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Abstract

MicroRNAs are small non-coding RNA molecules that regulate mRNA translation and stability by binding to complementary
sequences usually within the 39 un-translated region (UTR). We have previously shown that the hepatic toxicity caused by
wild-type Adenovirus 5 (Ad5WT) in mice can be prevented by incorporating 4 binding sites for the liver-specific microRNA,
mir122, into the 39 UTR of E1A mRNA. This virus, termed Ad5mir122, is a promising virotherapy candidate and causes no
obvious liver pathology. Herein we show that Ad5mir122 maintains wild-type lytic activity in cancer cells not expressing
mir122 and assess any effects of possible mir122 depletion in host cells. Repeat administration of 261010 viral particles of
Admir122 to HepG2 tumour bearing mice showed significant anti-cancer efficacy. RT-QPCR showed that E1A mRNA was
down-regulated 29-fold in liver when compared to Ad5WT. Western blot for E1A confirmed that all protein variants were
knocked down. RT-QPCR for mature mir122 in infected livers showed that quantity of mir122 remained unaffected. Genome
wide mRNA microarray profiling of infected livers showed that although the transcript level of .3900 different mRNAs
changed more than 2-fold following Ad5WT infection, less than 600 were changed by Ad5mir122. These were then filtered
to select mRNAs that were only altered by Ad5mir122 and the remaining 21 mRNAs were compared to predicted mir122
targets. No mir122 target mRNAs were affected by Ad5 mir122. These results demonstrate that the exploitation of microRNA
regulation to control virus replication does not necessarily affect the level of the microRNA or the endogenous mRNA
targets.
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Introduction

Genetic regulation of virus replication and expression is a

powerful strategy for the development of safer viral therapeutics

for vaccination, gene therapy and virotherapy. DNA viruses are

often made tissue or cancer selective by the replacement of strong

viral promoters with weaker human endogenous promoters. In

contrast, mechanisms for the control of RNA virus replication

have largely focussed on engineering or exploiting interferon

sensitivity [1,2] or using attenuated vaccine strains [3]. No

universal mechanism of control for all viruses or viral transgenes

has proven successful. However, the discovery of the microRNA

regulatory network has allowed the design of viral vectors in which

essential mRNAs are selectively degraded in tissues expressing a

specific microRNA, affording the possibility of control through

tissue-selective inactivation of essential viral functions.

MicroRNAs are non-coding RNA molecules that negatively

regulate mRNA translation through binding to sequences usually

found within the 39 un-translated region (UTR) [4]. The level of

complementarity between the microRNA and the target influences

whether the mRNA is degraded (perfect complementarity) or

forms a stable translationally inactive complex. The inclusion of

microRNA binding sites into the 39UTR of mRNAs encoding

essential viral proteins allows the selective destruction of the

mRNA and prevents protein translation. The pre-requisite of all

viruses to exploit mRNA translation in order to replicate means

that this method of control can be universally applied to every

virus infecting a eukaryotic cell.

Examples in which the technique has been used successfully are

in the control the of replication of Polio virus [5], Herpesvirus [6],

Vesicular Stomatitis virus [7,8], Influenza virus [9] and Adeno-

virus type 5 (Ad5) [10,11]. Viral vectors in which this technique

has been successfully used to control transgene expression include

Dengue virus replicons [12], Alphaviral replicons [13], Lentiviral

vectors [14] and Adenoviral vectors [15]. Based on current

literature, it is clear that the virus type, the microRNA of choice

and the tissue of pathology are all important in defining the level to

which a virus is successfully controlled.

Ad5 has been extensively investigated in the context of

virotherapy and the wild type strain (Ad5WT) has been shown to

have potent anticancer activity [16]. However, following intrave-

nous administration to mice, Ad5WT causes acute hepatic toxicity

which, at doses above 1x109 pfu, is uniformly fatal [17]. This

toxicity is believed to reflect high levels of expression of the E1A
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protein in hepatocytes [18,19]. This expression is then followed by

downstream viral gene expression and hepatocyte cell death.

To abrogate this toxicity, without affecting viral replication in

cancer cells, we inserted four perfectly complementary binding

sites for the hepatocyte-specific microRNA mir122 into the 39

UTR of the E1A transcription cassette (a virus termed Ad5-

mir122). The perfect complementarity between the mir122

binding sites we have inserted and microRNA mir122 should

result in substantial E1A mRNA cleavage through a mechanism

similar to RNAi. We have shown previously that this can reduce

hepatic viral replication, ALT release and liver pathology [10].

Little is known about the potential unwanted cellular conse-

quences of the control of viruses using microRNA binding sites.

The amount of cellular microRNA could be decreased by the

addition of viral target mRNAs or the viral mRNAs could saturate

the activity of the microRNA and allow changes in the levels of

endogenous mRNA targets. Previous studies using microRNA

regulated lentiviral vectors have shown that this can occur when

cells are exposed to a high multiplicity of infection. This suggests

that the regulatory effect of microRNAs are saturable at high doses

[20]. Below this threshold the microRNA endogenous mRNA

targets are reported to remain unchanged [21]. In this study we set

out to determine whether the dose of Ad5mir122 capable of

showing intravenous efficacy in treating cancer would significantly

affect hepatic levels of mir122 or its mRNA targets.

