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Abstract
Vascular disease in hypertension and diabetes is associated with increased oxidants. The oxidants
arise from NADPH oxidase, xanthine oxidase, and mitochondria. Superoxide anion and hydrogen
peroxide are produced by both leukocytes and vascular cells. Nitric oxide is produced in excess by
inducible nitric oxide synthase, and the potent oxidant, peroxynitrite, is formed from superoxide
and nitric oxide. The damage to proteins caused by oxidants is selective, affecting specific
oxidant-sensitive amino acid residues. With some important vascular proteins, for example
endothelial nitric oxide synthase, prostacyclin synthase, and superoxide dismutase, oxidation of a
single susceptible amino acid inactivates the enzyme. The beneficial effects of antioxidants, at
least in animal models of hypertension and diabetes, can in part be ascribed to protection of these
and other proteins. Mutant proteins lacking their reactive constituent can recapitulate some disease
phenotypes suggesting a pathogenic role of the oxidation. Thus, many of the shared functional
abnormalites of hypertensive and diabetic blood vessels may be caused by oxidants. Although
studies using antioxidants have failed in patients, the successful treatment of vascular disease with
HMG CoA reductase inhibitors, thromboxane A2 antagonists, and polyphenols may depend upon
their anti-inflammatory effects and ability to decrease production of damaging oxidants.

1. Introduction
Among all cardiovascular risk factors, diabetes mellitus (DM) and hypertension are the
leading causes of cardiovascular diseases. Unfortunately, these two risk factors often co-
exist, such that 60% of patients with diabetes are hypertensive, and up to 20% of subjects
with hypertension are diabetic1. The worldwide morbidity of DM has increased rapidly even
in developing countries, doubling the combined risk of cardiovascular events in patients
with hypertension2, 3. The endothelium is the principal target of cardiovascular risk factors,
including hypertension and diabetes, and is the cell most involved in the development of
vascular inflammation and atherosclerosis4. Although low levels of reactive oxygen species
(ROS) can play a physiological role in maintaining cardiac and vascular integrity, elevated
levels of ROS play a pathophysiological role in cardiovascular dysfunction associated with
hypertension and diabetes. Normally, ROS are produced in the vessel wall in a controlled
and tightly regulated manner. Under physiological conditions, low concentrations of
superoxide anion (O2

−•) and hydrogen peroxide (H2O2) are produced in cells by
mitochondria and NADPH oxidases. They are controlled by endogenous antioxidants,
manganese and copper/zinc superoxide dismutase (MnSOD, Cu/Zn SOD), catalase, and
glutathione peroxidases. Together with nitric oxide (•NO) these ROS function as cell
signaling initiators by their ability to introduce reversible post-translational protein

Correspondence to: XiaoYong Tong, PhD Vascular Biology Unit, X720 Boston University School of Medicine 650 Albany Street
Boston, MA 02118 xytong@bu.edu.
Conflicts of interest: Dr. Cohen is a consultant to Institut de Recherche Servier.

NIH Public Access
Author Manuscript
J Cardiovasc Pharmacol. Author manuscript; available in PMC 2011 January 11.

Published in final edited form as:
J Cardiovasc Pharmacol. 2010 April ; 55(4): 308–316.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modifications, such as S-nitroso- and S-glutathione adducts on cysteine thiols5. For example,
introducing these adducts on proteins including p21ras6, 7 and the sarcoplasmic reticulum
calcium ATPase (SERCA)8, 9 can regulate vascular smooth muscle cell (VSMC) contraction
and relaxation and VSMC growth. Under pathological conditions increased ROS production
leads to endothelial dysfunction, impaired vascular relaxation, increased VSMC growth and
hypertrophy, as well as increased deposition of extracellular matrix proteins. Although
mitochondria and xanthine oxidase are implicated as sources of damaging ROS in disease,
NADPH oxidases, either in inflammatory leukocytes or vascular cells, account for the bulk
of the current literature on vascular pathology. In contrast to the perceived generalized
nature of the damage induced by elevated ROS, it is now being recognized that ROS can
have selective effects on protein constituents, and they may selectively affect important
cardiovascular proteins (Figure 1).

