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With the recent approval by the FDA of an immunother-
apy for prostate cancer and another positive immu-
notherapy trial in melanoma, immunotherapy may
finally be coming of age. So what will it take for it to
become part of the standard treatment for glioblastoma?
To put this question into perspective, we summarize
critical background information in neuro-immunology,
address immunotherapy clinical trial design, and
discuss a number of extrinsic factors that will impact
the development of immunotherapy in neuro-oncology.
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Immune Privilege

T
he failure of immunotherapeutics to exert an
effect against tumors within the brain has been
attributed to “immunological privilege”1 second-

ary to the absence of a lymphatic drainage system within
the brain, the presence of the blood–brain barrier (BBB),
and a paucity of resident specialized antigen-presenting
cells (APCs) within the CNS.2,3 However, all these pre-
mises have now been substantially discounted. For
example, cerebrospinal fluid (CSF) has been shown to
drain via the Virchow–Robbin spaces to the deep cervi-
cal lymphatics4 via perivascular sheaths and through the
nasal submucosa.5–7 Antigens within the CNS enter the
cervical lymph nodes by these routes8 and result in

immune activation with a distinct hierarchy.9 This hier-
archy is characterized by strong antibody responses and
priming of cytotoxic T cell responses but an absence of
delayed-type hypersensitivity (DTH) responses, with a
skewing toward a nontumor Th2 phenotype.6,8–10

Although naı̈ve T cells are not found within the CNS,
T cells and antibodies have access to antigens within
the CNS,11–13 indicating that the BBB does not form
an absolute barrier to immune responses. Activated T
cells are permitted to patrol the CNS in an
antigen-independent and apparently unrestricted
manner14 and return to the systemic circulation. These
cells exit through the cribriform plate and reach the
nasal mucosa and, eventually, cervical lymph nodes.15

Evidence suggests that T cells that encounter their
cognate antigen are retained within the CNS,16 but
some studies suggest that they do not proliferate and
instead undergo apoptosis.17,18 Other studies have
shown the proliferation of antigen-specific T cells,
specifically within tumors, and differentiation into cells
with enhanced effector function.16 Microglia and
macrophages have been shown to act as resident APCs
within the CNS.19 Dendritic cells (DCs) are present in
both the choroid plexus20 and meninges.21 CNS micro-
glia,22 with the phenotypic and functional character-
istics of both macrophages and DCs,23,24 express class
II antigens and T cell costimulatory molecules24–26

that are capable of antigen presentation when not associ-
ated with tumors. Astrocytes, though capable of antigen
presentation, are poor APCs and probably do not play a
primary role in immune activation.17

Based largely on the low globulin protein concen-
tration within the CSF, it was generally believed that
antibodies do not penetrate the BBB. However, anti-
bodies do rapidly accumulate within the CSF and brain
parenchyma after passive or active peripheral immuniz-
ation in experimental animals18 and are distributed
throughout the CNS according to kinetics similar to
those in other peripheral organs, albeit at a ratio of
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�0.1%–5% of the titer of antibodies found in the
serum.27–30 Despite this, it remains unclear as to what
levels of antibody are sufficient to mediate effector func-
tions in the brain, including antitumor effects, and how
binding kinetics and antigen distribution affect these
parameters. Soon after the approval of trastuzumab for
HER2-positive breast cancer, concern arose over an
apparent increase in CNS metastases,31,32 particularly
in the context of excellent systemic control. This was
taken as evidence that antibodies like trastuzumab
cannot cross the BBB at levels sufficient to have a thera-
peutic effect, even in the context of metastatic intrapar-
enchymal tumor or leptomeningeal disease. However,
the cause of this apparent increase in brain metastases
in patients with HER2-positive breast cancer is probably
multifactorial. Subsequent studies have shown that
trastuzumab does enter the CSF, but at significantly
lower concentrations (�420:1), even in the context of
whole-brain radiation therapy, which is thought to
disrupt the BBB (76:1), or leptomeningeal disease
(,49:1).29,30 Furthermore, PET imaging has recently
shown directly that trastuzumab can penetrate brain
metastases.33 However, what has also been shown is
that CNS metastases from breast cancer remain HER2
positive; therefore, it is not clear what amount of anti-
body that penetrates the CNS is sufficient to manifest
an antitumor effect. Cumulatively, these data indicate
that tumors in the CNS should not be considered “off-
limits” to immunotherapy and that the therapeutic nihi-
lism surrounding the application of immunotherapy to
primary and metastatic tumors of the brain needs to be
eliminated.