Materials and Methods

Adenovirus preparations
Adenovirus cloning has been described previously [10]. All

adenoviruses were grown in A549 cells, purified by double banding

in CsCl gradients with benzonase treatment after the first banding.

Viral particle (vp) number was determined by measuring DNA

content using a modified version of the PicoGreen assay (Invitrogen,

Paisley, UK) [22]. TCID50 calculated with the KÄRBER statistical

method [23] was used to estimate the adenovirus titer (TCID50

units/ml) and corrected to determine plaque forming units/ml (pfu/

ml). Adenovirus preparation characteristics are as follows: Ad5WT:

1.1361012 vp/ml, 1.9861011 pfu/ml and particle:infectivity (P:I)

ratio of 5.6; Ad5mir122: 1.2961012 vp/ml, 2.0161011 pfu/ml and

particle:infectivity (P:I) ratio of 6.4.

Maintenance of cell lines
HT29-Luc and Lovo-Luc colorectal cell lines were obtained

from Caliper Life Sciences (Runcorn, UK). Human hepatocellular

carcinoma HepG2 and Hep3b cell lines and A549 lung carcinoma

cells were obtained from the European Collection of Cell Cultures

(Porton Down, UK), and maintained in DMEM with 10% foetal

bovine serum (FBS) (PAA Laboratories, Yeovil, UK) including

penicillin (25 U/ml) and streptomycin (10 mg/ml).

Luciferase assays
Cells were seeded in triplicate in 48 well plates at 2.56104 cells/

well. Virus infections were performed at 10 vp/cell. 24 hrs

following infection the media was removed and 150 ml reporter

cell lysis buffer (Promega) was added. Cells were frozen at 280uC
for 1 hr before thawing. Luciferin (25 ml) (Promega, Southampton,

UK) was added to 25 ml of cell lysate and relative luminescence

was measured by luminometry (Lumat LB 9507, Berthold

Technologies, Redbourn, UK).

MTS Assays
Cell viability was determined using the CellTiter 96 Aqueuos

One Solution Cell Proliferation Assay (Promega). Cells were

seeded at 16104/well in 96 well plates in 100 ml media. After

24 hours, viruses were added at 10 and 100 vp/cell in 100 ml

media. Cells were left for either 3 or 6 days. At each time point

media was removed and 20 ml MTS reagent in 180 ml media was

added and cells were incubated for 30 minutes. Plates were read at

490 nm for 0.1 seconds. Blank wells containing MTS reagent and

media but no cells served as background and non-infected cells

represent 100% survival in each cell type. N = 5 for each assay.

Primary Hepatocyte culture
Frozen Human primary hepatocytes (NHeps, CC-2591), Hepa-

tocyte Basal medium HBMTM(CC-3199), supplements and growth

factors HCMTM SingleQuots (CC-4182) were purchased from

Lonza. Cells were seeded and manipulated according to Lonza’s

protocol. A 96 well plate was coated with rat tail collagen type 1

(Sigma, C3867) at 60 mg/cm2. Cells were thawed at 37uC in a water

bath, centrifuged at 4uC for 3 minutes at 50 g and then washed in

cold culture medium. Cells were re-suspended and the number and

viability was confirmed using the Trypan blue dye exclusion

method. The viability obtained was 60% at seeding. Cells were

seeded at 56104/well with 120 ml medium each well. The medium

was changed at 3 hours after seeding. Virus infections were

performed 24 hrs after seeding in 100 ml fresh medium at 1 vp/

cell, another 100 ml medium was added at 2 hrs post-infection.

100 ml of media was exchanged each day and until experiment

completion (72 hrs). The supernatant was removed by aspiration

and cells were lysed in 100 ml Promega reporter lysis buffer (E397A)

and frozen at 280uC before luciferase quantitation.

Western Blots
Protein was extracted from murine liver by homogenisation in

Promega lysis solution at 80 mg/ml wet weight. Samples were

span at 2000 rpm for 5 minutes at 4uC to remove cell debris. 30 mg

of liver protein was loaded onto a 10% polyacrylamide gel after

quantitation using a QuantiPro BCA assay (Sigma Aldrich, cat:

QPBCA-1KT). The gel was run at 160V for 1 hr and then protein

was blotted to a nitrocellulose membrane overnight at 4uC at 30V.

Nitrocellulose membrane was stained with Ponceau solution to

confirm equal loading (data not shown) and then blocked using 5%

milk powder (Fluka, Sigma Aldrich) for 2 hrs (E1A) or overnight

(Aldolase A). Membrane was washed twice with PBS 0.1% Tween

20 and then once with PBS. For the E1A western blot, primary

antibody recognising E1A (AbCam, Cambridge, UK, cat number:

Ab33183) was added at 1:500 dilution in 2.5% milk powder in

PBS for 1 hr. Membrane was washed as above. Secondary anti-

rabbit HRP labelled antibody was added at 1:1000 dilution in

2.5% milk powder for 1 hr. For the Aldolase A western blot,

primary antibody recognising Aldolase A (Sigma-Aldrich, cat

number: AV48130) was added at 1:1000 dilution in 2.5% milk

powder in PBS for 1 hour. Membrane was washed as above.

Secondary antibody was the same as used for Adenovirus E1A

western blot but used at a 1:4000 dilution for 1 hour. The

membranes were washed as above and then bathed in ECL

western blotting detection reagent (Amersham, GE Healthcare) at

0.125 ml/cm2 for 1 minute. Blot was visualised in an Alpha

Innotech gel documentation system for 1, 5 and 10 minutes using

chemi-luminescence detection.