2. Reactive oxygen and nitrogen species
The principal ROS made by cells is O2

−•, an anion radical produced by reduction of oxygen.
H2O2 is produced from O2

−• either by spontaneous dismutation or enzymatic dismutation by
the three isoforms of SOD - Cu/Zn, Mn, and extracellular Cu/Zn SOD. In normal tissues,
most H2O2 is converted to water by catalase. •NO produced in vascular cells from
constitutive endothelial nitric oxide synthase (eNOS) or inducible NOS, induced by
inflammatory cytokines, reacts rapidly with O2

−• to form the short-lived peroxynitrite
(OONO−). OONO− is termed a reactive nitrogen species (RNS) because of its high
reactivity with protein, DNA, and lipids. Leukocyte myeloperoxidase (MPO), H2O2, and
chloride anion can also produce hypochlorous acid (HOCl). When O2

−• is kept low, •NO
remains functionally active. When O2

−• is elevated it not only destroys •NO, but the ROS
and RNS mentioned here also oxidize protein targets of •NO (Figure 1).

3. NADPH oxidase as a source for increased ROS production
NADPH oxidase is the primary source of ROS in the vasculature and is functionally active
in all cells within the vessel wall, including endothelial cells, VSMCs, fibroblasts and
monocytes/macrophages10, 11. NADPH oxidase is a multi-component enzyme that is
comprised of membrane components p22phox and gp91phox (termed Nox2, or its
homologues Nox1, 3–5), and cytoplasmic components p47phox, p67phox and the small G
protein, rac1, which plays a role in activating NADPH oxidase. Unlike leukocytes which
express Nox2, rat VSMCs express mainly the Nox4 isoform, which together with p22phox
are the major components of the active Nox4-based NADPH oxidase complex12, 13. Unlike
the leukocyte oxidase which produces O2

−• in a burst during activation, there is a continuous
low-level of Nox4-derived ROS production in vascular cells, the activation of which does
not require rac1, p67phox or p47phox14–16. Also, unlike the leukocytic NADPH oxidase
whose NADPH oxidase releases O2

−• into the extracellular space, the vascular NADPH
oxidases release O2

− intracellularly, where it and the ROS and RNS produced from it can
act as intracellular signaling molecules or, when produced in excess, can cause damage.

4. Angiotensin II-induced Hypertension and ROS
Oxidative stress caused by increased ROS and RNS plays an important pathophysiological
role in hypertension. Treatment with antioxidants or agents to inhibit NADPH oxidase
decrease ROS production, prevent target-organ cellular damage, and decrease blood
pressure in animal models and in human hypertension (reviewed in ref. 17). The renin-
angiotensin-aldosterone system is a major activator of NADPH oxidase and ROS production
in hypertension18–20. Angiotensin II (Ang II) stimulates NADPH oxidase both by increasing
expression of NADPH oxidase subunits as well as by increasing ROS production in
VSMCs, endothelial cells, adventitial fibroblasts21, 22, and in intact arteries23–26. Many of
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these effects are mediated by Ang II type-1 (AT1) receptors and are blocked by losartan27,
28, except apparently in cultured adventitial fibroblasts21. Some of the therapeutic blood
pressure-lowering effects of AT1 receptor blockers in human patients may be attributed to
reduction of oxidative stress and increase of plasma antioxidant capacity29.

Several NADPH oxidases may play a role in blood pressure control. Overexpression on
Nox1 in mouse VSMC causes a marked increase in systolic blood pressure and hypertrophy
in response to Ang II30. In addition, in Nox1 knockout mice, the basal blood pressure is
lower, and there was complete protection against Ang II-induced increase in blood pressure
and medial hypertrophy. This was attributed to the elimination of O2

−• production and
improved •NO function31, 32. Nox2 appears to be equally important for the sequelae of Ang
II-induced hypertension. Nox2 knockout mice had lower basal blood pressure compared to
their controls33, but blood pressure increased similarly in the two strains when Ang II was
infused. Despite this, Ang II-induced vascular hypertrophy was entirely prevented in the
Nox2 knockout mice and the elevated oxidants were eliminated. This indicates that while
the pressor response to Ang II itself does not depend on Nox2 or O2

