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Abstract
Much structural information is encoded in the internal distances; a distance matrix-based approach
can be used to predict protein structure and dynamics, and for structural refinement. Our approach
is based on the square distance matrix D = [rij

2] containing all square distances between residues
in proteins. This distance matrix contains more information than the contact matrix C, that has
elements of either 0 or 1 depending on whether the distance rij is greater or less than a cutoff value

rcutoff .We have performed spectral decomposition of the distance matrices  , in
terms of eigenvalues λk and the corresponding eigenvectors vk and found that it contains at most 5
nonzero terms. A dominant eigenvector is proportional to r2 - the square distance of points from
the center of mass, with the next three being the principal components of the system of points. By
knowing r2 we can approximate a distance matrix of a protein with an expected RMSD value of
about 4.5Å. We can also explain the role of hydrophobic interactions for the protein structure,
because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly
correlated with several sequence profiles which are useful in protein structure prediction, such as
contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e.
crystallographic temperature factors). We have also shown that the next three components are
related to spatial directionality of the secondary structure elements, and they may be also predicted
from the sequence, improving overall structure prediction. We have also shown that the large
number of available HIV-1 protease structures provides a remarkable sampling of conformations,
which can be viewed as direct structural information about the dynamics. After structure
matching, we apply principal component analysis (PCA) to obtain the important apparent motions
for both bound and unbound structures. There are significant similarities between the first few key
motions and the first few low-frequency normal modes calculated from a static representative
structure with an elastic network model (ENM) that is based on the contact matrix C (related to
D), strongly suggesting that the variations among the observed structures and the corresponding
conformational changes are facilitated by the low-frequency, global motions intrinsic to the
structure. Similarities are also found when the approach is applied to an NMR ensemble, as well
as to atomic molecular dynamics (MD) trajectories. Thus, a sufficiently large number of
experimental structures can directly provide important information about protein dynamics, but
ENM can also provide a similar sampling of conformations. Finally, we use distance constraints
from databases of known protein structures for structure refinement. We use the distributions of
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distances of various types in known protein structures to obtain the most probable ranges or the
mean-force potentials for the distances. We then impose these constraints on structures to be
refined or include the mean-force potentials directly in the energy minimization so that more
plausible structural models can be built. This approach has been successfully used by us in 2006 in
the CASPR structure refinement (http://predictioncenter.org/caspR).

Introduction
Mathematical approach to studies of various protein properties by the analysis of the
corresponding matrices has been quite popular in bioinformatics. In our earlier work we
tried to approximate 20×20 dimensional matrices corresponding to contact potentials by 20-
dimensional vectors of various physical properties of amino acids by using a simple linear c0
+ xi + xj and quadratic functions c0 + xixj + yiyj of two amino acid properties x and y.
(Pokarowski et al., 2005) We analyzed 29 different matrices of contact potentials published
in literature. We used AAindex database of over 500 amino acid indices collected by
Kanehisa(Kawashima et al., 2000;Kawashima et al., 2008) http://www.genome.jp/aaindex/
and have found that all matrices of contact potentials can be approximated with correlation
0.9 by hydrophobicities and isoelectric points of amino acids. A dominant role of
hydrophobicity in interactions among residues in proteins has been already well known, and
our study have shown that isoelectric points, that measure electric charges of various amino
acids are also important for contact potentials. We have found two classes of contact
potentials. The first class of contact potentials can be approximated by a linear combination
of hydrophobicities. Major contribution comes from the one body transfer energy of amino
acids from water to protein environment. The second class of contact potentials can be
approximated by a quadratic function of hydrophobicities and isoelectric points of amino
acids. Potentials of this class represent energies of contact of amino acid pairs within an
average protein environment.

In our later work we have extended our method to substitution matrices.(Pokarowski et al.,
2007) We have analyzed 29 different substitution matrices known in the literature, plus 5
statistical contact potentials. We found that substitution matrices can be approximated with
correlation 0.9 by a quadratic expression c0 + xixj + yiyj + zizj with vectors x, y and z
corresponding to hydrophobicity, molecular volume, and coil preferences of amino acids.
We also found that some substitution matrices correlate well with contact potentials.

In our present work we apply a similar approach to matrices containing structural
information for proteins. We try to express these original matrices in terms of their
eigenvectors, try to connect these eigenvectors with physical properties of amino acids and
predict them from the amino acid sequence. Our work was motivated by a recent work of
Vendruscolo(Bastolla et al., 2005) who found that the eigenvector corresponding to the
dominant eigenvalue of the contact matrix in proteins correlates well with the vector of
hydrophobicities of the amino acid sequence. We show that the structural matrices relate to
experimental B-factors (temperature factors) that measure thermal fluctuations of atoms
around their mean positions in crystals (for X-ray determined structures) or in solution (for
NMR-determined structures). We discuss elastic network models of proteins that
mathematically relate contact matrices to mean square fluctuations of residues. We show
that motions of amino acids in proteins computed from elastic network models better fit
NMR-determined. Finally we discuss methods of refinement of protein structures based on
libraries of interatomic distances in proteins, and propose a new optimization method of
solving a generalized distance geometry problem for determination of NMR structures by
using B-factors.
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METHODS
Matrices containing structural information

There are several different matrices that contain structural information for proteins. The
most common is the distance matrix

(1)

where the ij-the element of the matrix is the distance dij between residues i and j. Usually the
distance is measured between the Cα atoms of the residues, although other definitions of
distances, such as: the distance between the centers of side chains of the amino acids, or the
distance between the closest heavy atoms of the two residues, are also popular.

