Skip to main content
. 2011 Jan;187(1):229–244. doi: 10.1534/genetics.110.122614

TABLE 11.

Cross-testing: the power of detecting a sweep within a bottleneck if training and testing parameters do not coincide

Testing data (%)
Training data b_s1 b_s2 b_s3 b_s4 b_s5 b_s6 b_s7 b_s8 bot1 bot2
bot1 + b_s1 96 85 99 15 77 74 98 16 5 2
bot1 + b_s2 94 85 99 13 81 77 97 10 5 2
bot1 + b_s3 84 70 99 49 62 60 98 68 5 6
bot1 + b_s4 73 59 99 60 53 53 96 81 5 10
bot1 + b_s5 99 95 99 23 95 94 99 14 17 5
bot1 + b_s6 99 95 99 22 95 94 99 14 16 5
bot1 + b_s7 99 94 100 33 93 91 100 41 14 5
bot1 + b_s8 71 54 99 46 45 45 95 69 3 5

Please refer to Table 10 for the definition of the scenarios bot1, bot2, and b_s1, …, b_s8. The FP rates have been adjusted to 0.05 under the training null scenario. The percentages should therefore be compared with the Acc* column in Table 10.