−•, the vascular oxidants
and smooth muscle hypertrophy do33. In a model of renovascular hypertension Nox2-
derived O2

−• decreased •NO function, and there was marked protection from hypertension in
the Nox2 knockout mice34. In low renin salt-sensitive hypertension, a tat-peptide inhibitor of
Nox2 normalized ROS generation and endothelium-dependent vascular relaxation35. The
dual roles of Nox1 and Nox2 in Ang II-induced hypertension in the mouse may be due to the
fact that Nox1 is localized in VSMC, but Nox2 is primarily located in endothelial cells and
adventitial fibroblasts in normal mice or those infused with Ang II33. Interpreting the roles
of the different oxidases is also made more difficult by the potential paracrine roles played
by diffusible •NO, O2

−•, and H2O2
25, 36. Ang II increases leukocyte infiltration into the

adventitia and intima, accounting for additional contribution to ROS production by
leukocyte Nox2. The importance in Ang II-induced hypertension of p47phox, another
component of NADPH oxidase involved in its activation, was demonstrated in p47phox
knockout mice which failed to develop hypertension in response to Ang II infusion37.

5. NADPH oxidase and Diabetes
Both acute and chronic hyperglycemia is associated with endothelial dysfunction38, 39. The
deleterious effects of hyperglycemia in type 2 diabetes are often amplified by coexisting
conditions associated with insulin resistance, including hyperlipidemia and hypertension.
Activation of NAD(P)H oxidase is implicated in oxidative stress associated with
hyperglycemia. Treatment of human umbilical vein endothelial cells with high glucose
increases NADPH oxidase expression, levels of oxidative stress markers, and apoptosis40.
Moreover, ROS production and expression of p22phox and p47phox are increased in mouse
microvascular ECs treated with high glucose41. p47phox siRNA decreases glucose-
stimulated O2

− production in SMC, implicating involvement of p47phox upregulation and/
or phosphorylation in ROS generation in response to hyperglycemia42.

Accumulating evidence suggests that sustained NAD(P)H oxidase ROS generation
contributes to endothelial dysfunction in diabetes43, 44. Antioxidants protect against the
deleterious effects of high glucose on vascular endothelial cells45. The rac1-regulated
NADPH oxidase subunits, Nox1 and Nox2, have been implicated in the abnormal
endothelial vasodilatorfunction in diabetes46. Consistent with a role for these Nox isoforms,
adenoviral vectors expressing DN rac-1 decrease O2

−• production and significantly improve
vascular relaxation47. The renin-angiotensin system is activated in diabetes, so maybe an
important activator of NADPH oxidase. Ang II acts through the AT1 receptor to inhibit
many of the actions of insulin in the vasculature, including vasodilation. The increased AT1
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receptor/NAD(P)H oxidase activation appears to contribute to vascular insulin resistance,
endothelial dysfunction, apoptosis, and inflammation48.

6. Other Sources of Oxidants in Hypertension and Diabetes
Endothelial nitric oxide synthase (eNOS) consists of both oxidase and reductase domains.
When the two enzymatic activities are uncoupled by lack of arginine substrate or
tetrahydrobiopterin (BH4) cofactor, eNOS produces O2

−• in addition to •NO, making the
enzyme a generator of OONO−. OONO− resulting from uncoupling of eNOS has been
implicated in Ang II-induced hypertension and diabetes49, 50. Xanthine oxidase is also a
source of ROS in atherosclerosis and has been implicated in hypertension and diabetes51, 52.
Some of the therapeutic effects of allopurinol used to control uric acid levels in many
patients with hypertension and diabetes may result from inhibiting this enzyme. Excess
mitochondrial production of ROS is implicated in the setting of hyperglycemia and
hyperlipidemia in diabetes53, but in part because mitochondrial inhibitors are so toxic and no
deficient mouse models are available, the role of excess ROS from mitochondria during in
vivo pathologies is poorly understood.