Distance matrices have been used for a long time in structural bioinformatics mostly for
protein structure comparison and alignment and for inferring protein-protein
interactions(Choi et al., 2004;Domingues et al., 2007;Godzik et al., 1993;Heger et al.,
2004;Holm et al., 2000;Huang et al., 2006;Jaroszewski et al., 2002;Kolodny et al.,
2004;Mooney et al., 2005;Pazos et al., 2008;Rodionov et al., 1992;Sato et al., 2005;Sato et
al., 2006;Schneider, 2000;Snyder et al., 2005a;Snyder et al., 2005b;Szustakowski et al.,
2000;Ye et al., 2004;Zhou et al., 2006). In particular Snyder and Montelione used this
approach for identification of core atom sets and for the assessment of the precision in
NMR-derived protein structure ensembles.(Snyder et al., 2005a)

From the mathematical point of view it is easier to deal instead of distances with their
squares. Because of this we define the matrix of square distances

(2)

containing information about square distances dij between amino acids i and j. All diagonal
elements of the distance matrix d and the square distance matrix D are zeros.

Another matrix that is very popular in computational biology and contains significantly less
information than the distance matrix is the contact matrix

(3)

with elements cij defined as:

(4)

Here dcutoff is the cutoff distance defining residues being in contact.

Laplacian of C that is frequently called the Kirchhoff matrix is defined

(5)
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The diagonal elements of Lc are the sums of its off-diagonal elements taken with the
negative sign. Because of such definition the sums of all elements in each row or column are
zero and the determinant of Lc is zero, i.e. the matrix is singular and has no inverse. We may
however, define a generalized inverse (pseudoinverse that might be right or left) Lc

−1 of the
Laplacian matrix Lc. Such generalized inverse Lc

−1 of the Laplacian of the contact matrix is
introduced in elastic network models of proteins (described in detail in the next section) and
its elements represent covariances between instantaneous fluctuations of residues i and j.

Similarly we can define Laplacian of the matrix of square distances D:

(6)

and its generalized inverse LD
−1.

Elastic Network Models of proteins
Elastic network models treat proteins as elastic bodies. A coarse-grained representation of
proteins with a single site per residue is usually used. Positions of these sites are generally
identified with the coordinates of the Cα atoms in proteins. Residues separated by a distance
less than or equal to a certain cutoff value Rc (including neighbors along the sequence) are
assumed to be in contact, and are connected with identical mass-less harmonic springs. This
leads to an elastic network representation of a protein structure in the folded state that
resembles a random polymer network. Fig. 1 illustrates the basic idea of this model.

The simplest of the elastic network models is Gaussian Network Model (GNM). This model
was originally developed for the theory of rubber-like elasticity of random polymer
networks (Flory, 1976;Kloczkowski et al., 1989) to calculate fluctuations of junctions and
chains inside the network. The model was adapted to proteins by Bahar and Erman (Bahar et
al., 1997;Haliloglu et al., 1997) using an earlier result of Tirion (Tirion, 1996) who used a
single harmonic force parameter to analyze atomic motions in proteins.

The total potential energy for the network composed of N nodes is

(7)

where γ is a uniform universal spring constant, and H(x) is the Heaviside step function that

equals 1 if x > 0, and is zero otherwise. Here  is the instantaneous
displacement of the distance vector Rij between the ith and the jth sites from the mean value

 observed in the native structure. Eq. 7 can be rewritten in the following form

(8)

where Γ is the Kirchhoff matrix of size N×N, defined on the basis of the cutoff distance Rc ,
with off-diagonal elements ij being either -1 if nodes i and j are in contact or zero otherwise,
and the diagonal elements are defined as the sum of the off-diagonal elements in the i-th row
(or column) taken with a negative sign. Mathematical definition of the Kirchhoff matrix was
given earlier by Eq. 5. Kirchhoff matrices were introduced first in physics to study electric
currents in networks. Similarly as for electrical circuits where all currents at a given node
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sum up to zero, for a system of connected springs forming a network a sum of elastic forces
at each node is zero. The matrix is equivalent to the Laplacian Lc of the contact matrix in
Eq. 5. Here {ΔR} is the N-dimensional fluctuation vector ΔR = col (ΔR1,ΔR2,… ,ΔRN) of
ΔRi for all N nodes, and the superscript T denotes the transpose. We should note that

(9)

Then the average changes in positions, given either as the correlation < ΔRi · ΔRj > between
the displacements of pairs of residues i and j or as the mean-square fluctuations < (ΔRi)2 > =
< ΔRi · ΔRi > for a single residue i, are

(10)

This can be rewritten (Flory, 1976) in a simple form as

(11)

where (Γ−1)ij is the ij-th element of the inverse of the Kirchhoff matrix Γ, kB is the
Boltzmann constant, T is the absolute temperature, and γ is a spring constant. Mean-square
fluctuations < (ΔRi)2 > of the i-th residue in a protein are given by the i-th diagonal element

of . Since the Laplacian matrix Γ is singular because det( Γ) = 0 only the
pseudoinverse of Γ can be computed through the use of the singular value decomposition
method. The pseudoinverse of Γ may be written as Γ−1 = U(Λ−1)UT where U is the matrix
composed of eigenvectors ui (1 ≤ i ≤ N) of Γ, and Λ is the diagonal matrix of the
eigenvalues of Γ. Additionally, it can be proven that all eigenvalues λi of Γ are non-negative.

