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Disulphide formation in the endoplasmic reticulum (ER) is

catalysed by members of the protein disulphide isomerase

(PDI) family. These enzymes can be oxidized by the

flavoprotein ER oxidoreductin 1 (Ero1), which couples

disulphide formation with reduction of oxygen to form

hydrogen peroxide (H2O2). The H2O2 produced can be

metabolized by ER-localized peroxiredoxin IV (PrxIV).

Continuous catalytic activity of PrxIV depends on reduc-

tion of a disulphide within the active site to form a free

thiol, which can then react with H2O2. Here, we demon-

strate that several members of the PDI family are able to

directly reduce this PrxIV disulphide and in the process

become oxidized. Furthermore, we show that altering

cellular expression of these proteins within the ER influ-

ences the efficiency with which PrxIV can be recycled. The

oxidation of PDI family members by PrxIV is a highly

efficient process and demonstrates how oxidation by H2O2

can be coupled to disulphide formation. Oxidation of PDI

by PrxIV may therefore increase efficiency of disulphide

formation by Ero1 and also allows disulphide formation

via alternative sources of H2O2.
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Introduction

Disulphide formation is an essential modification, which

occurs within the endoplasmic reticulum (ER) of eukaryotic

cells. Introduction of native disulphides can be a complex

process, requiring not only oxidation of cysteine residues but

also reduction and isomerization of non-native disulphides

(Jansens et al, 2002). In keeping with this complexity, a

number of oxidoreductases have been identified, which

catalyse thiol-disulphide exchange reactions within the ER

(Sevier and Kaiser, 2006). Protein disulphide isomerase (PDI)

represents one of the most extensively studied ER oxidore-

ductases and is a member of a family of ER-resident thior-

edoxin-like proteins (Appenzeller-Herzog and Ellgaard,

2008). Around 20 PDI homologues have been described in

mammalian cells, many of which exhibit distinct client-

protein specificities (Jessop et al, 2009b). PDI-family proteins

possess active sites containing cysteine residues, within a

CXXC motif. Disulphides formed between these cysteine

residues can be exchanged with client proteins leading to

formation of disulphides within the client and reduction of

the PDI-family member (Creighton et al, 1980). Moreover,

disulphide exchange can occur in the opposite direction

allowing the reduction of non-native disulphides within client

proteins with the concomitant oxidation of the PDI-family

member.

To allow continuous transfer of disulphides to client pro-

teins, PDI must be re-oxidized. The oxidation of PDI can be

catalysed by ER oxidoreductin 1 (Ero1) (Pollard et al, 1998;

Frand and Kaiser, 1999). Ero1 can generate disulphides

de novo by transfer of electrons to molecular oxygen, gen-

erating hydrogen peroxide (H2O2) in the process (Tu and

Weissman, 2002; Gross et al, 2006). In higher eukaryotes, the

H2O2 produced by Ero1 can be metabolized by an ER-resident

enzyme peroxiredoxin IV (PrxIV, Prx4) (Tavender et al, 2008;

Tavender and Bulleid, 2010b). The essential catalytic unit of

PrxIV is a dimer with a peroxidatic cysteine residue (Cys124)

in one chain being able to reduce H2O2 generating water and

becoming oxidized to a cysteine sulphenic acid in the pro-

cess. This sulphenylated cysteine subsequently reacts with a

resolving cysteine residue (Cys245) of the partner chain

within the dimeric subunit, leading to formation of an inter-

molecular disulphide. Hence, PrxIV converts the oxidizing

potential of H2O2 into a disulphide bond.

To maintain activity towards H2O2, the interchain disul-

phide within PrxIV needs to be reduced. This reduction is

achieved for other cellular peroxiredoxins by a member of the

thioredoxin family of proteins (Kalinina et al, 2008). It is

presently unknown which enzyme fulfils this role in the ER

for PrxIV, although it is clear that a robust reducing system is

present for recycling of the peroxidatic disulphide (Tavender

and Bulleid, 2010b). There are several thioredoxin-like pro-

teins within the ER that could fulfil the role of a reductase

with the inevitable consequence that these enzymes would

become oxidized. Hence, the recycling of PrxIV could provide

an alternative pathway for the generation of oxidizing
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equivalents for disulphide formation in proteins entering the

secretory pathway. Such an alternative pathway has been

suggested to exist based upon the fact that, while Ero1

activity is essential in yeast, knockout of both Ero1 para-

logues in mice (Zito et al, 2010) or Ero1 in Drosophila (Tien

et al, 2008) does not cause a severe phenotype. In addition to

PrxIV recycling, there are several other potential mechanisms

whereby PDI proteins may become oxidized independent of

Ero1. These include oxidation by the quiescin sulphydryl

oxidases (Chakravarthi et al, 2007; Rancy and Thorpe,

2008) or direct oxidation by H2O2 (Karala et al, 2009),

dehydroascorbate (Saaranen et al, 2010), oxidized vitamin

K (Wajih et al, 2007; Schulman et al, 2010) or glutathione

(GSH) disulphide (Appenzeller-Herzog et al, 2010). While

Ero1 can provide the oxidizing equivalents for disulphide

formation, the contribution of alternative pathways to oxida-

tive protein folding is still to be determined.

To determine whether there is a potential role for PrxIV in

disulphide formation, we tested the ability of several PDI-

family members to reduce peroxidatic disulphides and return

PrxIV to its peroxide reactive state. We demonstrate that PDI,

P5 and ERp46 can directly reduce PrxIV in vitro and can also

enhance recycling of peroxidatic disulphides within the ER of

mammalian cells. Indeed, PDI itself was oxidized more

efficiently by PrxIV than by Ero1a. In addition to establishing

the pathways for maintaining the catalytic activity of PrxIV,

these findings demonstrate an alternative mechanism for

oxidation of PDI and its homologues. Moreover, the coupling

by PrxIV of the reduction of H2O2 to the formation of a

disulphide ensures that two disulphides are formed for

every oxygen molecule reduced.

