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Abstract

Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe 

Context-Dependent Assembly (CoDA), a platform for engineering ZFNs using only standard 
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cloning techniques or custom DNA synthesis. Using CoDA ZFNs, we rapidly altered 20 genes in 

zebrafish, Arabidopsis, and soybean. The simplicity and efficacy of CoDA will enable broad 

adoption of ZFN technology and make possible large-scale projects focused on multi-gene 

pathways or genome-wide alterations.

Engineered zinc-finger nucleases (ZFNs) can be used to introduce targeted alterations into 

genomes of model organisms, plants, and human cells.1, 2 Repair of ZFN-induced double-

strand breaks (DSBs) by error-prone non-homologous end-joining (NHEJ) leads to efficient 

introduction of insertion or deletion mutations (indels) at the site of the DSB. Alternatively, 

repair of a DSB by homology-directed repair with an exogenously introduced donor 

template can promote efficient introduction of alterations or insertions at or near the break 

site.

Widespread adoption and large-scale use of ZFN technology have been hindered by 

continued lack of a robust, easy-to-use, and publicly available method for engineering zinc-

finger arrays. One approach, known as modular assembly, joins together pre-selected zinc-

finger modules into arrays,3 a procedure simple enough to be practiced by any researcher. 

Some recent reports have demonstrated a high failure rate for this method,4, 5 although the 

consequent need to construct and test large numbers of ZFNs for any given target gene can 

be mitigated by using a more limited subset of modules.6 We recently described a robust 

selection-based method known as Oligomerized Pool ENgineering (OPEN),7 but the labor 

and expertise required to screen combinatorial libraries have limited its broad adoption.3 

Sangamo BioSciences, Inc. has also developed a platform for engineering ZFNs and 

although some details of this method have been published,8 its practice requires access to a 

proprietary archive of engineered zinc-finger units.9 Researchers may purchase customized 

ZFNs made by the Sangamo approach through the Sigma-Aldrich CompoZrR service but 

the cost of these proteins9 limits the scale and scope of projects that can be performed.

Here we describe Context-Dependent Assembly (CoDA), a publicly available platform of 

reagents and software that is simple to practice and shows a success rate comparable to 

selection-based methods such as OPEN. With the CoDA approach, three-finger arrays are 

assembled using N- and C-terminal fingers that have been previously identified in other 

arrays containing a common middle finger (Fig. 1). CoDA can be practiced using a large 

archive consisting of 319 F1 and 344 F3 units (Supplementary Tables 1 and 2) engineered to 

function well when positioned adjacent to one of 18 fixed F2 units (Methods). Thus, in 

contrast to modular assembly, CoDA does not treat fingers as independent modules but 

instead explicitly accounts for context-dependent effects between adjacent fingers,10, 11 

thereby increasing the probability that a multi-finger array will function well. CoDA is rapid 

and requires no specialized expertise; multi-finger arrays can be constructed in one to two 

weeks or less using standard cloning techniques or commercial DNA synthesis.

To test the CoDA approach, we assembled 181 three-finger arrays and evaluated each for its 

ability to bind its cognate DNA target site using a well-established bacterial two-hybrid 

(B2H) reporter assay.4, 7 Previous work has shown that three-finger arrays that fail to 

activate transcription by more than 1.57-fold in the B2H reporter assay are likely to be 

inactive as ZFNs in mammalian cells4 and those that activate by three-fold or more have a 
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high probability of functioning efficiently as ZFNs in zebrafish, plant, and human cells.7, 

12–15 Of the 181 CoDA arrays we tested using the B2H reporter assay, <8% (14 arrays) 

activated transcription by <1.57-fold and >76% (139 arrays) activated transcription by 

>3.00-fold (Supplementary Fig. 1 and Supplementary Table 3). These failure and success 

rates (as predicted by the B2H reporter assay) are comparable to what we have previously 

observed with three-finger arrays made by OPEN (Supplementary Note). Because so few 

(<25%) of the CoDA arrays we tested gave <3.00-fold activation in the B2H reporter assay, 

our results suggest that one could potentially skip the B2H reporter assay step and move 

directly to testing in the final desired cell type of interest.

