23. The other parameters n ¼ 12, l ¼ 50,000 bp, and
r¼ 0.01 are also chosen to match those in Pavlidis et al. (2010). For each parameter set, 2000 replications were
simulated. FP, false positive rate; Acc, accuracy (power of detecting a selective event). The false positive rate FP
in rows 1–4 is under the bottleneck scenario bot1, whereas bot2 is used in rows 5–8. The results in Acc* provide
the power when the false positive rate FP is adjusted to 0.05. The Pavlidis’s FP and Pavlidis’s Acc columns show
the accuracy of the support vector machine-based method of Pavlidis et al. (2010). Rows 1–4 of these columns
are taken from Table 3 in Pavlidis et al. (2010), whereas rows 5–8 are from Table 4.

TABLE 11

Cross-testing: the power of detecting a sweep within a bottleneck if training and testing parameters do not coincide

Testing data (%)

Training data b_s1 b_s2 b_s3 b_s4 b_s5 b_s6 b_s7 b_s8 bot1 bot2

bot1 1 b_s1 96 85 99 15 77 74 98 16 5 2
bot1 1 b_s2 94 85 99 13 81 77 97 10 5 2
bot1 1 b_s3 84 70 99 49 62 60 98 68 5 6
bot1 1 b_s4 73 59 99 60 53 53 96 81 5 10
bot1 1 b_s5 99 95 99 23 95 94 99 14 17 5
bot1 1 b_s6 99 95 99 22 95 94 99 14 16 5
bot1 1 b_s7 99 94 100 33 93 91 100 41 14 5
bot1 1 b_s8 71 54 99 46 45 45 95 69 3 5

Please refer to Table 10 for the definition of the scenarios bot1, bot2, and b_s1, . . . , b_s8. The FP rates have been adjusted to 0.05
under the training null scenario. The percentages should therefore be compared with the Acc* column in Table 10.
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Background selection: Like positive selection, back-
ground selection will also reduce the polymorphism
level but it will not generate high-frequency mutations
(Fu 1997; Zeng et al. 2006). If we train under neutrality
vs. selection and the excess of low-frequency muta-
tions is recognized by the classifier, it is possible that
background selection will be wrongly identified as
positive selection. To avoid this, a two-step method
should be helpful. If a sample is classified as under
selection, one may want to train the classifier using
both positive selection and background selection
samples in a second step. When using summary sta-
tistics that measure the abundance of high-frequency
mutations, we expect that the resulting classifier is
able to distinguish between background and positive
selection.

Balancing selection: If the equilibrium frequency of the
selected allele is not very high, it is difficult to discover
balancing selection. If on the other hand the equilib-
rium frequency is fairly high (e.g., 75%) (Zeng et al.
2006), the signature of balancing selection resembles
that of positive selection. After the selected allele
reaches its equilibrium frequency, some hitchhiking
neutral alleles will also have high frequencies and will
stay segregating for a longer period than under a
selective sweep. This is because their frequency will be
lower when reaching equilibrium, requiring more
time for fixing them by drift (Zeng et al. 2006). Thus
our method should also detect balancing selection at
high equilibrium frequency, and its age will affect the
efficiency less than under positive selection.

Population growth: Population growth will cause an
excess of low-frequency variants, but will not affect

high-frequency mutations (Fu 1997; Zeng et al. 2006).
So like bottlenecks and background selection, a two-
step method may be helpful to rule out population
growth as an alternative explanation.

Population shrinkage: Population shrinkage will cause
the number of low-frequency variants to be smaller
than those of intermediate and high frequency (Fu

1996; Zeng et al. 2006). Since this is quite different
from the signature caused by a selective sweep, we do
not expect large problems for shrinking populations.