Mean-square fluctuations of the position of each Cα computed from Eq. 11 can be compared
with the Debye-Waller thermal factors, which are measured by X-ray crystallography and
deposited in the Protein Data Bank. The relationship between the B-factor and the mean
square fluctuations for the i-th residue is given by

(12)

The B-factors computed by GNM usually are in excellent agreement with experimental data
(Kundu et al., 2002;Sen et al., 2006).

The Gaussian Network Model is based on the assumption that all instantaneous fluctuations
are isotropic. A more sophisticated elastic network model of proteins is the Anisotropic
Network Model (ANM).(Atilgan et al., 2001) Eq. 8 is then replaced by

(13)

where ΔR is the 3N-dimensional vector of fluctuations, ΔRT its transpose and H is the
(3N×3N) Hessian matrix, whose elements are the second derivatives of the total potential
energy with respect to the Cartesian coordinates of the ith and jth nodes.
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Spectral decomposition of structural matrices
Decomposition of matrices is a standard algebraic procedure to factorize them into a
canonical form. There are various different methods of decomposition, such as for example
LU decomposition where the original matrix is expressed a product of a lower triangular
matrix L and an upper triangular matrix U. Decomposition based on eigenvalues of a square
matrix A is called eigendecomposition or spectral decomposition. It allows us to express the
original square matrix A of size in N×N terms of its eigenvalues λk and corresponding
eigenvectors νk

(14)

The inverse matrix A−1 is then expressed by the same Eq. 14 with eigenvalues λk replaced
by their inverses λk

−1. In mathematical problems related to system dynamics the eigenvalues
correspond to frequencies of motions that are called modes.

The matrix Γ−1 for the Gaussian Network Model can be written as the sum of contributions
from individual modes:

(15)

where zero eigenvalues of the Kirchhoff matrix Γ (related to rigid body motions of the
center of mass of the system) are excluded from the summation. The i-th component of the
eigenvector uk specifies the magnitude of fluctuations of the i-th residue in the protein in the
k-th mode. If we order the eigenvalues according to their ascending values starting from
zero, then the most important contributions to Γ−1 in Eq. 15, and therefore (because of eqs
11-12) also to temperature factors are given by the smallest non-zero eigenvalues λk of Γ
that correspond to the large-scale slow modes. The slowest modes play a dominant role in
the fluctuational dynamics of protein structures, because their contributions to the mean-
square fluctuations scale with λk

−1. It has been shown that the most important functional
motions of proteins (Keskin et al., 2002a;Keskin et al., 2002b;Navizet et al., 2004) or large
biological structures (such as the ribosome (Wang et al., 2004;Wang et al., 2005;Yan et al.,
2008)) correspond only a few of the slowest modes derived from the GNM.

To calculate the normal modes for the Anisotropic Network Model, the Hessian matrix H is
diagonalized to the canonical form STHS=Λ , where Λ is a (3N×3N) diagonal matrix with
diagonal elements corresponding to eigenvalues (λ1,…, λ3N) and S is an orthogonal (3N ×
3N) matrix (i.e. STS = I) built from eigenvectors.

The mean-square fluctuations of the residue i can be expressed as a sum over all normal
modes (except the first six zero modes that corresponds to translations and rotations of the
system) as

(16)

where  are the mean-square fluctuations of residue i.
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Structure Determination and Refinement Using Distances
We consider a problem of the determination of a structure or an ensemble of structures for a
protein with a given set of inter-atomic distances or their ranges. This problem arises in
modeling proteins using NMR distance data. Mathematically, it requires the solution for a
nonlinear system of equations or inequalities. Let xi = (xi1,xi2,xi3)T be the coordinate vector
of atom i; (i = 1, …, n), with n being the total number of atoms in the protein. The problem
can be formulated to find xi, i = 1, …, n such that

(17)

where di,j are the given distances between atoms i and j or

(18)

Here li,j and ui,j are the given lower and upper bounds on di,j, respectively.

The problem formulated in Eq. 17 has been studied in several fields and has many
applications. It is called the distance geometry problem in mathematics, the
multidimensional scaling problem in statistics, and the graph embedding problem in
computer science. Distance geometry methodology for proteins has been developed 30 years
ago by Havel and Crippen. (Crippen et al., 1978;Havel et al., 1979;Havel et al., 1983a;Havel
et al., 1983b;Havel et al., 1983c)

The problem can be solved in polynomial time by using for example the well-known
singular value decomposition algorithm if the distances for all the pairs of atoms in the
protein are given, but it is NP-hard for an arbitrarily given subset of all the distances. The
problem defined in eq. 18 has a particular application in NMR protein modeling, where only
a lower and upper bound can be estimated for a distance. A set of solutions can be obtained
for this problem, which corresponds to an ensemble of structures, all satisfying the given
distance constraints. It is of great practical interest to obtain the whole ensemble of
structures, since it shows how a structure may change dynamically given the possible ranges
of their distances. However, the problem to obtain the whole solution set, even for a linear
system of inequalities, is NP-hard.