We compared the efficacy of CoDA with that of modular assembly by using both 

approaches to construct three-finger arrays for 26 different nine bp sites and testing these 

proteins for DNA-binding activity in the B2H reporter assay (Supplementary Table 4). We 

observed that, for these sites that can be targeted by both methods, CoDA outperforms 

modular assembly (Supplementary Fig. 2 and Supplementary Note). The most likely 

explanation for the relatively higher success rates of CoDA is its explicit consideration of 

context-dependent activities between fingers.10, 11 We note that these differences in 

success rates become potentially more pronounced when one considers that two functional 

arrays must be engineered to create dimers of ZFNs.

We applied CoDA to engineer ZFNs for endogenous gene targets in zebrafish and plants. 

Using CoDA zinc-finger arrays that activated transcription at least three-fold in the B2H 

reporter assay, we constructed ZFN pairs for 24 gene targets in zebrafish, 13 gene targets in 

Arabidopsis thaliana, and one target present in two duplicated genes in soybean (Table 1). 

CoDA ZFNs induced targeted indel mutations with high efficiencies in 12 out of 24 

zebrafish target sites (≤ 1% to 16.7%; Table 1 and Supplementary Fig. 3), in six out of 13 

Arabidopsis gene targets (1.1% to 8.4%; Table 1 and Supplementary Fig. 4), and in a target 

site present in two duplicated soybean genes in transformed root tissue (18.8% and 10.7%; 

Table 1 and Supplementary Fig. 4).

Our overall per target success rate for obtaining mutations with CoDA ZFNs is 50% (19 out 

of 38 target sites) in zebrafish and plants, a frequency comparable to our success rate of 

~67% (16 out of 24 target sites) with OPEN ZFNs in zebrafish, plants, and human cells 

(refs. 7, 12–15 and unpublished data). We note that, for CoDA, success rate as calculated 

per ZFN and per target site is the same, since a single ZFN is synthesized per site. Although 

we do not know why some CoDA and OPEN ZFNs fail to induce mutations, we hypothesize 

that chromatin state or DNA methylation of the site or stability or folding of the protein 

might be responsible. Regardless of the precise mechanism, we recommend that users of 

CoDA plan to make ZFNs for at least two target sites per gene of interest to increase the 

likelihood that at least one pair will successfully introduce mutations.

CoDA still possesses some limitations compared to existing methods. Although modular 

assembly was less efficient than CoDA in our direct comparisons, modular assembly can 

potentially be used to target sites that CoDA currently cannot5, 6 and one recent report 

demonstrated a comparable success rate of 23% for modular assembly using a more limited 

subset of modules.6 In addition, although CoDA accounts for context-dependence between 
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adjacent fingers, it also has some limitations relative to selection-based methods such as 

OPEN. For example, CoDA constrains the identity of the middle finger (F2) and does not 

“balance” the effects of all three fingers on affinity and specificity of the final array. In 

addition, CoDA in its current form guides assembly of arrays to 9 bp target sites, ignoring 

the identities of the adjacent upstream and downstream bases. Thus, for highly demanding 

therapeutic applications (e.g.—introduction of alterations into human pluripotent stem 

cells13), ZFNs made by OPEN may still be preferable to those made by CoDA and it may 

be necessary to engineer zinc-finger arrays with greater specificities. Nonetheless, our 

overall results demonstrate that CoDA provides a method for assembling zinc-finger arrays 

that accounts for context-dependent effects, is easier to perform than OPEN selections, and 

yields ZFNs that function efficiently for gene modification.

With the current archive of CoDA units, a potential ZFN target site can be found 

approximately once in every 500 bp of random sequence (Supplementary Note). However, 

actual targeting range can be higher, depending upon genomic sequences . For example, 

~81% of 27,305 unique protein coding transcripts in the zebrafish genome (Ensembl Zv8.57 

database) contain one or more potentially targetable ZFN sites (mean of 4.37), a frequency 

equivalent to one potential site every ~400 bp of transcript coding sequence. By contrast, 

~63% of 33,200 unique protein coding transcripts in the Arabidopsis genome (TAIR9 

release) contain one or more potential ZFN target sites (mean of 2.45), a frequency equal to 

one potential site every ~790 bp of transcript coding sequence. To enable users to identify 

potential CoDA target sites in any given gene sequence, we have updated our publicly 

available web-based Zinc Finger Targeter (ZiFiT) program (http://bindr.gdcb.iastate.edu/

ZiFiT/ or http://www.zincfingers.org/software-tools.htm;Supplementary Note).