RNA extraction and Reverse-transcription quantitative
PCR for E1A mRNA

Total RNA from murine livers was extracted using mirVana

miRNA isolation kit (Ambion) without the miRNA enrichment

step. Reactions were performed using TaqMan RNA-to-CT 1-step
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kit (Applied Biosystems), following the manufacturers protocol.

PCR cycles were as follows: 95uC 10 minutes, then 40 cycles at

95uC 15 seconds, 60uC 1 minute. Primer sequences for targeting

E1A 13S were: Fwd – ATG TTT GTC TAC AGT CCT GTG

TCT GAA, Rev – GAT AGC AGG CGC CAT TTT AGG and

probe – CCA GAA CCG GAG CCT GCA AGA CCT AC

(Sigma-Aldrich), dual labeled at the 59 end with 6-carboxyfluor-

escein and the 39 end with 6-carboxytetramethylrhodamine.

Results were analysed with StepOne Plus Real-Time PCR

Systems software (Applied Biosystems). Standard curves were

made by serial dilutions of known quantities of E1A DNA using an

Ad5 E1A encoding plasmid and assumes 100% extraction

efficiency.

Animal Models
Nu/nu CD1 female mice were obtained from Charles Rivers

Laboratories at 4–6 weeks old. 56106 HepG2 cells were injected

subcutaneously. Mice were randomised prior to treatment. Initial

tumour sizes were typically 10–20 mm3. All were pre-treated with

bisphosphonate liposomes (100 ı̀l/mouse, obtained from Dr Nico

van Rouijen) 24 h before the first dose of virus. In the study of

intravenous efficacy mice received bisphosphonate liposomes twice

at days -1 and 18. All control animals received this treatment. 10

Animals were used in each group.

Tumour sizing and Kaplan Meier analysis
Tumour volume was measured using hand-held callipers and is

defined as the size of the largest tumour in each mouse. Tumour

volume is calculated as an ellipsoid [24]. Kaplan Meier analysis

was performed using Prism software and is shown as the

percentage group survival at each time point.

Imaging
In vivo virus activity was assessed by non-invasive luciferase

imaging using an IVIS 100 system (Xenogen, MA). D-Luciferin

(potassium salt) (Gold Biotechnology inc) was prepared in PBS at

15.8 mg/ml. 100 ml Luciferin was administered via intra-perito-

neal injection and mice were imaged 4 minutes later.

Measurement of Serum Alanine Aminotransferase (ALT)
50 ml blood was taken from mice by tail bleed and allowed to

clot (15 min, room temperature) and spun at 1200 g for 10 min.

Serum was isolated and immediately frozen at 220uC. Samples of

thawed serum (5 ml) were added to ALT reagent (995 ml,

Microgenics) in a 1 ml quartz cuvette, incubated at 37uC and

the change in absorbance (340 nm) per minute was measured.

Units of ALT per litre were calculated according to the

manufacturer’s instructions using the following equation: Activity

in Units/Litre = Ä Absorbance change per minute x factor (factor

= total reaction volume 6 1000/6.3 6 sample volume 6 path

length).

MicroRNA Quantitation
RNA was extracted from murine liver as described above and

was diluted to 1 ng/ml in nuclease free water. Mature mir122

levels were quantified using a TaqMan MicroRNA Assay (Applied

Biosystems) specific for mir122 (Part number: 4427975 Assay ID:

002130). Briefly, Reverse transcription (RT) reactions (15 ml) were

set up according to manufacturer’s guidelines to using Multiscribe

Reverse Transcriptase (50U/reaction), dNTPs (1 mM final

concentration), 0.188 ml RNase inhibitor, 1.5 ml 10X RT buffer,

3 ml 5X mir122 TaqMan MicroRNA RT primer and 5 ml RNA

sample (1 ng/ml). Reaction conditions were 30 minutes 16uC, 30

minutes 42uC, 5 minutes 4uC. cDNA (1.33 ml of RT reaction) was

added to 1 ml 20X Mir122 Taqman MicroRNA Assay, 10 ml

TaqMan 2X Universal PCR master mix and made up to 20 ml

using nuclease free water. Real-time PCR conditions were 10

minutes at 95uC, followed by 40 cycles of 15 seconds at 95uC then

1 minute at 60uC. Samples were run on a Step One Plus real-time

PCR system (Applied Biosystems). The microRNA let7a was used

as an internal standard using the conditions described above and

using the TaqMan MicroRNA Assay (Applied Biosystems) specific

for mature let7a RNA (Part number: 4427975 Assay ID: 000377).