Heuristic methods have been developed for the solution of the first problem (Eq. 17), and
been extended to the solution of a generalized problem (Eq. 18). A common approach to the
later (Eq. 18) is to generate repeatedly a set of distances within the given distance ranges,
and solve Eq. 17 with the generated distances. In the end, a set of solutions is obtained that
represents the whole solution set for the problem defined by Eq. 18. The obtained solutions
form an ensemble of structures. They can be put together to show how they deviate from
each other at different times. A long-standing issue with this approach is that the solution set
for Eq. 18 is often underdetermined or not well represented by the obtained solutions, and
therefore, the ensemble of structures cannot fully reflect the dynamic behavior of structures.
Besides, solving Eq. 17 for each generated set of distances can be very costly.

RESULTS
Spectral decomposition of a square distance matrix

The eigenvalue spectrum of contact matrices or Laplacian (Kirchhoff) matrices is rather
complex, with only one eigenvalue out of N being zero for GNM, and six out of 3N being
zero for ANM. In the case of the square distance matrix D (Eq. 2) the eigenspectrum is
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much simpler. Spectral decomposition of a square distance matrix is a complete and simple
description of a system of points and has at most 5 nonzero, interpretable terms: A dominant
eigenvector associated with the dominant eigenvalue is proportional to r2 - the square
distance of points to the center of the mass, and the next three are principal components of
the system of points. It can be shown that these principal components are related to the
directionality of the secondary structure elements. This means that the square distance
matrix D that contains almost complete information about protein structure (except
impossibility to distinguish protein from its mirror image) can be completely reconstructed
from the dominant r2-related eigenvector and three eigenvectors corresponding to the
principal components.

To illustrate relationships with the square distance of residues from the center of mass and
the secondary structure let us consider protein G. Fig. 2a shows the plots of experimental B-
factors of Cα atoms measured by the X-ray crystallography (shown in black), mean-square
fluctuations computed from the Gaussian Network Model, and the values of the square
distance of Cα atoms from the protein center of mass plotted vs. the residue index. We see
that r2 correlates with B-factors better than predictions provided by elastic network model.
Fig. 2b shows the plot of the first principal component vs. the residue index for protein G.
The relation with directionality of the secondary structure elements is obvious if we compare
Fig. 2 with Fig. 3 that shows protein G oriented in the direction of the first principal
component.

The first principal component (Fig. 2b) increases as the residue index follows the direction
of the secondary structure in proteins (Fig. 3), when the secondary structure reverses its
direction the principal components starts decreasing, etc. In the case of the second (or the
third) principal component the relationship between the values of these components and
orientation of the secondary structure in the direction of the principal component (Fig. 4) is
much more difficult to visualize.

We used a nonredundant database of 680 structures derived from the ASTRAL database and
computed average correlations between experimental B-factors and various theoretically
computed quantities, as well as correlations among them. We analyzed the square distance
of each residue from the center of mass (r2), principal eigenvector of the contact matrix
(PECM), contact number (the number of residues being in contact) for each residue (CN),
and mean-square fluctuations computed from the Gaussian Network Model (GNM). We
tried also to predict B-factors from the sequence alone using Support Vector Regression
(SVR) that is a variant of Support Vector Machines for continuous variables. The results of
our computations are shown in Fig. 5. Highest correlations of the order 0.9 are shown in
black, correlations 0.8 are shown in green, and correlations of order 0.5 are shown in red.
We see that all four quantities (r2, PECM, CN and GNM) are very well correlated with each
other. Especially the correlations between the fluctuations predicted from GNM and the
inverse of the contact number CN, or PECM are surprisingly high (0.9). Accuracy of
predictions of experimental B-factors from the sequence alone using SVR is almost the same
(~0.5) as for predictions based on structural information contained in the contact matrix. (for
GNM, CN and PECM), or in the square distance matrix (for r2).

Some of these observations have been already reported in literature. In 1980 Petsko found
that crystallographic B-factors correlate with the distances of residues from the center of
mass r2 .(Petsko et al., 1980) Correlations between fluctuations of residues and the inverse
of their contact numbers have been pointed out by Halle in 2002.(Halle, 2002) Prediction of
B-factors from the sequence using SVM was recently reported.(Chen et al., 2007)
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Approximation of distance matrices—We tried to reconstruct the original structure
described by the square distance matrix by using eigenvalue decomposition (eq. 14). The
inclusion of all four terms in the summation in Eq. 14 gives to the original square distance
matrix. By using only the first term related to the dominant eigenvector, or the first two
terms (the dominant eigenvector and the first principal component) we can assess the
contribution of these terms to the reconstruction of the original square distance matrix from
the eigenvalue decomposition. The computations were performed on our nonredundant
database of 680 structures derived from the ASTRAL database. We found that the dominant
eigenvector r2 alone approximates protein structures with average RMSD 7.3 Å. However if
we used two terms in eq. 14 by combining r2 with the first principal component the original
structures were approximated with much better RMSD 4.0 Å. Addition of the second
principal component would of course additionally improve these approximations. Since both
r2 and the first principal component can be predicted from the sequence alone, that allows us
to predict the tertiary structure of proteins with RMSD better than 4.0 Å from the sequence.
Such predictions can be based only on the predicted distances of residues from the center of
mass, and prediction of the secondary structure elements and their orientation in space. We
are currently working on this problem by using Support Vector Regression.