In summary, CoDA provides an effective alternative method for using publicly available 

reagents to engineer ZFNs. With CoDA, dozens of zinc-finger arrays can be rapidly 

assembled or commercially synthesized in 1 to 2 weeks without the need for labor-intensive 

selection and moved directly into cells for testing as ZFNs. We note that the rapidity and 

high success rate of CoDA enabled us to mutate 20 endogenous genes in three different 

organisms. CoDA will foster broader adoption of ZFN technology and also enable large-

scale ZFN projects focused on multi-gene pathways or genome-wide alterations that are 

difficult to implement using existing methodologies.

Online Methods

Identification of CoDA finger units

To identify “fixed” F2 fingers for various three bp target subsites, we analyzed the amino 

acid sequences of F2s from a collection of three finger arrays previously identified from 

OPEN selections performed for over 130 different nine bp sites (references 7, 12–15 and M. 

Maeder et al., unpublished data). From this analysis, we identified F2 units for 18 different 3 

bp subsites that occurred in at least two or more different contexts. The F1 and F3 units 

found adjacent to these F2 units were also chosen as CoDA units because they had been 

selected to work well together. To obtain additional F1 and F3 CoDA units for other 3 bp 

subsites, we performed a series of OPEN selections in which we interrogated combinatorial 

three-finger array libraries composed of a fixed F2 unit and randomized F1 and F3 fingers 
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for binding to specific 9 bp target sequences. From these selections we analyzed the amino 

acid sequences of three-finger arrays that activated transcription three-fold or more in the 

B2H reporter assay to identify additional F1 and F3 finger units that worked well when 

positioned adjacent to a specific fixed F2 CoDA unit. For selections that yielded multiple 

three-finger array clones, we chose F1 and F3 finger units that occurred the most frequently 

in multiple distinct arrays and/or that were found in three-finger arrays that gave the highest 

fold-activation in the B2H reporter assay. OPEN selections were performed essentially as 

described7, 16 but with the modification that a beta-lactamase antibiotic resistance gene was 

used for selection instead of the HIS3 gene. This modified version of OPEN enabled 

selections to be performed with higher throughput and will be described in a subsequent 

publication (Goodwin et al., unpublished data). Each of the three-finger arrays from which 

the F1, F2, and F3 units were derived was determined to be active in a well-established 

bacterial two-hybrid (B2H) reporter assay.

Construction of zinc finger arrays by modular assembly

Construction of plasmids encoding the modularly assembled zinc finger arrays used in this 

study has been previously described.4

Construction of zinc finger arrays by CoDA

To assemble CoDA zinc finger arrays, DNA fragments encoding a F1–F2 cassette or a F3 

cassette were amplified by PCR from plasmids using primer pair OK1424/OK1427 or 

OK1428/OK1429, respectively. The resulting PCR products were digested with DpnI to 

degrade template plasmid DNA and purified using a QIAGEN PCR purification kit. The 

cassettes were then fused together and amplified in a single PCR step using primer pair 

OK1430/OK1432. PCR product encoding a three-finger array was then purified using a 

QIAGEN PCR purification kit, treated with Pfu polymerase in the presence of dTTP 

nucleotide to create overhangs, phosphorylated with T4 polynucleotide kinase, and ligated to 

a B2H expression plasmid (pMG414) in which the zinc finger array is expressed as a fusion 

to a fragment of the yeast Gal11P protein.16 All plasmids were sequence-verified using 

primer OK61. (Sequences of all primers are provided in Supplementary Table 5).

B2H reporter assay

Zinc finger arrays made by modular assembly or CoDA were each tested for binding to its 

cognate target site by measuring its ability to activate transcription in the B2H reporter assay 

as previously described.16, 17 All assays were performed in triplicate.