Results

PDI-family members reduce peroxidatic disulphides

in PrxIV

The overall oligomeric structure of PrxIV is a decamer con-

sisting of five dimers linked by interchain disulphide bonds

(Figure 1A, wild-type (WT)). PrxIV is a member of the 2-cys

family of peroxiredoxins, and therefore, has a reaction cycle

that involves conversion of a cysteine thiol to the sulpheny-

lated form following reaction with H2O2 (Wood et al, 2003).

The so-called peroxidatic cysteine (Cys124) then reacts with a

second cysteine residue, called the resolving cysteine

(Cys245), to form an interchain disulphide. As both polypep-

tides contain peroxidatic and resolving cysteines, two such

interchain disulphides can form. To follow this reaction, we

can separate the protein by SDS–PAGE under non-reducing

conditions and follow the formation or loss of multimeric

species (Figure 1B). However, the pattern of redox species is

complicated by the presence of the interchain disulphide

(Tavender et al, 2008), which forms between individual

Figure 1 Determining PrxIV redox status using SDS–PAGE. (A) Depiction of interchain disulphides formed within the wild-type (WT) PrxIV
decamer. For clarity, individual PrxIV molecules within each catalytic subunit are represented in different shades. Peroxidatic disulphides (solid
lines) form between PrxIV molecules within dimeric subunits and C51–C51 disulphides (dotted lines) link adjacent dimers. Also depicted are
disulphides formed within PrxIV cysteine to alanine mutants used in this study (C51A, DM and DM51). (B) Non-reducing SDS–PAGE analysis and
Coomassie blue staining of purified PrxIV showing electrophoretic behaviour of disulphide-linked forms in wild-type and C51A mutant PrxIV.
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dimers (via Cys51) (Figure 1B, lane 1) (Tavender and Bulleid,

2010b). The exact role of the non-catalytic disulphides is

unclear, although they are not necessary for peroxidase

activity of PrxIV (Supplementary Figure S1). The presence

of non-catalytic disulphides in purified PrxIV results in a

complex pattern of multimeric species, which affects the

interpretation of changes to the redox status of PrxIV using

a gel-based assay (Supplementary Figure S2). To simplify

changes to the redox status of PrxIV, we therefore use a PrxIV

C51A mutant (Figure 1, C51A) that lacks the ability to form

non-catalytic disulphides.

Purified recombinant PrxIV C51A exhibits a distinct mobi-

lity pattern when separated by SDS–PAGE carried out under

non-reducing conditions. The monomeric form migrates

close to the 25 kDa marker, whereas two dimeric forms

migrate close to the 58 kDa marker; the low-mobility dimer

corresponds to a single disulphide-bonded form, whereas the

high-mobility dimer corresponds to the double disulphide-

bonded form (Figure 1B). We have previously shown

(Tavender and Bulleid, 2010b) and show here that recombi-

nant PrxIV C51A purified under aerobic conditions predomi-

nantly contains two interchain disulphides (Figure 2C,

lane 1). Approximately 80% of the PrxIV contained two

disulphides, with the rest containing a single disulphide.

The purified PrxIV C51A therefore provides an ideal starting

material with which to measure factors capable of recycling

the protein to its reduced form.

To test the ability of ER-resident thioredoxin-like proteins

to reduce peroxidatic disulphides, we expressed and purified

several human PDI-family members, namely ERp46, P5, PDI,

ERp57 and ERp18 (Figure 2A). These PDI-family proteins

display variation in terms of size, domain architecture and

number of active sites (Figure 2B). PDI-family proteins were

prepared in a reduced state (Supplementary Figure S3), and

equimolar concentrations of each were incubated with PrxIV

C51A before the addition of TCA to quench thiol-disulphide

exchange. Equimolar concentrations were used because

quantification of PrxIV levels in human HT1080 cells indi-

cated PrxIV to be present at comparable concentrations to

most of the oxidoreductases tested (Supplementary Figure

S4). In addition, we tested the ability of GSH at physiological

concentration to reduce purified PrxIV C51A (Figure 2C and D).

Strikingly, both ERp46 and PDI reduced PrxIV more rapidly

and more extensively than GSH during the brief incubation

period. ERp46 almost completely removed the high-mobility

dimer and accumulated around 70% of the total PrxIV in a

fully reduced form within the first minute. P5 and ERp57 also

served as effective reductases, initially reducing PrxIV C51A

in a comparable manner to GSH but eventually accumulating

a higher proportion of fully reduced material (Figure 2D),

indicating that equimolar quantities of either protein can

reduce peroxidatic disulphides at least as effectively as a

3300-fold excess of GSH. In contrast, ERp18 had a negligible

effect generating barely perceptible quantities of fully re-

duced PrxIV (o10%). These results clearly show that the

PDI family of oxidoreductases have specificity in their ability

to reduce the peroxidatic disulphides in PrxIV.

Reduction of PrxIV results in oxidation of ER

oxidoreductases

Reduction of PrxIV by a PDI-family member implies the

occurrence of a thiol-disulphide exchange reaction between

the two proteins. In this case, reduction of PrxIV should result

in oxidation of the PDI-family member. To test this, we

took samples of each ER oxidoreductase that had been

incubated for 3 min with PrxIV C51A (samples are shown in

Figure 2C, lane 7). Following TCA precipitation, proteins

were re-suspended in a denaturing buffer containing the

sulphydryl-modifying agent 4-acetamido-40-maleimidylstilbene-

2,20-disulphonic acid (AMS). AMS reacts with thiol groups,

increasing the molecular weight of the protein and retarding

electrophoretic mobility. A protein with oxidized cysteine

residues lacks free thiols. Hence, it is not modified by AMS

and therefore migrates more rapidly than a protein with

reduced cysteines (Supplementary Figure S3). Following in-

cubation with PrxIV a clear decrease in AMS-modified protein

was observed for ERp46, P5, PDI and ERp57 (Figure 3A and B),

indicating substantial oxidation of cysteine residues in each

protein. ERp18 remains predominantly reduced and therefore

AMS modified. The small population of ERp18 that does

become oxidized is attributable to the aforementioned reduc-

tion of up to 10% of PrxIV C51A. Thus, the recycling of the

catalytic thiols of PrxIV by ERp46, PDI, P5 or ERp57 occurs

concomitant with the oxidation of these proteins.