7. Oxidants and Vascular Function in Hypertension and Diabetes
Both in animal models and patients with diabetes and hypertension endothelium-dependent
vasodilator responses to acetylcholine may be attenuated. Studies of diabetic and
hypertensive rodent arteries have shown that resting arteries can contract in response to
acetylcholine, suggesting that an endothelium-derived contractile agent is produced. In
isolated aortic rings from diabetic rabbits, or rings from normal rabbits incubated in high
glucose, both the impaired relaxations and endothelium-dependent contractions are
prevented by cyclooxygenase inhibitors and thromboxane receptor antagonists, but not by
thromboxane synthase inhibitors, suggesting that an eicosanoid, such as prostaglandin
endoperoxide (PGH2) or hydroxyeicosatetraenoic acids (HETE's) are produced (Figure 2)54.
Antioxidant enzymes, SOD and catalase, and antioxidant compounds, including allopurinol,
prevent or restore normal function, indicating a role of ROS in the responses. Although the
eicosanoids and the ROS involved have yet to be precisely defined, observations in other
rodent models of diabetes and hypertension show similar findings55–61. ROS can both
disrupt eicosanoid metabolism as well as produce isoprostanes by direct oxidation of
arachidonic acid to account for thromboxane A2 receptor (TP) activation. Indeed, many of
the beneficial therapeutic effects of TP antagonists in preventing vascular dysfunction,
atherosclerosis, hypertension, and nephropathy in rodent models of hypertension and
diabetes are mimicked by antioxidants. Furthermore, TP receptor activation markedly
enhances inflammatory signaling in vascular cells62, and a TP antagonist markedly
decreased vascular inflammation and tissue oxidants in atherosclerotic diabetic mice63, 64,
suggesting that TP receptor activation can be implicated in oxidant generation. S 18886, a
TP receptor antagonist improves endothelium-dependent vasodilation in patients with
coronary artery disease, suggesting that TP receptor agonists contribute to human vascular
dysfunction.

8. Antioxidant defenses in hypertension and diabetes
A number of antioxidants are involved in maintaining defenses against oxidative stress.
These mechanisms vary in different intracellular and extracellular compartments and
comprise enzymatic and non-enzymatic types. The major vascular enzymatic antioxidants
are SOD, catalase, and glutathione peroxidase. Non-enzymatic antioxidants include
endogenous ascorbic acid (Vitamin C), α-tocopherol (vitamin E), glutathione, and
exogenous carotenoids and flavonoids. Under normal conditions, there is a balance between
both the activities and the intracellular levels of these antioxidants. Overproduction of ROS
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and RNS depletes both enzymatic and non-enzymatic antioxidants leading to additional
ROS/RNS accumulation and cellular damage.

Low antioxidant bioavailability promotes cellular oxidative stress and oxidative damage
associated with hypertension65. In hypertensive patients, the ratio of oxidized to reduced
glutathione was significantly higher, and the activities of SOD, catalase, and glutathione
peroxidase were significantly lower in whole blood and peripheral mononuclear cells when
compared with normal subjects66. In spontaneously hypertensive rats (SHR) and stroke-
prone SHR (SHRSP), the levels of 8-hydroxy-2'-deoxyguanosine, a marker for oxidative
stress-induced DNA damage, and protein carbonylation, a marker for protein oxidation,
were enhanced in aorta, heart, and kidney, while the expression of thioredoxin was markedly
suppressed in those tissues compared with Wistar-Kyoto rats (WKY)67.

Increased oxidative stress and impaired antioxidant defense mechanisms are believed to be
the important factors contributing to the pathogenesis and progression of diabetes mellitus.
In alloxan-induced diabetic rabbits, the concentration of glutathione and the activities of
Cu,Zn-SOD, catalase, and glutathione peroxidase in aortic endothelial cells were
significantly decreased compared with controls68. The levels of endogenous antioxidants
metallothionein I and II were significantly decreased in skeletal muscle and plasma of type 2
diabetic patients compared with control subjects69.