Principal Component Analysis of Multiple HIV-1 Proteases Structures—We
used 164 X-ray-determined and 28 NMR-determined structures of HIV-1 proteases
deposited in PDB structures.(Yang et al., 2008) Fig. 6 shows the structure of HIV-1
protease. We used also 10,000 structures (snapshots) obtained from the Molecular Dynamics
simulations of HIV-1 protease. We performed the Principal Component Analysis of the
structural matrices for all these three different datasets. Then we compared the results of
Principal Component Analysis with normal modes computed from the Anisotropic Network
Model. We computed the overlap (measured as the dot products of vectors) between
directions of motions computed from ANM and principal components for X-ray determined
structures and NMR-determined structures for first few slowest modes. The results are
shown in Table 1.

Table 1 suggests that MNR-determined structures fit predictions of elastic network models
better than X-ray-determined structures. This idea was further evidenced after the
computation of the cumulative overlap (a sum of overlaps for the first k-modes), shown in
Table 2.

NMR-derived structures fit prediction of Anisotropic Network Model much better than X-
Ray-derived structures. A possible explanation is that NMR experiments enable us to study
single isolated molecules in solution, and elastic networks are basically also single molecule
models, whereas in X-ray crystallography motions of protein residues are affected by
interactions with the rest of the crystal lattice.

An Optimization Approach for Structure Determination and Refinement Using
Distances—We propose a new model for the solution of the problem defined by Eq. 17 by
making a similar assumption as in X-ray crystallography that a protein has an equilibrium
structure and the atoms fluctuate around their equilibrium positions. These thermal
fluctuations are represented by the B-factors in the X-ray crystal structure. With this model,
we can then reformulate the problem for determining an ensemble of structures for a given
set of distance ranges as an optimization problem, i.e., to find the equilibrium positions and
maximal possible fluctuation radii for the atoms in the protein, subject to the condition that
the fluctuations should be within the given distance ranges (see Fig. 7). Let ri be the
fluctuation radius of atom i.
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Then, the problem can be written as to find xi and ri, i = 1, …, n such that we maximize the
total volume of spheres corresponding to fluctuations of atoms, subject to the lower and
upper distance constraints imposed on interatomic distances:

(19)

We call this problem a generalized distance geometry problem. This problem is not exactly
equivalent to Eq. 18, but the solution of the problem can provide a meaningful description
for the structure to be determined and its dynamic behavior. Moreover, the formulation
given by Eq. 19 has many advantages over Eq. 18. First, it is a much better defined problem,
because it requires only a single solution rather than a solution set. Second, it is
computationally more tractable because there are well-developed methods for solving
optimization problems. Third, the solution of the problem can deliver an NMR structure in a
similar form as an X-ray crystal structure, with a single structural file containing the
coordinates and fluctuation radii (or B-factors) for the atoms. These advantages make it
possible for us to develop an efficient algorithm for the determination of a structure using a
set of distance data and improve the way to represent a structural ensemble in NMR
modeling.

A Buildup Algorithm
In practice, there can be more than tens of thousands of variables and constraints for the
problem in Eq. 19. A constrained optimization problem of such complexity can still be very
difficult to solve. We therefore propose a novel so-called buildup algorithm for the solution
of the problem. The idea of this algorithm is to determine the coordinate vectors and
fluctuation radii of the atoms, one at a time, using the distance constraints from the
determined atoms to the undetermined ones. Let xj and rj be the coordinate vector and
fluctuation radius of an atom to be determined. Suppose that there are l determined atoms xi,
i = 1, …, l from which the lower and upper bounds on the distances to atom j are given.
Then, a subproblem for determining atom j can be formulated as follows:

(20)

This subproblem has only four variables and 2l constraints, and can be solved easily. By
repeatedly solving such subproblems for undetermined atoms, the coordinate vectors and
fluctuation radii of the all atoms in the protein can all be determined eventually. We have
implemented such a buildup algorithm in Matlab and applied it to a set of test problems. We
demonstrate how the algorithm works in the following.

Let us consider the structure of protein 1AX8 as an example. In order to test the algorithm,
we first used the PDB data for 1AX8 to compute all the distances less than or equal to 5 Å.
We then computed the root-mean-square fluctuations for all the atoms based on their B-
factors. Let yi and bi be the coordinate vectors and B-factors for atom i, respectively, i = 1,
…, n. We then set a fluctuation radius for atom i to be
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(21)

where constants C and D are the scaling factors that are evaluated by solving later the
optimization problem defined by Eq. 19. Let di,j be the distance between atoms i and j. We
then set

(22)