GSH enhances PrxIV recycling by reducing PDI-family

members

A role for GSH in maintaining ER oxidoreductases in a

reduced state has been highlighted previously (Jessop and

Bulleid, 2004). Addition of GSH to a reaction mixture contain-

ing PrxIV C51A and P5 resulted in complete reduction of

peroxidatic disulphides within 2 min (Figure 4A). This reduc-

tion is in stark contrast with incubations lacking GSH where

one third of total PrxIV is typically fully reduced. The

complete reduction of peroxidatic disulphides observed

with a combination of P5 and GSH suggests more than simply

a cumulative effect of the reductants, as individually they

only reduce PrxIV by B30 and 20%, respectively. When the

redox state of P5 was assayed following incubation with

PrxIV C51A and GSH, it was found to be completely reduced

(Figure 4A, lane 3, lower panel). It therefore appears that

GSH maintains P5 in a reduced state during incubation with

PrxIV. In a similar manner, inclusion of GSH in reactions

containing PrxIV C51A and ERp46 led to ERp46 remaining

more reduced than in the absence of GSH (Figure 4B, bottom

panel). Control samples of P5 or ERp46 incubated in buffer

alone (Figure 4A and B, lane 4) remained reduced demon-

strating that neither protein is oxidized in the absence of

PrxIV during the incubation period.

Unlike the situation with P5, GSH addition did not enhance

peroxidatic disulphide reduction by ERp46, simply because

PrxIV C51A was fully reduced within the 2-min incubation

even in the absence of GSH. However, an effect on the redox

status of ERp46 was observed, which may indicate that GSH

augments the efficacy of PrxIV recycling by ERp46. When

analysed by Coomassie blue stain, a small amount of high

molecular weight material was consistently visible during

reduction of PrxIV C51A by ERp46 (Figure 4B, indicated with

arrow). Whether this material consists of protein aggregates

or intermediate complexes of PrxIV and ERp46 is unclear.

Whatever the nature of this species, its appearance was

curtailed by inclusion of GSH.

In a similar manner to that observed for P5, addition of

GSH to a reaction mixture containing PrxIV C51A and PDI
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caused almost complete reduction of peroxidatic disulphides

(Figure 4C). Within these reactions, the redox condition of

each PDI active site could be quantitatively determined

(Figure 4D) using a recently described differential alkylation

and mass spectrometry approach (Chambers et al, 2010).

Using this methodology, we demonstrated that about 65%

of the active sites within PDI became oxidized within 2 min

when incubated with PrxIV in the absence of GSH. This

extent of PDI oxidation correlates with the extent of reduction

of PrxIV (B60%, Figure 2D). In the presence of GSH, both

active sites of PDI remain in the reduced form. Intriguingly, it

was also clear that in the absence of GSH, reduction of PrxIV

results in the preferential oxidation of the PDI a’ domain

(Figure 2D). Such an effect has been demonstrated previously

during the oxidation of PDI by Ero1a (Chambers et al, 2010).

The reduction of peroxidatic disulphides could be mediated

Figure 2 PDI-family members can reduce PrxIV peroxidatic disulphides in vitro. (A) SDS–PAGE analysis (reducing conditions) and Coomassie
blue staining of purified proteins prepared for use in this study. An ERp46 degradation product is indicated (*). (B) Simple representation of
domain architecture for PDI-family members used in this study. Catalytically active thioredoxin-like domains with CXXC motifs are depicted as
black boxes, while grey boxes indicate inactive thioredoxin-like domains. (C) Fluorescent western blots showing disulphide-bonded status of
purified PrxIV C51A (3mM) during incubation with 10 mM GSH or 3mM reduced PDI-family member. Reactions were quenched with TCA and
precipitated proteins were re-dissolved in the presence of NEM before non-reducing SDS–PAGE and blotting with antibody to PrxIV. PrxIV
dimers containing two disulphides (2� S–S) or one disulphide (1� S–S) as well as fully reduced PrxIV (0� S–S) are indicated. (D) Western
blots were used for quantification of fully reduced PrxIV C51A by densitometry. Intensity of fully reduced form is expressed as a proportion of
the sum total intensity of 0� S–S, 1� S–S and 2� S–S fractions. Data presented are representative experiments performed at least three times
with similar results.
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exclusively by the a’ domain, with subsequent oxidation of

the a domain via PDI intramolecular exchange as has been

suggested for the reaction with Ero1a (Chambers et al, 2010).

Increased expression of PDI-family proteins enhances

PrxIV recycling in the ER

Having demonstrated that ERp46, PDI, P5 and ERp57 can

directly reduce peroxidatic disulphides of PrxIV in vitro, we

set out to determine if they could exert an influence over this

process within the ER. For these experiments, we used a

HT1080 cell line stably overexpressing PrxIV C51A. The

intracellular form of this protein exists as a mixture of

oxidized and reduced species (Figure 5A, side panel)

(Tavender and Bulleid, 2010b). When the cytosol from this

cell line was removed by digitonin permeabilization of the

plasma membrane, PrxIV C51A becomes nearly completely

oxidized (Figure 5A, lane 1). Hence, during the preparation of

semipermeabilized (SP) cells, factors required for maintain-

ing reducing pathways within the ER are removed. We have

shown previously that a reducing pathway can be re-estab-

lished by addition of GSH to SP cells resulting in re-equilibra-

tion of the PrxIV redox status to reflect that seen for intact

cells (Tavender and Bulleid, 2010b).

To demonstrate the kinetics of GSH-dependent reduction of

PrxIV C51A in SP cells, GSH was added to a final concentra-

tion of 10 mM, and at various time points, the redox status of

PrxIV was frozen by the addition of the membrane-permeable

thiol-alkylating agent N-ethylmaleimide (NEM) (Figure 5A,

top panel). During the time course, a shift from high-mobility

to low-mobility dimer was evident along with the appearance

of some fully reduced PrxIV. It is unclear whether reduction

of peroxidatic disulphides in PrxIV involves direct reduction

by GSH or is caused by GSH first reducing endogenous ER

oxidoreductases necessary for recycling PrxIV. If the reduc-

tion of peroxidatic disulphides in the ER relies principally

upon an enzymatic process, we hypothesized that increasing

the concentration of relevant oxidoreductases in the ER

would enhance the rate of GSH-initiated reduction of PrxIV.