Relative standard curves were produced by ten-fold serial dilutions

of liver RNA extracted from a mouse receiving PBS. Reaction

properties were as follows; mir122 assay: slope 3.28, 101.78%,

efficiency 2.02 and Let 7a assay slope 3.268, 102.29%, efficiency

2.01. Relative expressions were calculated using the method

published by Pfaffl, M [25]. Probes were labeled at the 59 end with

6-carboxyfluorescein and at the 39 end with a non-fluorescent

quencher coupled to a minor groove binder (MGB).

mRNA microarray analysis
RNA was extracted from murine liver as described above. Each

group contains 3 mice and independent chips were used for

each sample. Whole-genome gene expression analysis were

performed using Illumina Single Colour Mouse WG-6_V2_0_R0_

11278593_A BeadChip with direct hybridization assay (Illumina,

Essex, UK) according to the manufacturer’s directions starting

with 300 ng total RNA from each sample. Biotinylated cRNA was

prepared using the Illumina TotalPrep-96 RNA Amplification Kit

(# 4393543 Ambion, Inc., Austin, TX). This briefly includes a

first- and second-strand reverse transcription step, followed by a

single in vitro transcription (IVT) amplification that incorporates

biotin-labelled nucleotides. Subsequent steps include array hy-

bridization, washing, blocking, and streptavadin-Cy3 staining.

Fluorescence emissions by Cy3 were quantitatively detected by

BeadArray Scanner for downstream analysis. GenomeStudio Data

Analysis Software was used to Visualize and analyze data

generated. This software provides results in standard file formats

that can be readily processed with most commercial expression-

analysis software programs. Data was imported to GeneSpring

GX 11.0.2 (Agilent Technologies, Inc, Santa Clara CA)

normalized with Shift to 75 percentile and baseline transformed

to median of all samples for detailed analysis to identify

significantly differentially expressed genes. The data discussed in

this publication is MIAME compliant and have been deposited in

NCBI’s Gene Expression Omnibus [26] and are accessible

through GEO Series accession number GSE23854 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23854).

Ethics Statement
All animal experimentation was performed in accordance with

the terms of UK Home Office guidelines and the UKCCCR

Guidelines for the Welfare of Animals in Experimental Neoplasia.

The home office project license number under which these

experiments were conducted is PPL 30/2333. All experiments

were conducted with approval of the Medical Sciences Animal

Ethics Committee, University of Oxford.

Results

Ad5mir122 shows decreased E1A expression in primary
human hepatocytes

We have previously shown that the inclusion of microRNA

binding sites within the 39UTR of adenovirus E1A mRNA leads to

lower E1A protein in both murine liver in vivo and in the mir122

Exploiting MicroRNA to Control Adenovirus
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positive human hepatoma cell line Huh7 in vitro. However, Huh7

cells express only 8% of the mir122 levels of primary human

hepatocytes [27]. We therefore wanted to measure the level of

control of viral transgene expression that could be achieved in

primary human hepatocytes as a surrogate for human liver.

Primary human hepatocytes (16104/well) were incubated with

either Ad5WT encoding luciferase C-terminally fused to the E1A

protein (Ad5WTLuc) or the equivalent virus containing four

mir122 binding sites in the E1A-luciferase 39UTR (Ad5mir122-

luc). After 72 hours the luciferase levels were .30-fold lower in

cells infected with Ad5mir122luc (9.56102 RLU/mg) when

compared to Ad5WTluc (2.76104 RLU/mg) (Figure 1). This is

the first demonstration of control of a microRNA regulated virus

in primary human cells and highlights the potential clinical utility

of exploiting microRNA regulation in therapeutic viruses.

Ad5mir122 kills mir122 negative cells with Ad5WT
potency

The ability of Ad5mir122 to kill tumour cells not expressing

mir122 was compared to Ad5WT. Multiple cell lines were

incubated at 10 and 100 vp/cell and the cell viability was

determined after 3 or 6 days by MTS assay. Equal cell killing was

observed with both viruses at both MOIs by day 3 (data not

shown). Almost complete cell killing in some cell lines was

observed at the higher MOI by day 6 (Figure 2). Interestingly, the

cell line most susceptible to killing by both viruses was HepG2

human hepatocellular carcinoma which is reported to be mir122

negative [27]. Given that decreases in mir122 levels in primary

hepatomas is an indicator of poor prognosis [28], HepG2 cells

represented a promising tumour model which should maximise

the therapeutic index achieved by Ad5mir122 between tumour

tissue and primary liver.

Pharmacodynamics-led determination of optimal virus
doses

The optimal doses of Ad5mir122 and Ad5WT were determined

in order to define a protocol that would allow repeat delivery in a

cancer efficacy model. Although we have previously defined the

single injection maximum tolerated dose in normal mice of

Admir122 (661010 vp), treatment of xenograft bearing nude mice

may require a different protocol, and therefore a pharmacody-

namics-led dose escalation study was performed.

Ad5WT and Ad5mir122 were administered intravenously to

CD1 nude mice bearing HepG2 xenografts, with serum ALT

measured after each dose (Figure 3a). The starting dose for both

viruses was 66109 vp/mouse, corresponding to 8.86108 pfu for

Ad5WT, slightly lower than the published maximum tolerated

dose (MTD, 16109 pfu) [17]. To enable imaging of virus activity

each dose contained 10% Ad5mir122luc.

Two days following administration of 66109 vp Ad5WT, mice

showed dramatically elevated ALT levels (.1000 Units/L)

suggesting significant hepatic toxicity (Figure 3a). Imaging showed

high levels of hepatic luciferase expression, confirming virus

activity in the liver with little to no tumour signal (Figure 3b).

Although the ALT values fell steadily over days 2–8 (Figure 3a),

several animals (6 out of 10) showed significant weight loss (.5%)

and one was put down (weight loss .15%). Accordingly this dose

of Ad5WT was taken as the MTD, and treatment was not

escalated.