9. Vascular Oxidant Targets in Hypertension and Diabetes
Rather than indiscriminately affecting cellular constituents, ROS and RNS may affect
proteins and their amino acid residues selectively. Sites within proteins that participate in
enzyme catalysis and regulation may be particularly susceptible. OONO− in particular is
highly reactive with tyrosine – particularly tyrosyl radicals, with reactive cysteine thiols, and
with methionine and tryptophan amino acids. Because some of these residues are essential
for enzyme function, “one hit” by an oxidant can inactivate a protein, requiring its
resynthesis. Oxidants may therefore produce targeted disruption of vascular function.

9.1. Prostacyclin Synthase
Prostacyclin (PGI2) is a potent vasodilator which has anti-platelet, anti-inflammatory, and
antioxidant actions within the vasculature. A tyrosyl radical on tyrosine-430 of PGI2
synthase is essential for its catalytic activity. The enzyme is extremely sensitive to OONO−

which causes tyrosine nitration at the site and enzymatic inactivation at concentrations as
low as 50 nanomolar70, 71. To the extent that PGI2 is a major metabolite of arachidonic acid,
the degree to which PGI2 synthase is inactivated, eicosanoid metabolism can be redirected
towards vasoconstrictor products including PGH2, PGF2α, TxA2, and HETE's, all of which
can be implicated in causing vascular contraction, inflammation, and thrombosis by
stimulating TP receptors (Figure 2).

9.2. eNOS
As mentioned above, eNOS can generate OONO− when it is uncoupled. eNOS normally
exists as a dimer joined by a zinc atom coordinated by four sulfur atoms, termed a zinc
thiolate center (ZnS4). As the sulfur atoms in this center are highly reactive to OONO−, and
when oxidized lead to uncoupling of enzymatic activity49. Thus, OONO− produced by
eNOS can decrease •NO production and further increase OONO−. The OONO− thus formed
can also affect nearby proteins as demonstrated by the fact that in endothelium exposed to
high glucose, not only is the eNOS ZnS4 oxidized and the enzyme uncoupled, but PGI2
synthase is tyrosine-nitrated and inactivated. Inhibiting eNOS activity prevents the PGI2
synthase inactivation72, indicating that eNOS uncoupling accounts for the decrease in PGI2.
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9.3. MnSOD
MnSOD, the SOD2 isoform, is located in mitochondria where it is thought to be needed to
protect cellular constituents from O2

−• derived from the electron transport chain. Like PGI2
synthase, MnSOD has a tyrosyl radical which is essential for its enzymatic activity on
tyrosine-34. As much as 20% of all tyrosine nitration in kidneys of Ang II-mediated
hypertensive rat and mouse kidney is accounted for by MnSOD tyrosine nitration64, 73. An
antibody that specifically recognizes the nitrotyrosine in MnSOD stains a variety of diseased
tissues including blood vessels and heart from hypertensive and diabetic animals and
patients indicating that the enzyme is attacked by oxidants in disease74 (Figure 3). As
nitration of MnSOD inactivates the enzyme, loss of its scavenging activity can be implicated
also in further increases in O2

−• levels. Realization that this positive reinforcing of oxidant
stress could contribute to pathology has led to development of several MnSOD mimetics for
therapeutic use75. Also, treatment with a TP antagonist protects against tyrosine nitration of
MnSOD, loss of its enzymatic activity, and proteinuria in diabetic atherosclerotic mice64.

9.4. SERCA
SERCA is a 110 kDa protein which accumulates Ca2+ into the sarcoplasmic/endoplasmic
reticulum of all cells. As more than 99% of total cell Ca2+ resides in the stores and the levels
there inversely regulate Ca2+ influx from the extracellular space into the cell, SERCA is a
major regulator of intracellular free Ca2+ which is responsible for regulating many cell
functions. SERCA is also responsible for rapid uptake of Ca2+ into cardiac myocytes,
accounting for diastolic relaxation of the heart. SERCA has a reactive thiolate anion on
cysteine-674 which when adducted with glutathione adducts increases Ca2+ uptake activity
(Figure 4). The same reactive thiol is quantitatively and irreversibly oxidized by
concentrations of OONO− in the 100–400 micromolar range. Despite the requirement for
this high concentration in vitro, chronically elevated oxidants oxidize SERCA in diseased
tissues. Iodoacetamide labeling of the free reactive cysteine thiol on cysteine-674 indicates
that more than 50% of the thiol is oxidized in atherosclerotic rabbit aorta, accounting for the
impaired ability of •NO to relax the blood vessel8. An antibody recognizing irreversible
sulfonic acid oxidation of cysteine-674 reveals widespread oxidation of this cysteine in
blood vessels and heart from hypertensive, diabetic, and atherosclerotic, blood vessels in
rodents and patients76 (Figure 5). To the extent that redox regulation of SERCA is important
for vascular and cardiac relaxation, irreversible oxidation of cysteine-674 is an indicator of
physiological impairment. In the aorta of chronically diabetic pigs, SERCA with oxidized
cysteine-674 was found in a 70 kDa form, consistent with irreversible oxidation of the
protein resulting in its degradation76.