Consequently, SP cells were prepared using HT1080 PrxIV

C51A cells that had been transfected to transiently overex-

press ERp46, P5, PDI, ERp57 or ERp18 (Figure 5B). Ectopic

expression was typically between 4- and 10-fold higher than

endogenous levels although this could not be accurately

determined for ERp18 on account of our inability to detect

the endogenous protein.

The increase in concentration of ERp46, P5 and PDI each

caused an enhanced recovery of reduced PrxIV C51A follow-

ing the addition of GSH to SP cells (Figure 5A and C). The

differences between these treatments and untransfected cells

are best visualized by comparing the relative proportions of

each PrxIV species at 2 and 4 min following GSH addition

(Figure 5A). Despite exhibiting reductase activity towards

PrxIV disulphides in vitro, elevated concentrations of ERp57

displayed no discernible effect upon reduction of PrxIV C51A

in SP cells. This lack of effect is perhaps not surprising given

that ERp57 interacts with calnexin and calreticulin (Oliver

et al, 1997) and, therefore, is unlikely to act on non-glyco-

protein clients such as PrxIV. The fact that ERp57 does not

enhance PrxIV reduction in the ER therefore suggests that

ERp57 may be adequately sequestered by calnexin or calre-

ticulin even when ERp57 is overexpressed. Overexpression of

ERp18 also failed to increase the appearance of fully reduced

PrxIV C51A, which is again not surprising considering

the negligible activity of ERp18 as a reductase of PrxIV

Figure 3 PDI-family members are oxidized by PrxIV C51A in vitro. (A) AMS-dependent changes in electrophoretic mobility of purified reduced
PDI-family members following incubation of each protein with equimolar oxidized PrxIV C51A. Reactions were quenched by TCA addition and
precipitated proteins were re-dissolved in denaturing buffer containing AMS. Proteins were visualized by SDS–PAGE (reducing conditions) and
Coomassie blue staining. (B) Densitometry profiles of stained bands for each gel-lane displayed in (A) illustrating relative electrophoretic
mobilities.‘Zero’ distance value of graphs relates to bottom end of each lane. Relationship between gel position and relative free thiol content is
indicated (black triangle).
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disulphides in vitro (Figure 2A and B). Hence, it would appear

that in the mammalian ER, ERp46, P5 and PDI can catalyse

the reduction of the peroxidatic disulphides within PrxIV.

Mixed disulphides indicate direct reduction of

peroxidatic disulphides by PDI-family members

in the ER

To establish that ERp46, P5 and PDI act directly on PrxIV, we

investigated whether we could trap mixed disulphides that

should form during the disulphide exchange reaction. The

reduction of disulphides by PDI-family members requires the

nucleophilic attack on a disulphide by the first cysteine

residue of the conserved CXXC motif. A transient mixed

disulphide is formed between the oxidoreductase and the

target molecule, which is rapidly resolved by the second

cysteine residue of the CXXC motif. Trapping of mixed

disulphides is facilitated by cysteine to alanine mutation to

modify the CXXC motif to CXXA. Without the second cy-

steine, resolution of the mixed disulphide is dependent on an

alternative thiol source, substantially increasing the lifespan

of this normally short-lived intermediate (Dick and Cresswell,

2002).

We have previously created a range of HT1080 cell lines

stably expressing PDI-family CXXA mutants and used these to

identify PrxIV as one of the predominant endogenous pro-

teins forming mixed disulphides with ERp46 in HT1080 cells

(Jessop et al, 2009b). Likewise, when translated in vitro in

the presence of SP cells produced from these cell lines,

Figure 4 Glutathione reduces PDI-family members and enhances peroxidatic recycling. Purified PrxIV C51A (6mM) was incubated with
equimolar reduced P5 (A) or ERp46 (B) in the presence and absence of 10 mM GSH. Reactions were split in two and quenched by TCA addition.
One sample for each treatment was precipitated, re-dissolved in SDS sample buffer containing NEM and analysed by non-reducing SDS–PAGE
and Coomassie staining (top panel). The second sample for each was re-dissolved in denaturing buffer containing AMS and visualized by
Coomassie blue staining following SDS–PAGE under reducing conditions (bottom panel). Lane 4 contains reduced P5 or ERp46 incubated alone
for 2 min and modified with AMS as above. An arrow indicates high molecular weight material observed for ERp46 and an asterisk (*)
demarcates the ERp46 degradation product. (C) PrxIV C51A (4mM) was incubated with equimolar reduced PDI plus or minus 10 mM GSH. Four
replicates were prepared for each reaction and quenched by TCA addition. One replicate was precipitated, re-dissolved in SDS sample buffer
containing NEM and analysed by non-reducing SDS–PAGE and western blotted with antibody to PrxIV. Remaining replicates were re-dissolved
in denaturing buffer containing iodoacetic acid, separated using non-reducing SDS–PAGE and PDI excised and prepared for MALDI-TOF
analysis of redox status as detailed in Chambers et al (2010). For a and a’ domains of PDI, the proportion of active sites recorded as being
reduced are expressed as a fraction of the whole population (D). Values are mean averages of triplicates with error bars representing s.d.
A schematic depicting the positions of the a and a’ domains of PDI is included.
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radioactively labelled PrxIV formed prevalent mixed disul-

phides with ERp46 and P5. In each case, the native PrxIV

sequence was translated, potentially containing both

peroxidatic disulphides and non-catalytic disulphides.