In contrast, two days following administration of the same dose

(66109 vp) of Ad5mir122, mice showed ALT readings similar to

PBS controls (Figure 3a). Imaging data confirmed this result with

no detectable hepatic luciferase (Figure 3b). Little to no tumour

infection was observed with this dose.

The dose of Ad5mir122 was therefore increased by a half log to

261010 vp, three days after the first injection. Imaging at day five

showed some luciferase activity (indicating expression of E1A) in

both tumour and liver, although absolute values varied between

mice (data not shown). Average ALT values showed an increase to

222 ALT units/L compared to 42 ALT units/L from controls

(Figure 3a). On day six the dose was further increased by a half log

to 661010 vp. Imaging at day eight showed significant luciferase

activity in the tumours, however this was coupled with measurable

luciferase activity also in liver (Figure 3c). ALT readings showed

only a small increase from the previous dose (Figure 3a). This

study confirmed that 661010 vp of Ad5mir122 was close to the

MTD for Admir122, in agreement with our previous data in

normal mice.

Repeat administration of Adenovirus can cause cumulative

toxicity [10]. For assessment of efficacy it was desirable to

administer virus on multiple occasions, hence for repeated

administrations we selected dose levels that were half a log lower

than the estimated MTDs of Ad5mir122 (261010 vp/mouse) and

Ad5WT (26109 vp/mouse).

Efficacy of Ad5mir122 and Ad5WT in a hepatoma
xenograft model

To determine the anti-cancer activity of Ad5mir122, nude mice

bearing established HepG2 xenografts were administered 261010

vp intravenously on days 0, 3, 19 and 22 while control animals

received either 26109 vp of Ad5WT or PBS. Treatment began

with tumours between 10–20 mm3 in size. Tumour growth was

monitored for efficacy and a survival endpoint (for the Kaplan

Meier graph) was introduced when individual tumour volume

reached 400 mm3. Animals showing the fastest tumour growth

were allowed to continue beyond this point (up to 1000 mm3) to

allow the group average tumour size to reach 400 mm3. Mice

administered Ad5mir122 showed significantly reduced tumour

volume from day 20 compared to PBS controls (Figure 4a).

However, mice receiving Ad5WT also demonstrated significant

anti-cancer efficacy. This is perhaps unsurprising given that

Figure 1. Ad5mir122 shows reduced E1A activity in primary
hepatocytes. Primary human hepatocytes were infected with either
Ad5mir122luc or Ad5WTluc at 1 vp/cell. Luciferase levels are shown 3
days post infection (n = 3) as relative light units per mg total protein.
Error bars represent standard deviation.
doi:10.1371/journal.pone.0016152.g001
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Ad5WT has been shown to have potent anticancer activity [29]. It

is important to highlight that the doses of Ad5mir122 and Ad5WT

were not equitoxic. After 4 days in treatment with Ad5WT one

mouse was put down due to weight loss (.15%) and hepatic

toxicity (Figure 4b). No such adverse events occurred in the group

receiving Ad5mir122 at a 10-fold higher dose.

Kaplan Meier analysis of mice administered Ad5mir122 showed

increased survival with all mice surviving longer than all controls

Figure 2. Ad5mir122 kills mir122 negative cells with Ad5WT potency. Comparison of Ad5mir122 and Ad5WT in cancer cell lines incubated at
a multiplicity of infection of 100 viral particles per cell. The percentage cell survival is shown 6 days post infection (N = 5) using an MTS cell survival
assay. Statistical analysis was performed using one way ANOVA (* = p,0.05, NS = not significant).
doi:10.1371/journal.pone.0016152.g002

Figure 3. Pharmacodynamics led dose escalation study to determine the optimal treatment dose with Ad5mir122 and Ad5WT in
tumour bearing mice. A) Serum Alanine Transaminase (ALT) levels from mice receiving Ad5mir122, Ad5WT or PBS. ALT values for each group are
shown at days 2, 5 and 8 (n = 3) after the first injection. Data is presented as ALT units per litre using the equation in the materials and methods. B)
Luciferase imaging 2 days after the first injection of Ad5mir122 (left panel) or Ad5WT (right panel). C) Luciferase imaging eight days after the first
injection. Mice which received a single injection of Ad5WT are shown in the right panel and mice receiving three injections of Ad5mir122 are shown
in the left panel. Images are all presented on the same scale. D) Dosage and treatment schedule for Ad5mir122 and Ad5WT. Viral doses are indicated
above each line and include 10% of a Luciferase reporter virus (Ad5mir122luc). All mice were treated with bisphosphonate liposomes at day -1.
doi:10.1371/journal.pone.0016152.g003

Exploiting MicroRNA to Control Adenovirus
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(Figure 4b). These data show that the repeat administration of

Ad5mir122 at doses above the MTD of Ad5WT can have

significant anti-cancer efficacy without toxicity.