Zebrafish gene mutation analysis

Injection of zebrafish embryos, isolation of genomic DNA, limited-cycle PCR amplification 

of the locus of interest, TOPO cloning of PCR fragments, and transformation of E. coli were 

performed as previously described.12, 18 Resulting colonies were assessed for gene 

mutations by one of two methods: (1) direct sequencing of individual clones or (2) screening 

of three pooled clones for alterations in PCR fragment size using fluorescent-based analysis 

as previously described18 followed by identification of specific mutations by direct 

sequencing.
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Arabidopsis gene mutation analysis

ZFN transgene expression constructs, Arabidopsis transformation methods, induction of 

ZFN expression in Arabidopsis seedlings by β-estradiol, and isolation of Arabidopsis 

genomic DNA were as previously described.14 ZFN recognition sites in the Arabidopsis 

genomic DNA were amplified by PCR, the resulting fragments TOPO-cloned and DNA 

from individual colonies subjected to DNA sequence analysis to identify mutations at the 

ZFN recognition site.

Soybean gene mutation analysis

Cotyledons of the soybean variety Bert were transformed using a previously described hairy 

root transformation protocol.19 The ZFN transgene was induced by application of 10 μM of 

β-Estradiol (Sigma) on tissue culture media. Hairy root DNA was isolated using the Qiagen 

DNeasy kit. Transformed roots were screened for the ZFN transgene using the primers (fwd: 

5’-TGGATATGTATATGGTGGTAATGC-3’) and (rev: 5’-

TTGAGCTTGTGGCGCAGCTCG-3’). Positive roots for the transgene were further 

screened for mutations by a cleaved amplified polymorphic sequence (CAPS) analysis (fwd: 

5’-GTAAAAGATGTTGAAAGAAAGTTGG-3’ and rev: 5’-

GCTTTTGACTTGAGCATGATGG-3’) utilizing restriction enzyme MslI, which digests the 

nucleotide sequence targeted for mutagenesis. A single root was identified as carrying 

putative mutations in the Dcl4a and Dcl4b genes. The targeted regions of Dcl4a and Dcl4b 

were amplified by PCR from this root using the CAPS primers. PCR fragments were cloned 

in pGem T-easy (Promega Corp., Madison, WI) and colony PCR products for 60 clones 

were subsequently sequenced. Mutations were identified via sequence alignments using 

MEGA 4.1.20

Identification of potential CoDA ZFN sites in zebrafish and Arabidopsis

Potential ZFN target sites in zebrafish and Arabidopsis were identified from the Ensembl 

(Zv8.57) and the Arabidopsis information resource (TAIR9) chromosomal assemblies and 

gene table files. Potential ZFN target sites were defined as those that could be targeted using 

the CoDA reagents described in this paper and that possess a spacer sequence of 5, 6, or 7 

nucleotides that falls entirely within an exon.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic overview of Context-Dependent Assembly (CoDA)
Zinc fingers are represented as colored spheres (F1 = amino-terminal finger, F2 = middle 

finger, F3 = carboxy-terminal finger) and 3 bp DNA “subsites” are represented as colored 

rectangles. Two different three-finger arrays, each engineered to bind different 9 bp target 

sites and that each share a common middle F2 can be used to create a three-finger array with 

a new specificity by joining together the amino-terminal finger (F1) from the first array, the 

middle finger common to both arrays (F2), and the carboxy-terminal finger (F3) from the 