Consequently, it was not possible to conclude whether

the mixed disulphides were formed during the nucleophilic

Figure 5 Increased PDI-family expression enhances peroxidatic recycling in SP cells. (A) Non-reducing SDS–PAGE and anti-PrxIV western blot
analysis. SP cells were prepared from HT1080 PrxIV C51A cells transiently transfected to overexpress ER oxidoreductases (as indicated) or
without DNA (UT). Following incubation with 10 mM GSH, SP cells were treated with NEM, harvested and lysed. The side panel for sample
‘UT’ shows a similar anti-PrxIV western blot for intact HT1080 PrxIV C51A cells treated with NEM prior to lysis. (B) SP cells prepared in (A)
were used to determine oxidoreductase content by fluorescent western blotting. Samples transfected with PDI-family constructs (þ ) were
probed alongside control samples (UT) first with the relevant anti-PDI-family antibody, then stripped and probed with anticalreticulin (Crt).
Samples presented within each individual panel are from the same gel. Anti-Crt panels presented are from the same gel as the corresponding
anti-PDI-family blot. Intensities for oxidoreductase samples were calculated by densitometry and adjusted to reflect Crt values. Intensities for
control samples were taken as 100% and levels of overexpression for transfected cells given relative to this. Values are mean averages of
triplicate quantifications±s.d. Endogenous ERp18 was not detected although intensity values for transfectants indicated at least 1000%
increased expression. Ectopically expressed proteins exhibit some altered mobility due to epitope tags. (C) Appearance of fully reduced PrxIV
for blots as in (A) was quantified as in Figure 2D.
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attack by the PDI-family members on peroxidatic disulphides

or on non-catalytic disulphides within PrxIV. To address this

issue, a similar experiment was undertaken using PrxIV

cysteine to alanine mutants, which could only form one of

the two species of disulphide. SP cells were prepared from

HT1080 cell lines stably expressing V5-tagged ERp46, P5, PDI

or ERp57 in which all active site CXXC motifs were mutated

to CXXA. The SP cells were then added to in vitro translation

reactions with mRNA encoding one of four PrxIV variants

(depicted in Figure 1A). C51A cannot form the non-catalytic

disulphide, DM cannot form the peroxidatic disulphide and

DM51 cannot form any disulphides. Once the incubation was

complete, thiol-disulphide exchange was inhibited with NEM,

SP cells were harvested and V5-tagged PDI-family members

were immunoisolated along with any covalently linked mixed

disulphide partners (Figure 6). The CXXA mutants of ERp46,

P5 and PDI accumulated mixed disulphides more readily with

PrxIV C51A (i.e. via nucleophilic attack of the peroxidatic

disulphide) than with PrxIV DM (Figure 6, compare lanes 2

and 3 for all samples). In keeping with the apparent lack of

ERp57 activity towards PrxIV C51A in the ER, ERp57 failed to

form significant mixed disulphides with PrxIV (Figure 6,

bottom right). These results demonstrate that ERp46, P5

and PDI but not ERp57 can directly reduce the peroxidatic

disulphides in PrxIV within the ER.

Lowering the intracellular concentration of ER

oxidoreductases compromises reduction of PrxIV

From the above results, it is clear that at least three members

of the PDI family of ER oxidoreductases are capable of

directly reducing the peroxidatic disulphides in PrxIV. It is

not apparent whether these enzymes have overlapping func-

tions or whether one enzyme preferentially reduces PrxIV in

the ER. To address this question, we used shRNA treatment of

the PrxIV C51A overexpressing cell line to lower the levels of

ERp46, P5 or PDI either individually or in combination.

Quantification of the levels of these proteins following treat-

ment of cells with shRNA revealed knockdowns to between

20 and 50% of normal levels (Figure 7A). The consequence of

this knockdown on the reduction of ER PrxIV C51A in the

presence of GSH was then determined using the SP-cell assay

(Figure 7B and C). In comparison to control cells that had

been treated with a non-specific shRNA, the rate of reduction

of PrxIV C51A was compromised with each individual

shRNA. A modest slowing of the rate was seen with the

PDI shRNA-treated cells with a more dramatic effect seen

with the shRNA constructs targeting ERp46 and P5. In addi-

tion, the rate of recovery of reduced PrxIV C51A with cells

treated with ERp46 shRNA in combination with P5 or PDI

shRNA was severely perturbed (Figure 7B and C). Such a

dramatic effect following the lowering of the levels of these

Figure 6 Substrate-trapping PDI-family mutants target peroxidatic disulphides in PrxIV. SP cells prepared from HT1080 cell lines expressing
substrate-trapping PDI-family CXXA mutants were added to an in vitro translation system. Wild-type (WT) or mutant (C51A, DM, DM51) PrxIV
was translated and radioactively labelled, treated with NEM and SP cells harvested. One fifth of cells were lysed directly with SDS sample buffer
for analysis of total translation products (top panels for each set). Remaining cells were used for anti-V5 immunoisolation of PDI-family
mutants along with any trapped substrate. PrxIV was visualized by SDS–PAGE (reducing conditions) and phosphorimaging. PrxIV isolated with
each PDI-family mutant was measured by densitometry and is expressed as a percentage of the total translated product forming a mixed
disulphide. ‘pPrxIV’ indicates full-length preprotein, whereas ‘PrxIV’ indicates protein that has been translocated to the ER and had the signal
peptide removed. Samples are representative of repeat experiments.
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proteins demonstrates that they contribute to the overall rate

of recycling of PrxIV. These results further support the

hypothesis that ERp46, P5 and PDI are required to maintain

PrxIV in an enzymatically active form.