Assessment of intra-hepatic Ad5mir122 E1A activity
To quantify both the E1A mRNA and protein produced by

Admir122 at the optimal treatment dose in comparison to

Ad5WT, Balb/C mice were injected with 261010 vp and the

livers were harvested after 48 hrs. As further controls mice were

administered PBS or an E1A deleted non-replicating adenovirus

type 5 encoding luciferase (AdLuc) at the same dose. RNA was

extracted and the major E1A 13S transcript was measured by RT-

QPCR. Ad5mir122 showed a 29-fold decrease in the level of 13S

E1A transcript copies when compared to Ad5WT. E1A mRNA

Figure 4. Ad5mir122 has potent anti-cancer efficacy in HepG2 tumour bearing mice. Repeat administration of Ad5mir122 (n = 10 mice) at
the treatment dose determined from figure 2 (261010vp) on days 0, 3, 19 and 22 by intravenous injection. Control animals received repeat
administration of 26109 vp Ad5WT or PBS by intravenous injection (n = 10 mice). A) Tumour volume of mice receiving PBS or Ad5mir122 or Ad5WT
was calculated as the volume of an ellipsoid [24]. Statistical analysis was performed using one way ANOVA with a Bonferroni post test (ns = not
significant, * = P,0.05, ** = P,0.01) at each time point. Error bars are shown as standard error. B) Kaplan Meier survival analysis shows increased
survival of mice receiving Ad5mir122 and Ad5WT compared to control mice receiving PBS. After 4 days in treatment with Ad5WT one mouse was put
down due to toxicity. No treatment related toxicities were observed during Ad5mir122 treatment or treatment with PBS. Days shown on both of the
horizontal axis represent the number days since the first virus injection.
doi:10.1371/journal.pone.0016152.g004

Figure 5. MicroRNA mediated knockdown of both E1A mRNA and protein measured by RT-QPCR and western blot after
intravenous injection of 261010 vp of Ad5mir122. A) RT QPCR for the 13S E1A mRNA transcript in the livers of mice 48 hrs after intravenous
injection with 261010 vp of Ad5mir122, Ad5WT, Ad5Luc or PBS. Ad5mir122 shows significantly reduced E1A mRNA during liver infection when
compared to Ad5WT (N = 3). Statistical analysis was performed using a two tailed student T-Test (*P = ,0.05). B) Western blot to confirm that all E1A
proteins variants are knocked down. Each lane represents protein extracted from an individual mouse. Control lanes containing liver from mice
treated with either an E1A deleted Ad5Luc vector or PBS show no E1A signal. Ad5WT treatment shows 3 clearly defined bands corresponding to
proteins produced from the 13S (36 kDa), 12S (26 kDa) and a smaller fainter band which may represent the 11S or the 10S E1A transcript product.
Treatment with Admir122 shows significant knockdown in E1A protein levels for all splice variants. The blot was exposed for 1, 5 and 10 minutes with
the 5 minute exposure presented here. Molecular weights were calculated against a dual colour molecular weight ladder (Bio-Rad).
doi:10.1371/journal.pone.0016152.g005
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copies per nanogram of total RNA were 4.576106 and 1.546105,

respectively. This confirmed that the stability of the mRNA is itself

directly affected by microRNA regulation, as would be expected

(Figure 5a).

To confirm that the reduced level of E1A mRNA resulted in

decreased E1A protein production, and to confirm that the effect

was not E1A 13S specific, liver protein extracts were analysed by

western blot for E1A protein. Figure 5b shows that whilst infection

with Ad5WT resulted in significant E1A protein production,

infection with Ad5mir122 resulted in almost undetectable levels.

The major species of E1A protein correlating with the 36 kDa

(13S) and 26 kDa (12S) proteins are clearly visible with a smaller

band which may represent the protein product of the 10S or 11S

mRNA. No E1A signals were detected in control mice receiving

PBS or a non-replicating E1A deleted AdLuc vector. Equal

protein loading and blot transfer were confirmed by Ponceau

staining (data not shown).

Mir122 levels remain unaffected by Ad5mir122 infection
The production of E1A mRNA within hepatocytes that contains

multiple microRNA binding sites could lead to the sequestration of

mir122 away from its endogenous mRNA targets or depletion of

the total mir122 content in the cell. The livers screened in figure 5

by E1A western blot and RT-QPCR were analysed to determine

the quantity of mature mir122 RNA. All results were standardised

against the highly abundant microRNA let7a which should be

unaffected by Admir122 treatment. Comparative analysis of the

level of mir122 found in mice treated with Ad5WT, Ad5mir122 or

Ad5luc showed that there was no difference in the levels of mir122

following any virus administration when compared to the level of

mir122 in mice administered PBS (Figure 6a). The ratio of mir122

levels in mice administered Ad5WT, Admir122 and Ad5luc when

compared to the amount in mice receiving PBS were 1.04

(60.188), 1.06 (60.163) and 1.14 (60.14), respectively. This

proved that the level of mir122 was unaffected by the presence of

Ad5mir122 infection however it did not confirm if mir122 was

being sequestered away from its endogenous mRNA targets by

direct competition.

Ad5mir122 reduces genome wide hepatocyte mRNA
changes

Microarray genome wide mRNA profiling was performed on

livers of mice 48 hrs after the injection of either 261010 vp of

Ad5mir122, Ad5WT, an E1A deleted non-replicating AdLuc

vector or PBS. This assessment allowed the quantitation of mRNA

changes due to microRNA regulation of Ad5mir122 but also

served to highlight any mRNA differences between Ad5mir122

and Ad5WT. The maximum change observed in any mRNA was

111-fold although any mRNA profile change greater than 2-fold

was considered significant and highlighted for further analysis.