Figure 6.—The relative importance of different summary
statistics for the detection of selection under a fixed value
of u. Under different selective scenarios, we investigate the rel-
ative importance of our summary statistics. One way of mea-
suring their importance is in terms of the absolute value of the
coefficients given to the summary statistics by the boosting
classifier. A large coefficient means that a certain statistic is
very influential at the considered position for our classifier.
Each graph is based on an average of 10 trials, with each trial
containing 500 neutral (or bottleneck) samples and 500 selec-
tion samples. All the samples were generated with fixed u. The
relative importance of the six summary statistics was consid-
ered separately for each subsegment; that is, each time a
boosting process was applied to only six statistics at a specific
position.

TABLE 12

Training with selection vs. bottleneck and testing with selec-
tion within a bottleneck

Training data Testing data FP (%) Acc (%)

bot1 1 sel1 b_s1 11 96
bot1 1 sel2 b_s2 11 93
bot1 1 sel3 b_s3 6 99
bot1 1 sel4 b_s4 1 36
bot2 1 sel5 b_s5 5 94
bot2 1 sel6 b_s6 5 93
bot2 1 sel7 b_s7 2 99
bot2 1 sel8 b_s8 2 44

Please refer to Table 10 for the definition of bot1, bot2, and
b_s1, . . . , b_s8. sel1 and sel5, s ¼ 0.002, t_mut ¼ 0.02; sel2 and
sel6, s ¼ 0.002, t_mut ¼ 0.0214; sel3, s ¼ 0.8, t_mut ¼ 0.0214;
sel4 and sel8, s ¼ 0.002, t_mut ¼ 0.23; sel7, s ¼ 0.1, t_mut ¼
0.0214. Here s is the selective coefficient, and t_mut is the
time when the beneficial allele occurred in the population.
In the simulations, we used a broad uniform prior for u
and accepted only those realizations with K ¼ 50. For each
parameter set, 2000 replications were simulated. The FP rates
were computed according to bot1 in rows 1–4 and according
to bot2 in rows 5–8.
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Population structure: When a population is structured,
there may be an excess of low- or high-frequency
derived alleles especially if the sampling scheme is
unbalanced among the subpopulations (Zeng et al.
2006). In addition, population structure may increase
LD (Slatkin 2008). This might obviously affect the
results obtained from our boosting classifier and
further research is needed to use boosting classifiers
in the context of structured populations. Adding Fst as
a summary statistic may obviously help in this context.
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File S1

A Toy Example Illustrating Logit-boosting

The package mboost mboost available in R provides an implementation of algorithm
1. There, f [m−1] is updated to f [m] in the m-th iteration. This is done by using a base
procedure to obtain an approximation ĝ[m] to the gradient vector (U1, . . . , Un). Samples
that have been correctly classified in step m − 1, receive a small gradient component
value Ui whereas incorrectly classified ones obtain large values of Ui, giving them a larger
weight for iteration m. With the squared error loss, the gradient entries Ui are simply
the negative residuals. Since the base procedure is used in step 3 of algorithm 1 to fit a
gradient, the method can be viewed as a steepest descent algorithm in function space.

To illustrate how boosting works, we provide the following simple example. The code
is for the package mboost. Consider the data set

sample y x1 x2 x3

1 0 1 0 0

2 1 1 0 1

3 0 1 0 0

4 1 1 1 1

5 0 5 1 1

6 1 1 1 1

consisting of a response variable y and three summary statistics as explanatory vari-
ables. While x2 is uncorrelated with y, x3 can be used to predict y correctly in all cases
except for sample 5, for which x1 is helpful. Overall, it should be possible to predict y
from x1 and x3.

We consider boosting with simple logistic regression as base procedure and the binomial
likelihood loss function. To speed up the procedure, we set the step length to ν = 1. (A
smaller step length will lead to an analogous result, but requires more iterations. In some
situations a smaller choice for ν can be helpful however to prevent overshooting.) In the
first iteration x3 is selected as predictor, and in the second iteration x1. Subsequently
both coefficients are adjusted until AIC reaches its minimum at the seventh iteration. We
therefore stop at this point and get