Discussion

The concept that Ero1 is the sole source of oxidizing equiva-

lents for disulphide formation in proteins entering the secre-

tory pathway has recently been questioned due to a lack of a

dramatic phenotype when both Ero1 paralogues are deleted

in mice (Zito et al, 2010). Several additional pathways have

been suggested to compensate for a lack of Ero1 (Margittai

and Banhegyi, 2010), though their relevant contribution to

disulphide formation remains to be established. Here, we

have demonstrated that the oxidation of members of the ER

oxidoreductase family by PrxIV is a robust and efficient

mechanism to provide oxidizing equivalents for these

Figure 7 Decreased PDI-family expression compromises peroxidatic recycling in SP cells. (A) HT1080 PrxIV C51A cells were transfected with
shRNA to PDI-family member as indicated or control shRNA (shGFP). After selection for the shRNA-expressing population, SP cells were
prepared and analysed by SDS–PAGE (reducing conditions) and fluorescent western blotting. Blots were probed with relevant antibodies
against ER oxidoreductases then stripped and probed with anti-Crt. Intensities of oxidoreductase bands were calculated by densitometry and
adjusted to reflect loading controls. Values for shGFP samples were taken as 100% and knockdown of ER oxidoreductase expression calculated
relative to this. Values are mean averages of triplicate quantifications±s.d. (B) SP cells generated above were incubated with 10 mM GSH as
indicated then treated with 40 mM NEM. Cells were harvested, lysed and subjected to non-reducing SDS–PAGE analysis prior to western
blotting with antibody to PrxIV. (C) Appearance of fully reduced PrxIV was quantified as in Figure 2D.
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enzymes. Importantly, the product of the reaction of Ero1

with oxygen, H2O2, is used as the electron acceptor during

disulphide formation in PrxIV meaning that the combination

of reduction of oxygen by Ero1 and PrxIV results in the

oxidation of two molecules of ER oxidoreductase. Coupling

these two enzymes together will result in a much more

efficient oxidative pathway and may go some way to explain

why the oxidation of PDI by Ero1 in vitro is a relatively

inefficient process (Sevier et al, 2007; Baker et al, 2008;

Chambers et al, 2010). Such a pathway for disulphide forma-

tion via PrxIV is not exclusively dependent upon Ero1 as

there are other enzymes, which can generate H2O2 in the ER.

These include the NADPH oxidase Nox4 (Van Buul et al,

2005) and the quiescin sulphydryl oxidase (Hoober et al,

1999). In addition, H2O2 produced by the mitochondria could

also potentially enter the ER due to the close association of

these two organelles (Simmen et al, 2010). Hence, in the

absence of Ero1, PrxIV could fuel disulphide formation by

providing the necessary oxidizing equivalents. It is of interest

to note that yeast do not contain an equivalent ER-localized

peroxiredoxin and that, unlike in mammals, Ero1p in yeast is

an essential gene (Frand and Kaiser, 1998; Pollard et al,

1998).

Comparing the relative efficiencies of Ero1 and PrxIV in

oxidizing ER oxidoreductases could provide some indication

as to the relative contribution of each pathway to disulphide

formation. When the physiological concentrations of the

components are taken into account, then the oxidation of

PDI by PrxIV seems much more efficient than that by Ero1a.

PDI and PrxIVare present in the ER of HT1080 cells at roughly

equivalent concentrations, whereas Ero1a is a relatively low

abundance protein (Gess et al, 2003). About 20% of the PDI

active sites become oxidized by Ero1a after 30 min incubation

when combined in a ratio of 1:25 (Chambers et al, 2010).

In comparison, 60% of the PDI active sites were oxidized by

PrxIV within 2 min when incubated at a ratio of 1:1. Ideally,

we would have liked to couple the activity of the two

enzymes in vitro to oxidize PDI, but the inability to maintain

reduced PrxIV for subsequent reaction in aerobic buffers

precluded this approach. Indeed, it is the exquisite sensitivity

of PrxIV to oxidation by low concentrations of H2O2 that

would provide an extremely efficient mechanism to convert

any H2O2 produced in the ER into disulphides.

During the course of this study, we consistently found that

ERp46 and P5 were more efficiently oxidized by PrxIV than

PDI. In addition, all three ER oxidoreductases were oxidized

to a greater extent than GSH by PrxIV. However, when

GSH was included in the incubations, the oxidoreductases

were completely reduced. In addition, the presence of GSH

increased the rate of reduction of PrxIV by P5 and PDI and

prevented the formation of high molecular weight aggregates.

Together, these results suggest that the ER oxidoreductases

first reduce the peroxidatic disulphide in PrxIV and are then

reduced by GSH. Given that the ER oxidoreductases are

predominantly in a reduced form (Jessop and Bulleid,

2004), these results suggest that any disulphide formed with-

in these enzymes is rapidly exchanged with either substrate

proteins, or with GSH to form GSSG. Indeed, recent work

looking at the Ero1a-dependent recovery of cells from treat-

ment with the reducing agent DTTshows an initial increase in

the GSSG concentration, suggesting that the ultimate target

for disulphide exchange under these conditions is GSH

(Appenzeller-Herzog et al, 2010). The concentration of

GSSG then recovers to lower levels, indicating that GSSG is

either used for disulphide formation in newly synthesized

proteins or is reduced by an as yet unidentified reduction

pathway. The fact that GSH efficiently reduces the ER oxidor-

eductases suggests that GSSG may well be a major source of

disulphides for newly synthesized proteins.

ERp46 outperformed P5 and PDI in the ability to reduce

PrxIV in vitro and in the formation of mixed disulphides with

PrxIV species in SP cells. Moreover, both elevation and

knockdown of ERp46 substantially influenced reduction of

PrxIV in the ER. ERp46 may therefore be a preferred substrate

for thiol-disulphide exchange with PrxIV. The preferential

oxidation of ERp46 by PrxIV could be due to the presence

of three rather than two active thioredoxin domains in this

protein. ERp46 has been previously described as endoPDI due

to its upregulation in endothelial cells, where it can act as a

stress survival factor (Sullivan et al, 2003). In addition, it is

upregulated along with a number of other ER oxidoreductases

as well as PrxIV in differentiating B cells (van Anken et al,

2003). These previous studies are consistent with a role for

ERp46 in regulating ER redox balance.