9.5. Antioxidant Therapy
In rodents, antioxidant agents such as Tempol, apocynin, butylated hydroxytoluene, and
vitamin E and C show remarkable effects in preventing both oxidation of proteins and
hypertensive and diabetic cardiovascular disease77–83. The same can be said of transgenic
mouse models in which NADPH oxidase components are genetically eliminated34, 84.
Despite the ability to prevent disease, the evidence that antioxidants can reverse the effects
of disease either in rodents and human patients is limited. Acute administration of
antioxidants may restore vascular function, suggesting that elevated oxidants do play a
role85–88. However, treatment of patients with vitamin C and E have not revealed any
significant long term benefit29, 78, 89–91. The lack of efficiency may be attributed to the low
doses used, to the failure to demonstrate antioxidant efficacy in vivo, or potentially to
interference with physiological roles of oxidants in cell function.

Because inflammation plays such an important role in the pathophysiology of vascular
disease, and oxidant generation is an inherent participant in that process, anti-inflammatory
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therapies might achieve antioxidant effects. However, there is no evidence that anti-
inflammatory therapy per se with aspirin, nonsteroidal, or steroid anti-inflammatory agents
are able to prevent vascular disease progression or excess oxidants in tissues. On the other
hand, therapeutic agents that have proven effective in decreasing atherosclerotic plaque in
human patients, including HMG CoA reductase inhibitors (statins)89 and metformin92–94,
do have both anti-inflammatory and anti-oxidant effects95–99. For example, statins
ameliorate endothelial dysfunction mainly by an attenuation of O2

−• production by NADPH
oxidase. A recent study showed that atorvastatin can decrease COX2-dependent 8-
isoprostane generation which causes endothelial dysfunction in SHR100. Atorvastatin also
restored NO bioavailability by increasing phosphorylation of extracellular signal-regulated
kinase 1/2, Akt, and eNOS, as well as increasing expression of inducible NO synthase levels
and decreasing vascular NADPH oxidase-driven O2

-• production101. TP antagonists63, 102

and polyphenols103, 104 are two additional examples of therapeutic agents that provide anti-
inflammatory effects and vascular protection accompanied by significant improvement in
protein oxidation, at least in rodent models.

9.6. Conclusions
ROS are regulators of normal cellular function, but when produced in excess they contribute
to the disease process. High levels of •NO produced by iNOS can create the more reactive
OONO−, and leukocyte myeloperoxidase produces HOCl, making the accumulation of
inflammatory leukocytes possessing these two enzymes within vascular lesions particularly
injurious. Oxidants attack specific amino acids within proteins, and these residues are often
those that are more reactive because they have evolved to mediate normal enzymatic
catalysis or regulation, as in PGI2 synthase, eNOS, MnSOD, and SERCA. Despite the
ability of antioxidants to prevent vascular disease in rodents, little evidence exists for their
efficacy in patients. Rather, agents that have pleotropic anti-inflammatory effects including
statins, metformin, TP antagonists, and polyphenols appear to limit oxidant production
because of the integral role of oxidant production in inflammation.
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Figure 1.
Cardiovascular risk factors increase oxidants and protein oxidation. Major cardiovascular
risk factors increase vascular production of nitric oxide (•NO) and superoxide anion (O2

−•)
by increasing the expression and/or activity of endothelial and inducible •NO synthase
(eNOS, iNOS), NADPH oxidase, xanthine oxidase, as well as increasing production of
mitochondrial O2