> coef(glmboost(y~.,data=dat,family=Binomial(),

control=boost_control(mstop=7,nu=1)))

x1 x3

-0.6260 1.8927

Thus f(x1, x3) = −0.6260x1 +1.8927x3. From f , we obtain the predicted probabilities
P (Y = 1|X) = exp(f)/(exp(f) + exp(−f)) which can be found in the column ”p” below.

sample x1 x3 p y

1 1 0 0.22 0

2 1 1 0.93 1

3 1 0 0.22 0

4 1 1 0.93 1

5 5 1 0.08 0

6 1 1 0.93 1

Classifying samples where p > 0.5 as y=1 assigns all training samples correctly. Our
stopping rule based on Akaike’s information criterion AIC has been obtained using the
following code.

> res<- coef(glmboost(y~.,data=dat,family=Binomial(),

control=boost_control(mstop=500,nu=1)))

> AIC(res,"classical")

[1] 3.93976 Optimal number of boosting iterations: 7
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Table S1

Random choice of parameters for the training samples: uniform distribution
versus Gaussian distribution

Testing data Gaussian(Fθ) Uniform(Fθ)

sel(500,0.001) 99.8% 99.8%
sel(500,0.2) 98.4% 99.0%

v sel(200,0.001) 93.8% 92.2%
sel(200,0.2) 87.6% 86.0%

Training was done either with neu + sel(N(500, 2002),N(0.2, 0.12))(the “Gaussian” column) or with

neu+ sel(U(153.6,846.4),U(0.0268,0.3732))(the “Uniform” column). The type one error probabilities

were adjusted to 5%. Here U(x, y) indicates a uniform distribution on the interval (x, y). The

particular parameter values for x and Y with the uniform distributions for α and τ have been chosen

to give the same mean and variance as for the Gaussian distributions. The results are quite similar

both for the Gaussian and the uniform distribution.

TABLE S1 
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Table S2

The loss functions we tried with the boosting FGD algorithm

Family Loss function Likelihood function

L2fm Squared error Negative binomial log-likelihood
GaussReg Squared error Squared error
Binomial Negative binomial log-likelihood Negative binomial log-likelihood
AdaExp Exponential loss Exponential loss
Laplace Absolute error Absolute error
Huber Huber loss Huber loss

Likelihood function: the likelihood function we tried with the stopping rule (AIC). Squared error:

(y − f)2. Negative binomial log-likelihood: log(1 + e−2yf ). Exponential loss: e−yf . Absolute

error: |y − f |. Huber’s loss: |y − f |2/2 (if |y − f | ≤ δ), or δ(|y − f | − δ/2) (if |y − f | > δ) for

some δ chosen by the user.

TABLE S2 
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Table S3

Accuracy of classification in dependence on the loss function used with the
boosting algorithm

Testing data L2fm GaussReg Binomial AdaExp Laplace Huber
(105) (1179) (2820) (>20000) (59) (53)

sel(500, 0.001) 99.8% 99.8% 99.8% 99.6% 99.8% 99.8%
sel(500, 0.2) 98.4% 98.4% 97.8% 96.0% 98.2% 98.0%

sel(200, 0.001) 93.8% 94.6% 93.8% 87.4% 93.8% 93.8%
sel(200, 0.2) 87.6% 88.2% 83.4% 75.2% 86.0% 87.6%

Depending on the loss function, we investigate the accuracy when testing under different selective sce-

narios. Training was done with neu+ sel(N(500, 2002),N(0.2, 0.12)), and the type one error probabilities

were adjusted to 5%. The numbers in parentheses are the number of iterations in boosting algorithm.

These results suggest that the behavior of the classifier does not depend strongly on the loss function

The L2fm and the GaussReg loss functions perform well over all considered scenarios, and require only

a moderate number of iterations. The Binomial and the AdaExp losses on the other hand usually need

more iterations to minimize the AIC, and they often behave slightly worse than L2fm or GaussReg, per-

haps due to a certain amount of over-fitting. The Laplace and the Huber loss functions require the lowest

number of iterations, leading to a similar performance as L2fm. For details of the strategies please see

Supplementary Table 2.
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