Such a role for ER oxidoreductases would be distinct from,

or in addition to, their role in disulphide formation in

proteins entering the secretory pathway. The study of the

roles for the individual ER oxidoreductases in the past has

focused on the idea that each may act as an oxidase or

reductase on specific substrates. The association of individual

oxidoreductases with ER chaperones, such as ERp57 with the

calnexin/calreticulin cycle (Oliver et al, 1997; Jessop et al,

2009a) and P5 with BiP (Meunier et al, 2002; Jessop et al,

2009b), indicates specific roles for these enzymes on subsets

of proteins and to some extent may explain substrate speci-

ficity. Further dissection of the mechanisms of specificity for

P5 and ERp46 are essential for full understanding of their

individual roles in recycling PrxIV. The fact that we show

only limited specificity of ER oxidoreductases towards PrxIV

would suggest that some of these proteins may also act as a

conduit for oxidizing equivalents to produce GSSG rather

than acting directly with client proteins. As each of these

proteins is present at significant concentrations in the ER,

their ability to transfer disulphides between H2O2 and GSH

would establish an efficient redox buffer to balance the ER

redox status.

It is now well established that the activity of Ero1a is

tightly regulated by the presence of non-catalytic disulphides

that need to be reduced to activate the enzyme (Tavender and

Bulleid, 2010a). As PrxIV is able to very efficiently react with

any H2O2 produced in the ER, is there a requirement to

regulate the activity of PrxIV? Other cellular peroxiredoxins

can be inhibited in the presence of high concentrations of

H2O2 by the over oxidation of the peroxidatic cysteine residue

to form sulphinic or sulphonic derivatives (Woo et al, 2003).

The expression of a deregulated mutant of Ero1a results in a

marked increase in the concentration of GSSG in the ER

(Appenzeller-Herzog et al, 2008), and results in the formation

of over oxidized PrxIV (Tavender and Bulleid, 2010b). In

addition, treating cells with DTTcauses a rapid over oxidation

of PrxIV presumably due to an acute increase in H2O2 caused

by a rapid reduction of the regulatory disulphides in Ero1a
and in substrate proteins. Hence, it may well be the case that,

under certain stress conditions, PrxIV becomes over oxidized
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thereby attenuating peroxidase activity and allowing H2O2 to

act as a signal for ER oxidative stress.

There are potentially several mechanisms for maintaining

a redox balance and preventing oxidant build-up in the ER

(Gorlach et al, 2006), so it is possibly not surprising that the

mouse knockout of PrxIV, like the Ero1a knockouts, is still

viable with the only notable phenotype being an effect on

testicular morphology (Iuchi et al, 2009). The lack of broad

effects of PrxIV knockout upon mouse physiology indicates

that a robust antioxidant defence remains even in the absence

of PrxIV. This may be consistent with PrxIV—like Ero1—

forming one of several integrated systems to facilitate

disulphide formation and to regulate ER redox homeostasis.

Materials and methods

Reagents and antibodies
All reagents were acquired from Sigma-Aldrich (Dorset, UK) and
enzymes were acquired from Promega (Southampton, UK) unless
otherwise stated. Rabbit polyclonal anti-PrxIV was purchased from
Ab Frontier (Seoul, Korea), rabbit polyclonal anti-calreticulin was
purchased from Stressgen (Exeter, UK) and rabbit polyclonal anti-
ERp46 was purchased from AbCam (Cambridge, UK). Rabbit
polyclonal antibodies raised against PDI, P5 and ERp57 have been
described previously (Jessop and Bulleid, 2004), while purified
protein prepared for this study was used to raise a rabbit polyclonal
antibody to ERp18. Mouse monoclonal anti-V5 was obtained from
Invitrogen (Paisley, UK).

Preparation of purified proteins
All proteins (minus secretory signal peptides) were expressed and
purified using Escherichia coli BL21-DE3. His-tagged PrxIV purifica-
tion has been described previously (Tavender and Bulleid, 2010b),
and ERp18 was cloned into pRSFDuet-1 (Novagen, Nottingham,
UK) for His-tagged protein purification in an identical manner.
His-tagged PDI was similarly expressed and purified by Ni2þ

column chromatography as described previously (Baker et al, 2008)
as was His-tagged ERp57, following expression from a plasmid
kindly donated by Stephen High (University of Manchester, UK),
and His-tagged P5 following cloning into pET21a(þ ) (Novagen). A
construct expressing a GST-ERp46 fusion protein was a kind gift
from David Thomas (McGill University, Montreal, Canada). GST-
ERp46 was expressed for 4 h using 0.5 mM IPTG induction, bound
to GSH-sepharose (GE Healthcare, Buckinghamshire, UK) by
standard batch purification and ERp46 eluted by on-column
cleavage with precision protease (GE Healthcare) in accordance
with the manufacturer’s instructions. Proteins were reduced by
incubation with 5 mM DTT for 15 min at room temperature then
DTT removed by buffer exchange into reaction buffer (50 mM
NaH2PO4, 150 mM NaCl, 1 mM EDTA, pH 7.4) using a PD10 column
or Superdex 200 gel filtration column (both GE Healthcare). Each
protein was quantified using the relevant 280 nm absorption
extinction coefficient.

Reduction of PrxIV in vitro
PrxIV and ER oxidoreductases were incubated in reaction buffer at
371C at the concentrations and time periods indicated in the text.
Where required, GSH was added from a 10� stock (dissolved in
reaction buffer and adjusted to pH 7 with NaOH). Reactions were
quenched by addition of four volumes of 12.5% w/v TCA in H2O,
incubated on ice for 15 min and precipitated proteins pelleted by
centrifugation for 15 min at 15 000 g, 41C. Pellets were vortexed to
re-suspend in ice-cold acetone and pelleted again for 5 min.
Following a repeat acetone wash pellets were air dried for 15 min
and re-suspended in either SDS sample buffer (31.25 mM Tris–HCl
pH 6.8, 2% w/v SDS, 5% v/v glycerol, 0.01% w/v bromophenol
blue) containing 40 mM NEM or alkylation buffer (200 mM Tris–HCl
pH 8, 0.5% SDS, 6 M urea) containing 10 mM AMS or 50 mM IAA as
appropriate. In the case of SDS sample buffer plus NEM, samples
were vortexed and immediately heated at 1001C for 5 min. For
alkylation buffer plus AMS/IAA, samples were incubated for 30 min
in the dark at room temperature then 0.25 volumes of 5� SDS
sample buffer added and boiled as above.