With such a set of distance intervals, we then solve an optimization problem (Eq. 19) by
using a buildup procedure. Fig. 8 shows the X-ray crystal structure for 1AX8 and the
equilibrium structure determined after solving Eq. 19 using the distance data given in Eq.
22. Let Y = {yi, i = 1, …, n} and X = {xi, i = 1, …, n} be two n×3 coordinate matrices for the
two structures, respectively. Then, RMSD (X, Y) = 2.0e-04 Å, showing that the two
structures are almost the same. After solving Eq. 19, we have also obtained the fluctuation
radii for the atoms. Fig. 9 shows the computed radii ri and the radii fi derived from the B-
factors of the crystal structure, i = 1, …, n. Clearly, the two sets of radii correlate very well

Structure Refinement Using Statistical Distances—We propose a computational
approach to refining an NMR structure (and possibly other types of structures as well) by
statistically deriving additional distance data from a large set of known protein structures.
General idea of our approach is based on earlier work of Sippl (Sippl, 1990;Sippl,
1992;Sippl, 1993;Sippl, 1995;Sippl et al., 1986;Sippl et al., 1985), Melo and Feytmans
(Melo et al., 1997;Melo et al., 1998), Garbuzynskiy (Garbuzynskiy et al., 2005) among
others.

By statistically deriving additional distance data, we mean that we can search for the
distances between certain pairs of atoms, especially for those missing in the experimental
data, in a database of known protein structures such as PDB, and then obtain a statistical
distribution of each distance type, say the distance between the two Cβ atoms in two
neighboring residues, alanine (ALA) and tryptophan (TRP). Using these distributions, a
probable range or a mean-force potential of each distance type can be defined, and applied
to refining a structure.

Consider the distances between two atoms in two residues separated by some residues in
sequence. Let A1 and A2 be the two atoms, R1 and R2 the two residues, and S1, …, SN the
residues between R1 and R2. Let the distances between A1 and A2 in R1 and R2 separated by
S1, …, SN be collected from a database of know protein structures and grouped into a set of
uniformly divided distance intervals [Di, Di+1], where Di = 0.1 * i Å, i = 0, 1, …, n-1. Then,
the distribution of this particular type of distances can be defined by a function
P[A1,A2,R1,R2,S1,…,SN](D) for any distance D, and

(23)

The distribution graphs for most distance types should have non-uniform patterns if the two
residues are not too far apart. This is primarily due to the fact that large portions of protein
segments form regular secondary structures, i.e., α-helices or β-sheets, where short-range
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distances always have certain ranges (see Fig. 10). Based on the distribution of the distances
of a given type, we can extract a probable range for the distances by using the mean minus
and plus a few standard deviations of the distances. Let l and u be the lower and upper
bounds of the distances between A1 and A2 in R1 and R2 separated by S1, …, SN. We can
define l = μ - kσ and u = μ + kσ, where μ and σ are the mean and the standard deviation of
P[A1,A2,R1,R2,S1,…,SN] and k is a constant. Alternatively, we can also use the distribution
of the distances to define a mean-force potential.

For example, for the distances between A1 and A2 in R1 and R2 separated by S1, …, SN, we
can define a potential function E such that for any distance D of this type

(24)

where kB is the Boltzmann constant and T the temperature.

Once a set of distance bounds or mean-force potentials are obtained, we can impose the
bounds on a structure to be refined or include the mean-force potentials in energy
minimization so that a more plausible structural model may be built.

Results of structure refinement—We have downloaded around 2000 X-ray crystal
structures with resolution of ≤ 2.0 Å and sequence similarity of ≤ 90% from PDB, and
calculated a set of short-range distances and their distributions.(Wu et al., 2007a) The types
of the distances calculated can be specified in terms of five parameters [A1,A2,R1,R2,S],
where A1 and A2 are the atoms, R1 and R2 the residues, and S the residue separating R1 and
R2. Also, only five different types of atoms were considered: the amide N, Cα, and the
carbonyl C and O along the backbone and the carbon Cβ in the side-chain. The residue types
included all twenty different amino acid types. For convenience, we call them cross-residue
distances. For each set of A1, A2, R1, R2, and S, all corresponding distances in the
downloaded crystal structures were computed and collected into a set of uniformly divided
distance intervals [Di, Di+1], where Di = 0.1 i Å, i = 0, 1, …, 200. The distribution function
P[A1,A2,R1,R2,S](D) for any D in [Di, Di+1] was defined as the number of distances in [Di,
Di+1] normalized by the total occurrences of distances in all intervals.

The distribution functions for a subset of cross residue distances were used to generate a set
of bound constraints for the corresponding distance types, with the lower and upper bounds
equal to the mean values of the distances minus and plus twice the standard deviations,
respectively. The generated distance bounds were then taken as additional distance
constraints to refine a set of NMR structures, including five structures for 1EPH, 1GB1,
1IGL, 2IGG, 2SOB and five for 1CEY, 1CRP, 1E8L, 1ITL, 1PFL. The last five were
selected because they have X-ray structures available. The original NMR experimental
constraints for the structures were downloaded from NMR structure database
BioMagResBank (Ulrich et al., 2008). The structures were refined using the default torsion
angle dynamic simulated annealing protocol implemented in CNS (Brunger et al.,
1998;Brunger, 2007). The results obtained with and without additional database distance
constraints were examined on the deviations of all simple cross-residue distances from their
average distributions, and compared and assessed in terms of several criteria used in NMR
modeling, including the acceptance rates of the structures, the RMSD values of the
ensembles of structures, and the RMSD values of the structures compared with their X-ray
structures (for available ones).