−•. •NO and O2
−• react rapidly to form peroxynitrite anion (OONO−)

which can increase tyrosine nitration (nY), cysteine (Cys) and zinc thiolate (ZnS4) oxidation
(SO2,3H). Superoxide dismutases (SOD) form H2O2 which can also oxidize proteins, or
together with leukocyte myeloperoxidase (MPO) can form hypochlorous acid (HOCl) and
with nitrite (NO2

−) can form nY on proteins. Important cardiovascular proteins are affected
including eNOS, prostacyclin synthase, MnSOD, the sarco-endoplasmic reticulum calcium
ATPase (SERCA).
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Figure 2.
Tyrosine nitration (nY) of prostacyclin synthase (PGIS) increases stimulation of
thromboxane A2 (TP) receptors. Nitration of PGIS at tyrosine-430 inactivates the enzyme
resulting in shunting of arachidonic acid metabolites to products that stimulate the TP
receptor. Cyclooxygenase produces prostaglandin endoperoxide (PGH2) which produces
more prostaglandin (F2α) and thromboxane (Tx) A2. More arachidonic acid derived
hydroxyeicosatetraenoic acids (HETE's) also are produced. Furthermore, oxidants generate
more 8-isoprostanes (isoP) directly from arachidonic acid which also stimulates TP
receptors. These products can all be implicated in apoptotic and inflammatory cell
responses, increased atherosclerosis, hypertension, and nephropathy. TP receptor stimulation
also further augments the generation of reactive oxygen species.
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Figure 3.
Tyrosine nitration and inactivation of MnSOD in diabetic apoliprotein E deficient mice is
prevented by TP antagonist. Upper panels show examples of immunohistochemical staining
of kidneys of atherosclerotic, hyperlipidemic apolipoprotein E deficient mice that were
given type-1 diabetes by administration of streptozotocin. The red staining was achieved
with a sequence-specific antibody that detects nitration of tyrosine-34 of MnSOD74.
Treatment of the mice with the TP antagonist, S18886 restored staining to a level
indistinguishable from that in non-diabetic control mice, whereas aspirin had no significant
effect. The bar graph shows that the renal MnSOD enzymatic activity was significantly
decreased from control in the diabetic mice, and that treatment with S18886, but not aspirin
prevented the decrease. Data from reference 64.
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Figure 4.
Redox regulation of SERCA by reactive oxygen/nitrogen species. RNS produced by •NO
and O2

−• increase glutathione adducts (GSS-) of cysteine(C)-674 of SERCA. This increases
Ca2+ uptake into sarcoplasmic reticulum stores, inhibiting store-dependent Ca2+ influx, and
decreasing cytosolic Ca2+ which causes vasodilation, inhibits smooth muscle cell (SMC)
migration, and increases endothelial cell (EC) migration. Under pathophysiological
conditions higher levels of ROS increase the destruction and consumption of •NO,
producing RNS which can oxidize the SERCA C674 thiol (−SO3H), preventing its
reversible S-glutathiolation and blocking the stimulation of SERCA by •NO. Thus, the redox
status of C674 can determine physiological and pathophysiological changes in vascular tone
and cell migration. From reference 8.

Cohen and Tong Page 17

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Oxidation of SERCA in atherosclerotic and diabetic aorta. A. Impaired aortic relaxations to
•NO in rabbits made atherosclerotic by feeding a high cholesterol diet for 10 weeks. B. The
decreased response can be explained in part by decreased labeling of the free thiol on
cysteine-674 with biotin-tagged IAM (upper blot) summarized in bar graph. There is no
change in total SERCA expression (lower blot). C and D. Immunohistochemical staining of
oxidized SERCA cysteine-674 by a sequence specific antibody that recognizes the sulfonic
acid thiol. Increased staining is seen in atherosclerotic rabbit aorta (C) obtained from the
same study as data in panels A and B, as well as in the aorta of a pig maintained diabetic and
hypercholesterolemic for 1 year, but not in a diabetic pig treated with insulin for 1 year.
Data from references 8 and76.
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