Mass spectrometry determination of PDI redox condition
This analysis was performed exactly as recently described
(Chambers et al, 2010).

GSH-dependent reduction of PrxIV in SP cells
Where required, cells were initially transfected with recombinant
DNA to modulate ER oxidoreductase levels. For overexpression,
cells were seeded to 60% confluence in 15 cm cell culture dishes
and transfected with 12mg plasmid DNA encoding the appropriate
V5-tagged PDI-family member (construct creation described else-
where (Jessop et al, 2009b)). Transfection was performed using
polyethylenimine exactly as established previously (Gleghorn et al,
2010), with volumes increased three-fold to reflect increased
quantity of DNA. Cells were harvested for SP-cell preparation at
48 h post-transfection. For knockdown of PDI-family expression,
cells were transfected as above using DNA constructs encoding
shRNA against the relevant PDI-family members (Origene, Rock-
ville, MD, USA). At 16 h post-transfection, puromycin selection
(1 mg/ml) was introduced to remove cells not expressing shRNA and
maintained for a further 4–5 days before preparation of SP cells. SP
cells were prepared as detailed previously (Wilson et al, 1995) and
suspended in KHM buffer (110 mM potassium acetate, 20 mM
HEPES, 2 mM magnesium acetate, pH 7.2 with KOH) at a final
concentration of 107 SP cells/ml. For protein expression controls,
samples containing 3�105 SP cells were immediately transferred to
ice. GSH was added to remaining suspension from a 10� stock
(dissolved in KHM buffer and adjusted to pH 7 with NaOH) and
incubated at 371C. At required times, samples containing 3�105 SP
cells were removed to ice and NEM added to 40 mM final
concentration. After a minimum of 5 min, nine volumes of KHM
were added and cells were pelleted by centrifugation for 2 min at
4000 g. Supernatants were removed and cells were lysed by addition
of 30 ml SDS sample buffer and heated at 1001C for 5 min.

Trapping mixed disulphides with PrxIV translated in vitro
PrxIV translation and translocation into SP cells was performed
essentially as described previously (Tavender et al, 2008). RNA
transcripts were prepared by T7 transcription from XhoI linearized
pcDNA3.1/hygro(þ ) constructs encoding PrxIVor mutants thereof.
Following translation for 1 h at 301C, cells were treated with 40 mM
NEM for 5 min on ice then diluted with nine volumes of ice-cold
KHM buffer. One fifth of suspension was centrifuged for 1 min at
10 000 g, supernatant was removed and SP cells were lysed in SDS
sample buffer for analysis of total translation products. Remaining
suspension was centrifuged as above, supernatant was removed
and cells were lysed by vortexing with 50 ml IP buffer (50 mM Tris–
HCl, 150 mM NaCl, 2 mM EDTA, 0.5 mM PMSF, 1% v/v Triton X-
100). Lysates were clarified by centrifugation for 2 min at 16 000 g
and supernatant was mixed with 10% w/v SDS for final
concentration 1% w/v SDS. After 3 min at 1001C, samples were
diluted to 1.2 ml with IP buffer and incubated with 50ml 10% w/v
Protein A sepharose (PAS) for 30 min at 41C with rotation. PAS was
removed by centrifugation for 1 min at 16 000 g and supernatants
were mixed with 50ml fresh PAS and 1 ml anti-V5 antibody before
incubation for 16 h at 41C with rotation. PAS was harvested by
centrifugation as above, and supernatants were discarded. PAS was
washed three times with IP buffer and bound proteins were released
by addition of SDS sample buffer and heating at 1001C for 5 min.

Electrophoresis, western blotting and densitometry
For Coomassie blue staining of purified proteins, 2–4mg of protein
was typically loaded. For western blot analysis, 400 ng was used.
For western blots of SP-cell lysates, an equivalent of 105 cells were
used per sample under reducing conditions, 1.5�105 cells under
non-reducing conditions. For SDS–PAGE under reducing conditions,
DTT was added to samples at 50 mM concentration before boiling,
for non-reducing conditions DTT was omitted. Gels were stained
overnight using colloidal Coomassie blue (10% w/v phosphoric
acid, 10% w/v ammonium sulphate, 0.12% Coomassie brilliant
blue G250, 20% v/v methanol) followed by destain in distilled
water or were transferred to nitrocellulose for western blotting. Due
to problems with high background observed using alternative
western blotting protocols, non-reducing anti-PrxIV blots of SP cell
derived material were performed exactly as described previously
(Tavender et al, 2008). For all other samples, a system was used
incorporating fluorescent secondary antibodies. For fluorescent
western blots, proteins were transferred to Odyssey nitrocellulose
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(Li-Cor Biosciences, Cambridge, UK), for traditional western blots,
standard Protran membrane (Whatman, UK) was used. Blocking
and primary antibody incubations for fluorescent blots were as
previously detailed (Tavender et al, 2008). Secondary antibody
differed only in dilution factor (1 in 2500) and in being performed in
a light-shielded box. Following final wash steps, blots were scanned
using an Odyssey SA imaging system (Li-Cor Biosciences). For
quantification of fluorescent western blots, scans were performed at
minimum intensities required to visualize all relevant species.
Densitometry was then performed upon unmodified output images
using ImageJ (NIH, USA). For traditional blots, multiple exposures
were performed and blots were selected in which samples exhibited
a linear response to the chemiluminescent substrate. Band
intensities were again quantified using ImageJ. In all cases,
identical sized boxes were used for all protein samples within a
given blot and a local background also subtracted for each
individual sample. Due to the absence of cytosolic proteins, Crt
was used as a loading control for quantification of SP-cell protein
content. During initial experiments, samples were first probed with
anti-Crt, then western blot membranes stained using amido-black to
visualize total protein. Crt levels were reliably unaffected by
modulation of PDI-family expression and therefore suitable as a
reference standard. Where required, bound antibodies were

stripped from nitrocellulose membranes by 2� 5 min washes in
0.2 M NaOH followed by 5 min in distilled water. Primary antibodies
were then re-applied without the need for further blocking.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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