The distribution functions for a set of cross residue distances were also used to define a set
of mean force potentials.(Wu et al., 2007b) Let P be the distribution function for any
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distance of interest between two atoms. Then, the mean-force potential E for the distance
was computed from Eq. 24. The potentials for all the cross residue distances were then
summed up and inserted into the energy function in CNS software. The extended energy
function was applied to refining a set of selected NMR structures. Again, the original NMR
experimental constraints for the structures were downloaded from NMR structure database
BioMagResBank. The embedding and energy minimization routines in CNS were used for
the refinement. The results obtained with and without using the mean-force potentials were
compared and assessed in terms of several standard measures, including the potential energy
of the structures in various categories, the RMSD values of the ensembles of structures, and
the RMSD values of the structures compared with their X-ray reference structures (for
available ones), and the Ramachandran plots.

As shown in Table 3, the means and standard deviations of the RMSD values for the listed
ensembles of NMR structures all became smaller after the structures were refined with the
statistically derived distance constraints. Note that the RMSD values were calculated in
terms of either just backbone atoms or all non-hydrogen atoms. The results were consistent
in both calculations.

The refined NMR structures for five proteins (1CEY, 1CRP, 1E8L, 1ITL, and 1PFL) were
compared with their corresponding X-ray structures for the RMSD values of the pairs of
NMR and X-ray structures. As shown in Table 4, both means and standard deviations of the
RMSD values for the ensembles of structures refined with the derived distance constraints
were clearly smaller than those refined without them, indicating strongly that the structures
agreed more closely with their reference structures after being refined with the derived
distance constraints.

As a case study, we have also applied the derived distance constraints to refining the NMR
structure of the human PrPc E200K variant of the prion protein. Two biologically critical but
under-determined loop regions (residues 167-171 and 195-199) were targeted particularly
for improvement. The Ramachandran plots of the average and energy-minimized structure
and the lowest energy structure of the refined structural ensemble showed a significantly
higher percentage (89.6%) of residues in the most favorable regions of the plots than the
85.4% of such residues found in the regularly refined structures, which was a clear
indication on the improvement of the structures due to the use of the statistically derived
distance constraints. Table 5 shows the energy values for a list of refined structures in
various categories and in particular, the means and standard deviations of the energy values
in each structural ensemble. Note that for a fair comparison, the calculation of the overall
energy did not count the contribution from the mean-force potentials although the latter were
used in the CNS+PMF refinement. Note also that the energy due to electrostatic interactions
was not listed because the corresponding potentials were not included in the default CNS
refinement protocol. Table 3 shows that the means and standard deviations of the energy
values of the ensembles of structures became smaller in almost all categories after the
structures were refined with the addition of the mean force potentials. The results suggested
that the refined structures, when using the mean-force potentials, were clearly more
favorable energetically. Surprisingly, they also satisfied the experimental constraints better
as the NOE and DIH energies were decreased in many cases as well. Overall, in terms of the
means and standard deviations of the energy values in the structural ensembles, of the 70
selected NMR structures, about 80% had the overall energy significantly reduced, in average
by 7.5%, and about 65% had the NOE energy decreased, in average by 5%, after refined
with mean-force potentials. Here we have not calculated the statistics for the DIH energy
because some structures did not have the DIH data and energy available.
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Refining Comparative Models—We have also participated in the CASPR 2006
structure refinement experiments. In these experiments eight structural models (predicted
with comparative modeling) were provided for further refinement. The RMSD values of the
models compared with PDB structures ranged from 2.0 Å to 5.0 Å. To illustrate our
methodology we focus on a model of a protein with 70 residues and a 2.19 Å RMSD from
its crystal structure (1WHZ, see Fig. 11). We have used the following procedure to refine
the structure. First, 16 different structures were generated by randomly perturbing the
residues of the target structure. Energy minimization was then carried out using CHARMM
(Brooks et al., 1983)with the generated structures as starting points. Of the 16 obtained
minima, 4 were selected randomly, and each was used to generate 16 more structures for
further energy minimization. The process was repeated until the maximum number of
structures was generated.

In the end, total 100 minimum energy structures were selected from the structures obtained
in the energy minimization stage. Based on the energy values and the Ramachandran plots
of the structures, a small set of structures were selected and the one with both low energy
and good residual distribution in the Ramachandran plot was used as an initial model. The
RMSD value of the initial model against the experimental structure was 1.92 Å. From this
initial model, a large set of distances between atoms contact distances was computed. A set
of lower and upper bounds for the distances was then generated by subtracting 20% from or
adding 20% to the distances. Then, the CNS NMR refinement protocols were used to further
refine the model with the generated distance constraints.

The distributions of distances between certain pairs of atoms, especially the distances
between heavy atoms in different residues separated by several residues in the primary
sequence, were also computed. A set of mean-force potentials for the distances was
constructed using the distribution functions, and was added to the CNS energy function.

The initial model was refined with the modified energy function. Total 50 structures were
generated by CNS as an ensemble of models for the protein. The structures were analyzed
based on their total energies and residual distributions in the Ramachandran plots. The one
with both low energy and good Ramachandran plot was selected as the final model. This
model had a 1.80 Å RMSD from the experimental 1WHZ structure. The improvement in
this sense was significant compared to the RMSD value (2.19 Å) of the original model.