Data from the three independent animals was remarkably

consistent and can be viewed at the NCBI’s Gene Expression

Omnibus database. The most striking result between the different

viruses was the total number of mRNAs changed. Whilst Ad5WT

altered 3946 mRNAs $ 2-fold, Ad5mir122 altered only 668

mRNAs (Figure 6b). The E1A deleted AdLuc vector altered a total

of 564 mRNAs $2-fold. This shows that the technique can detect

many changes of varying magnitude but that infection of murine

liver with Ad5mir122 causes significantly fewer intracellular

changes than infection with Ad5WT.

The presence of additional microRNA regulated mRNA could

lead to sequestration of mir122 molecules away from their

endogenous targets. Therefore, any mRNA change observed

between mice administered PBS and Ad5mir122 that was not

shared between Ad5mir122 and either Ad5WT or AdLuc were

considered Ad5mir122 specific and were investigated further.

These mRNAs, which numbered only 21 in total (Table 1), were

Figure 6. The level and activity of mature mir122 in vivo is
unaffected by Ad5mir122. Mice were injected with 261010 vp of
either Ad5mir122, Ad5WT, an E1A deleted Ad5luc vector or PBS.
Quantification of mir122 mature RNA levels was performed using a
Taqman microRNA assay specific for mir122. CT values were corrected
against the levels of the microRNA, let7a, as a reference gene using the
method published by Pfaffl M [25]. A) RT-QPCR for mir122 showing nine
superimposed amplification curves (from three mice) in each treatment
group, before correction against let7a. Samples were reverse tran-
scribed using equal amounts of total RNA (5 ng) and RT-PCR was
performed using equal amounts of cDNA. CT values shown here
represent the average of the reactions from three mice plus or minus
standard deviation. B) The total number of mRNA changes recorded by
genome wide mRNA profiling of extracted murine hepatic RNA. Positive
signals are those in which the median mRNA level changed by P2-fold
from all mice in each group in comparison to median mRNA level in
mice treated with PBS (n = 3 for all groups). The total number of genes
altered is calculated using the average of the three independent
replicates and therefore no error bars are shown. C) Western blot
analysis of the mir122 regulated protein Aldolase A in mice treated as
above. Liver protein extracts were subjected to a BCA protein assay and
equal loading was confirmed by Ponceau stain (data not shown).
doi:10.1371/journal.pone.0016152.g006
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compared with the predicted mir122 targeted mRNAs in the

European Bioinformatics Institutes (EBI) Microcosm database. No

transcripts were predicted to contain mir122 binding sites. The list

of mir122 microcosm predicted targets was then compared to all

the signals from the microarray profiling to make sure no

important signals had been omitted by filtering the results as

described above. 143 predicted mir122 targets were altered in the

microarray analysis. Of those 143 mRNAs, 108 were altered only

by Ad5WT, 20 were shared by Ad5mir122 and Ad5WT but were

altered to the same extent and in the same direction (up- or down-

regulated). The remaining signals showed AdLuc specific changes.

This data shows that during the window of initial infection with

Admir122 the presence of microRNA regulated viral mRNA does

not alter the level of the endogenous microRNA mRNA targets.

Mir122 regulated Adolase A levels remain unaffected by
Ad5mir122

Although no differences had been observed in the levels of

known mir122 regulated mRNAs it was unclear if the quantity of

protein produced from these transcripts was altered. MicroRNA

suppression has been shown to decrease the protein level produced

from some mRNAs without changing the mRNA steady state

levels [30]. Therefore, mice were injected with 261010 vp of

Ad5mir122, Ad5WT, AdLuc or PBS. After 72 hours livers were

analysed by western blot for the levels of Aldolase A protein, a

known mir122 target [31,32]. Inhibition of mir122 function is

known to increase Aldolase A protein levels although the western

blot showed no difference between mice in the different treatment

groups (Figure 6c). This data suggests that mir122 regulation of

Aldolase A is maintained despite the presence of Ad5mir122 at

therapeutic doses.

Discussion

MicroRNA regulation of viral gene expression and replication

exploits the negative regulatory principle of microRNA mRNA

degradation. The success of this approach is reflected in the

number of RNA viruses for which it has already proven successful

[5,7,8,33,34]. In creating a DNA virus which was microRNA

regulated we anticipated that the level of control would be less

efficient and potentially more toxic by interfering with the

microRNA regulation of endogenous mRNA targets. This was

expected because the viral genome itself is not directly destroyed

when using a DNA virus and therefore continually produces

microRNA targeted viral mRNA. This could lead to sequestration

of the microRNA away from its endogenous mRNA targets and

alter the expression patterns of many genes.

Table 1. mRNAs in which the level was changed P2-fold by Ad5mir122 infection.