second array.
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Table 1

Endogenous zebrafish and plant genes targeted by CoDA ZFNs

Gene name Organism Target site Mutant alleles/ Total alleles Mutation frequency

Dcl4a Soybean TGCTTCATCacaatGGAGATGAT 6/32 18.8%

Dcl4b Soybean TGCTTCATCacaatGGAGATGAT 3/28 10.7%

MPK8 Arabidopsis CTCCACAACatcagGATGACGAA 7/83 8.4%

MPK11 Arabidopsis CTCTTCGTCctatcgGCAGAGGCG 3/90 3.3%

MKK9 Arabidopsis GCCAGCGACggtggtGGTGGTGGC 3/95 3.2%

MPK15 Arabidopsis TTCTTCATCcagatGTTGTTGAG 2/73 2.7%

MAPKKK18 Arabidopsis CCCTTCCACaacaacGGAGAAGCT 2/75 2.7%

GA3OX2 Arabidopsis AGCTACGCCgtagccGGAGACGCC 1/94 <=1.0%

MAPKKK1 Arabidopsis GGCACCTCCgatttcGTGGAGGAA 0/190 0.0%

MAPKKK12 Arabidopsis TCCTCCACCgaatcGACGGCGCT 0/187 0.0%

MAPKKK12 Arabidopsis TTCCTCCACcgaatcGACGGCGCT 0/186 0.0%

MAPKKK4 Arabidopsis GTCTCCGCCtaggaGATGCAGAC 0/190 0.0%

MPK15 Arabidopsis TGCTTCTTCatccaGATGTTGTT 0/94 0.0%

MPK4 Arabidopsis CTCTTCGTCctatcgGTAGAGGCG 0/190 0.0%

TZP Arabidopsis TTCGTCTTCgagtcGTCGTTGTT 0/141 0.0%

actn1 Zebrafish GCCTTCTCCggggcGCAGAAGGT 10/60 16.7%

rag2 Zebrafish ATCTTCTGCtccaggGGTGAAGGT 4/52 7.7%

gad2 Zebrafish AGCCGCAGCtctcgGCTGTAGAC 3/43 7.0%

lmna Zebrafish CTCTTCTCCcccagaGCTGTGGAG 2/41 4.9%

apoeb Zebrafish CCCCTCAGCccagaTGGGAGGAG 3/64 4.7%

trpm7 Zebrafish CACACCTGCacacaGATGCTGCT 2/55 3.6%

grip1 Zebrafish GGCCACCTCcaccaGCAGCGGGC 3/90 3.3%

pclo Zebrafish CCCCTCTCCtcaaaGCAGATGCA 3/96 3.1%

jak3 Zebrafish GGCCCCACCaagcctGCTGGAGGA 1/71 <=1.0%

ago1 Zebrafish CTCTGCCGCcacctaGAGGATGGT 1/96 <=1.0%

slitrk1 Zebrafish GCCCACAGCaatggcGGAGCCGCC 1/96 <=1.0%

bmpr2a Zebrafish GACTTCCTCtctgtGCAGTCGGC 1/117 <=1.0%

bmpr2a Zebrafish ACCTCCTGCagtgtGAGGTTGTC 0/156 0.0%

cnot1 Zebrafish GGCGTCCACgtacgaGCGGAGGAG 0/93 0.0%

ctcf Zebrafish TTCCTCCTCctgatGCGGAGGCT 0/96 0.0%

dicer1 Zebrafish TTCTGCAGCtcaatGGAGATGGT 0/96 0.0%

dicer1 Zebrafish AGCTTCCTCcgccgGAAGTTGAG 0/96 0.0%

drosha Zebrafish GTCCTCCTCatggcgGTCGATGGT 0/96 0.0%

g6pcb Zebrafish TCCCACTGCtgattGTAGGTGGA 0/134 0.0%

nedd4l Zebrafish AACCGCACCacacaGTGGAAGAG 0/86 0.0%

nod2 Zebrafish AACTACAACattaggGCTGGAGGA 0/103 0.0%

rag1 Zebrafish GTCCTCCCCttcaaGTCGAATAG 0/91 0.0%
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Gene name Organism Target site Mutant alleles/ Total alleles Mutation frequency

th2 Zebrafish CTCCTCCTCaaacacGAAGCTGTC 0/142 0.0%

tp53 Zebrafish AGCAGCTGCatgggGGGGATGAA 0/107 0.0%

Target sites within each gene are written 5’ to 3’ with the two half-sites targeted by the zinc finger arrays shown in upper case letters and the 
intervening spacer sequence shown in lower case. Sequences of CoDA ZFN-induced zebrafish and plant gene mutations are shown in 
Supplementary Figs. 3 and 4, respectively.
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