DISCUSSION
Conclusions

We show that mathematical approach based on distance matrices is very powerful and
enable us to predict protein structure from the sequence. The information contained in the
square distance of residues from the center of mass, and the first principal component allows
us to reconstruct protein structure with RMSD 4.5 Å. We demonstrate that crystallographic
B-factors can be predicted from the sequence using Support Vector Regression. We also
prove that protein structures can be refined by using statistical interatomic distances, and
that generalized distance geometry problem for solving NMR structures based on distances
between atoms subject to upper and lower bounds can be reduced to an optimization
problem that involves maximization of the volume of spheres with the radii equal to the
range of corresponding thermal fluctuations of atoms. All methods presented are still being
improved and may lead to a significant progress in prediction of protein structure and
dynamics and to substantial refinement of protein models.
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Summary
We have applied distance matrices and the related contact matrices to several different,
although interconnected problems relevant to structural bioinformatics. We have performed
eigenvalue decomposition of square distance matrices, and we have shown that a dominant
eigenvector is proportional to r2 - the square distance of points from the center of mass,
while the next three eigenvectors are the principal components of the system of points. We
have shown that both the dominant eigenvector and the first principal component can be
predicted from the sequence alone that allows us to predict the tertiary structure of proteins
from sequence with RMSD around 4.0 Å.

We have performed elastic network analysis (based on contact matrices) of the large number
of available HIV-1 protease structures, and have shown that they provide a remarkable
sampling of conformations, which can be viewed as direct structural information about the
dynamics. Finally, we have used distance constraints from databases of known protein
structures for structure refinement.
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Fig. 1.
Beads and springs representation of proteins in elastic network models. Protein backbone is
shown in red.
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Fig. 2.
a) The plot experimental B-factors (black), fluctuations computed from Gaussian Network
Model (green), and the square of the distance from the center of mass (red) vs. the residue
index for protein G. b) The plot of the first principal component vs. residue index for protein
G.
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Fig. 3.
Structure of protein G in the direction of the first principal component
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Fig. 4.
Structure of protein G in the direction of the second principal component
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Fig. 5.
Correlations among experimental B-factors, contact numbers (CN), principal eigenvectors of
the contact matrix PECM, square distances from the center of mass r2, and predictions of
GNM. Support Vector Regression (SVR) predictions of B-factors from the sequence alone
are also shown. The extent of correlations is illustrated by colors.
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Fig. 6.
The α-carbon trace of the HIV-1 structure
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Fig. 7. Protein Model
A protein is assumed to have an equilibrium structure and the atoms fluctuate around their
equilibrium positions (as represented by the B-factors in an X-ray crystal structure).
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Fig. 8. Computational vs Experimental Structures
The structure on the left is the crystal structure for protein 1AX8. The one on the right is the
structure for 1AX8 obtained by solving a generalized distance geometry problem using a set
of distance bounds.
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Fig. 9. Atomic Fluctuation Radii
The upper graph shows the fluctuation radii of the atoms extracted from the B-factors of the
original crystal structure of protein 1AX8. The lower graph shows the fluctuation radii
obtained by solving a generalized distance geometry problem.
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Fig. 10. Statistical Distances
The distances of a specific type have been collected from known protein structures and used
to form a probability distribution function of the distances.
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Fig. 11. Refining Comparative Models
From left to right are the crystal structure, the given target, and the refined model. The
RMSD of the given target is 2.19 Å against the crystal structure, while the refined model is
1.80 Å. The differences can be observed in both the helical (purple) and extended (yellow)
regions.
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Table 3

RMSD of the Ensembles of Refined NMR Structures

Protein #Res Data
Means ± Standard Deviations*

Backbone† Non-H‡

1EPH 53
NMR 2.04±0.61 2.94±0.70

NMR+DB 1.78±0.40 2.76±0.54

1GB1 56
NMR 0.45±0.12 1.04±0.18

NMR+DB 0.38±0.09 0.91±0.16

1IGL 67
NMR 4.50±1.52 5.49±1.55

NMR+DB 3.81±1.24 4.70±1.43

2IGG 64
NMR 2.62±0.85 3.29±0.83

NMR+DB 2.16±0.90 2.87±0.85

2SOB 103
NMR 7.25±1.60 8.06±1.67

NMR+DB 5.54±1.77 6.41±1.77

*
The means and standard deviations of the RMSD values of the structure ensembles refined with and without database distance constraints

†
RMSD values in terms of backbone atoms

‡
RMSD values in terms of all non-hydrogen atoms.
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Table 4

Refined NMR Structures Compared to X-ray Structures

NMR ID X-Ray ID #Res

Means ± Standard
Deviations*

NMR† NMR + DB‡

1CEY 3CHY 128 1.85±0.19 1.80±0.17

1CRP 1IAQ_A 166 1.77±0.29 1.60±0.26

1E8L 193L 129 2.05±0.22 2.02±0.19

1ITL 1RCB 129 2.88±0.76 2.79±0.21

1PFL 1FIK 139 1.66±0.07 1.65±0.07

*
The means and standard deviations of the RMSD values for the ensembles of NMR structures compared with their X-ray structures

†
Refined with only NMR distance constraints

‡
Refined with NMR and database distance constraints.
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