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ABSTRACT

Summary: We present an approach to statistically pinpoint
differentially expressed proteins that have quantitation values near
the quantitation threshold and are not identified in all replicates
(marginal cases). Our method uses a Bayesian strategy to combine
parametric statistics with an empirical distribution built from the
reproducibility quality of the technical replicates.
Availability: The software is freely available for academic use at
http://pcarvalho.com/patternlab.
Contact: paulo@pcarvalho.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Shotgun proteomics describes a large-scale approach to analyzing
complex peptide mixtures (i.e. mixtures originating from biological
fluids, cell lysates, etc.). Briefly, the strategy is to perform protein
digestion followed by peptide chromatographic separation online
with tandem mass spectrometry (MS2) for protein identification
(Washburn et al., 2001). The study of complex mixtures is
challenging in itself because peptides are under-sampled during data
acquisition by mass spectrometry.

The combined nature of sample complexity, data acquisition
methodologies and under-sampling is bound to generate
considerable experimental variation. Indeed, one may expect
to observe some 25% additional uniquely identified proteins when
comparing two technical replicates of a complex mixture (Liu
et al., 2004). As we demonstrate below, this variation is largely
due to peptide ions whose relative quantitation values lie near the
detection threshold and therefore do not appear in all technical
replicates (marginal cases).

One of the goals of proteomics is to distinguish between various
states of a biological system according to protein expression
differences. By directly applying common statistical approaches
to pinpoint differentially expressed proteins without taking the
necessary precautions that are inherently related to technical
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reproducibility, many marginal cases that are likely to be an artifact
of chance may be included in the results and shadow important
aspects. Moreover, many false negative cases may be lost.

2 PROBLEM FORMULATION AND MODELING
Consider two biological states B1 and B2 and two experimental
datasets, one containing replicates from state B1, the other as many
replicates from state B2. We address the question of estimating the
probability that a protein appearing in at least one replicate from
state B1 is differentially expressed with respect to state B2, i.e. that
it is found in none of the replicates from B2.

If P is the protein in question, then our aim is to estimate the
probability P(H|D), where H stands for ‘P is not detected in any
replicate from B2’ and D for ‘P appears in at least one of the
replicates from B1’. We assume throughout that the appearance of
any given protein in a replicate from B2 is subject to the same
underlying laws governing its appearance in replicates from B1,
and moreover that it may occur in any of the replicates from
B2 independently with the same probability. This implies that the
number of replicates from B2 containing that protein is distributed
binomially. Henceforth, we use the smoother, approximate formula
of the Poisson distribution instead. Accordingly, the probability that
the protein appears in u of the replicates from B2 with mean λ is
denoted by Poi(u, λ). In our estimates, we always choose the value
of λ in reference to what is observed or hypothesized with respect
to state B1.

From a Bayesian perspective, we begin by estimating the prior
probability P(H) that protein P does not appear in any replicate
from state B2. If r is the number of replicates from state B1 in which
P is detected, then we set P(H) = Poi(0, r). Similarly, computing the
desired probability, P(H|D), requires that first we obtain P(D|H) and
P(D|not H), that is, the probabilities that P is detected in at least
one replicate from B1 conditioned, respectively, on the fact that it
does not or does appear in replicates from B2. In order to estimate
either probability, we first partition the B1-replicate proteins into
four groups of approximately the same size, each corresponding to
one of the categories low, medium, high, or very high, according
to the average signal of each protein (e.g. spectral count, peak area,
etc.) over the replicates in which it appears. Let G denote the group
to which protein P belongs. Our estimates of P(D|H) and P(D|not
H) are relative to G, therefore specific to a certain range of average
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signal. In what follows, we use ft to denote the fraction of group-G
proteins that occur in t replicates from state B1.

We estimate P(D|H) as the sum of probabilities of pairs of
independent events. If n is the total number of replicates from either
state, we consider one pair for each possible number t of replicates
from state B1, t =1, 2, ...,n. The two independent events for each
pair are that a randomly chosen protein from group G appears in t
replicates from state B1, and that it appears in none of the replicates
from state B2. Thus,

P(D|H)=
n∑

t=1

ftPoi(0,t).

The case of P(D|not H) is similar, but now the invalidity of H
implies that we must sum up the probabilities that the randomly
chosen protein from group G appears in u replicates from state B2,
for u=1, 2, ...,n. We then obtain

P(D| not H)=
n∑

t=1

ft

n∑

u=1

Poi(u,t).

The desired probability, finally, follows from the Bayesian
inversion formula,

P(D|H)= P(D|H)P(H)

P(D|H)P(H)+P(D| not H)[1−P(H)] ,

and is henceforth used as a p-value for all proteins in G that appear
in r replicates from state B1.

3 DATA ACQUISITION
For evaluation of the above methodology, we used two shotgun
proteomic datasets acquired by Fischer et al. (2010). Briefly,
the authors employed Multi-dimensional Protein Identification
Technology (MudPIT; Washburn et al., 2001) to compare the A172
cell line in two biological states, here identified with the B1 and B2
states of Section 2. Each state was analyzed in triplicates (i.e. n=3).
Relative quantitation was performed by spectral counting. A protein
required a minimum of two peptides (thus, two unique spectral
counts) to be considered.

4 RESULTS
Each of Supplementary Figures 1A, B and C shows a Venn diagram
(VD) of identified proteins from B1 and B2 appearing in at least one,
at least two, and all three replicates, respectively. Supplementary
Figures 2A and B show VDs comparing uniquely identified proteins
among the technical replicates from B1 and B2, respectively. Both
Supplementary Figures 1 and 2 corroborate the great variability
claimed by Liu et al. (2004).

The model described in Section 2 has been implemented as part
of the PatternLab for proteomics suite (Carvalho et al., 2008).

Results on the biological states to which Section 3 refers are
shown in Supplementary Tables I and II, respectively, to verify
differential expression in state B1 relative to state B2 and conversely
(i.e. reversing the roles of the two states in the discussion of
Section 2). Clearly, proteins that are more reproducible (appear in
more replicates) yield lower p-values.

The resulting algorithm was also incorporated into PatternLab’s
area-proportional VD module (Carvalho et al., 2010). The user
can now choose between generating VDs by filtering proteins that
appear in at least a certain number of replicates, or by using the
new approach through a user-specified p-value. The new option
can be used to eliminate proteins that cannot be claimed to be
statistically differentially expressed. Supplementary Figure 3 shows
a VD that considers a p-value cutoff of 0.05 for the two biological
states of Section 3, instead of the replicate-cutoff criterion used in
Supplementary Figure 1.

5 FINAL CONSIDERATIONS
An alternative, simple strategy to pinpoint marginal proteins
representative of a biological state is to consider only proteins
that appear in a minimum number of replicates. Such an approach,
however, is arbitrary and lacks proper foundation. The approach we
have described, on the other hand, is well-founded and therefore
amounts to a more refined method. It is useful especially in
generating VDs, such as the one in Supplementary Figure 3, for the
study of proteins that are representative of a given biological state.
We note, in relation to VDs such as this, that uniquely identified
proteins in the VD are not to be claimed as being unique to a state;
instead, they are most likely differentially expressed.
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