Gene Symbol
Compared to
PBS

Compared to
Ad Luc

Compared to
Ad5 WT Gene Name Accession

LOC381748 4.9 Q 5.6 Q 2.7 Q XM_355738.1

2310016F22Rik 4.6 Q 5.2 Q 2.6 Q RIKEN cDNA 2310016F22 gene
(2310016F22Rik)

NM_173743.2

Irf1 4.3 Q 5.0 Q 2.3 Q Interferon regulatory factor 1 (Irf1) NM_008390.1

Trim21 3.8 Q 4.2 Q 2.2 Q NM_009277.2

A630097K09Rik 3.5 Q 3.7 Q 2.5 Q AK042505

C2ta 3.4 Q 3.3 Q 2.2 Q AK040723

LOC435565 3.4 Q 5.2 Q 2.4 Q Similar to interferon-inducible GTPase
(LOC435565)

NM_001013828.1

Trim34 3.1 Q 3.4 Q 2.2 Q Tripartite motif protein 34 (Trim34) NM_030684.1

Tapbpl 3.1 Q 3.3 Q 2.1 Q TAP binding protein-like (Tapbpl) NM_145391.1

Trim34 3.0 Q 3.3 Q 2.0 Q Tripartite motif protein 34 (Trim34) NM_030684.1

Iigp-pending 2.9 Q 3.4 Q 2.0 Q AK089702

H2-T23 2.8 Q 3.5 Q 2.1 Q Histocompatibility 2, T region locus 23
(H2-T23)

NM_010398.1

Scotin 2.6 Q 2.8 Q 2.2 Q Scotin gene (Scotin), transcript variant 2 NM_026381.1

Saa1 2.4 Q 2.5 Q 2.0 Q NM_009117.1

EG240327 2.4 Q 2.8 Q 2.4 Q Predicted gene, EG240327 (EG240327) NM_001033767.1

LOC280487 2.3 q 2.1 q 3.6 q XM_203701.3

1200013B22Rik 2.3 Q 3.0 Q 2.2 Q NUAK family, SNF1-like kinase, 2 (Nuak2) NM_028778.2

Tapbp 2.2 Q 3.0 Q 2.9 Q TAP binding protein (Tapbp), transcript
variant 1

NM_001025313.1

0710001B24Rik 2.1 Q 3.0 Q 2.0 Q NM_175118

LOC244882 2.1 Q 2.2 Q 2.2 Q XM_146997.2

Tnfaip8l3 2.0 Q 2.0 Q 2.1 Q Tumor necrosis factor, alpha-induced protein
8-like 3 (Tnfaip8l3)

NM_001033535.1

Total mRNA profiling produced 4562 signals in which the mRNA levels were altered P2-fold after administration of either 261010 vp of Ad5WT, Ad5mir122, an Ad5luc
control vector or injected with PBS. The mRNAs in this table are those that show at least a 2-fold change in quantity following Ad5mir122 infection that are not altered
when compared to mice administered PBS, Ad5luc or Ad5WT. Mir122 predicted target mRNAs (produced using the Microcosm database) were compared to this list but
no positive matches were found.
doi:10.1371/journal.pone.0016152.t001
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In this study we have shown that the inclusion of four perfectly

complementary binding sites for hepatic specific microRNA

mir122 into the 39 UTR of adenovirus E1A allows efficient

mir122-controlled expression of E1A in murine liver, confirmed

by RT-QPCR and western blotting. We have demonstrated that

both the quantity of the microRNA and the stability of microRNA

targeted mRNAs are unaffected by Ad5mir122. Both of these

results are important toxicological findings and increase our

understanding of the safety profile of microRNA regulation.

Interestingly, the genome wide profiling of the mRNA levels in

livers infected with Ad5mir122 produced 21 mRNAs that were

altered P2-fold but it was not clear that they were directly

regulated by mir122. These signals may represent experimental

noise, however, given the reproducibility of the signals in

comparison to all other treatment groups and the extent to which

they are altered (in some cases up to 5-fold) this seems unlikely.

Further investigation would be required in order to determine the

cause of these changes and the effects they may have on cell

function.

The data reported here suggests that the highly abundant

microRNA mir122 is capable of regulating more mRNA

transcripts than are regulated under normal conditions in

hepatocytes and that it is probably expressed in excess of its

regulatory requirements. This was an advantage in our studies as it

allowed tight regulation of adenoviral E1A without altering

endogenous mRNA levels. However, other microRNAs may not

be as successful at controlling additional mRNA, especially if they

are expressed at lower quantities. The direct competition for

microRNA-mRNA binding between endogenous and exogenous

viral mRNA could result in changes in protein expression if the

quantity of the microRNA required for normal regulation was

only just met by its expression level. It has been shown that

significant alterations to the microRNA machinery can have toxic

side effects, usually by interfering with total microRNA production

[35] (i.e. DICER or RISC processing). Given that microRNAs do

not appear to have any obvious feedback mechanism to report the

addition of new target mRNA molecules, it seems unlikely that

increasing the quantity of mRNA target, as was done in this study,

for a single microRNA will cause such broad toxicity.

Within this paper we have also shown that the intravenous

administration of repeat doses of Ad5mir122 mediates anticancer

activity with negligible toxicity. All animals receiving Ad5mir122

performed better than all controls. This is the first anti-cancer

efficacy reported using a microRNA regulated oncolytic DNA

virus. Our data also builds on previously published evidence that

Ad5WT has potent anticancer efficacy [29], even at low doses.

However, as was clear in our studies, toxicity is a major limitation

to its use in animal models.

Genetic modification of adenoviruses to allow replication

selectively within tumour cells often relies on their activation by

cellular mechanisms, which can be weak compared to intrinsic

viral mechanisms. Accordingly such viruses, while providing good

safety, often show decreased anti-cancer potency compared to wild

type strains, particularly in vivo [29]. The exploitation of the

microRNA regulatory network is enabling the design of many new

viruses for cancer virotherapy, vaccination and gene therapy that

are modified to allow selective replication and expression only in

specific cell types and represents a new, safe and effective method

of controlling of viral gene expression.
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