Immunosuppression

Patients with cancer, and especially those with malig-
nant gliomas, have a variety of heterogeneous, redun-
dant mechanisms that contribute to their overall state
of immune suppression, and these mechanisms serve as
a barrier to effective immunotherapy. Generalized mani-
festations of immune impairment in these patients
include low peripheral lymphocyte counts, reduced
DTH reactions to recall antigens, impaired mitogen-
induced blastogenic responses by peripheral blood
mononuclear cells (PBMCs), and increased numbers of
regulatory T cells (Tregs; reviewed in Dey et al.34).
Primed CD8+ cytotoxic T cells gain CNS access14,35;
however, the lack of tumor eradication indicates that
the T cells are functionally impaired. This has been con-
firmed with ex vivo studies demonstrating a lack of effec-
tor/activated T cells in the glioma microevironment.36

More specifically, adaptive immune responses are
noticeably deficient, with diminished responsiveness of
peripheral T cells associated with impaired early trans-
membrane signaling through the T cell receptor/CD3
complex. In addition, reduced immunoglobulin syn-
thesis by B cells in vitro from the peripheral blood of
patients with intracranial tumors appears to be related
to diminished T-helper cell activity. Many cancers,
including gliomas, secrete factors such as prostaglandin

E2, interleukin (IL)-10, vascular endothelial growth
factor, and transforming growth factor (TGF)–b that
are capable of suppressing cytotoxic responses of T
cells against tumor targets, downregulating major histo-
compatibility complex (MHC) expression, suppressing
T cell proliferation,37–39 and inhibiting the maturation
of DCs.40 The absence or low expression of costimula-
tory molecules within the CNS36 also gives an immune
escape advantage to cancer cells because costimulatory
signals are essential for differentiation of functional
tumor-specific CD8+ T-effector cells.41–44

Furthermore, the expression of costimulatory inhibitory
molecules like B7-H1 that are expressed in malignant
gliomas (especially with PTEN gene loss) can further
inhibit immune responses.45

Many studies have demonstrated that Tregs are
responsible for inhibition of tumor reactive effector T
cells, and the elimination of Tregs by any of several
different strategies successfully enhances antitumor
immunity mostly in murine models.46–50 Similarly,
CD4+CD25+FoxP3+ Treg-mediated suppression has
also been demonstrated in several human cancers with
increased numbers of these cells.51–54 Collectively,
these data indicate that Tregs cannot only inhibit the
initial systemic immune activation but also prevent the
effector responses in the tumor microenvironment.
Increasingly, other immune populations such as immu-
nosuppressive myeloid cells55 and M2 macrophages56,57

within the tumor microenvironment are being shown to
participate and mediate tumor immunosuppression.

A variety of investigators have also shown that cancer
stem cells suppress immune response,58–61 indicating
that this is probably a generalized property of pluripo-
tent stem cells. Distinct pathways and mechanisms that
are used by the cancer stem cells, if they exist, will
need to be clarified to specifically target cancer stem
cell–mediated immunosuppression. It may be possible
to vaccinate against cancer stem cells through the use
of immunologic manipulations that enable the generated
effector responses to overwhelm the immunosuppressive
capacity of the tumor.62–64 Nevertheless, the grim
reality is that recurrence and persistence are hallmark
features of gliomas, and in most circumstances, the
intrinsic immune system of the patient, unaided, is
unable to eradicate the cancer stem cells that are the pro-
genitors that give rise to recurrence and progression.
Thus, immunosuppression predominates in patients
with high-grade gliomas and poses barriers for success-
ful antitumor immunotherapy.

A rudimentary way to overcome this tumor-mediated
immunosuppression is by attempting to resect as much
of the tumor as is feasibly possible—an approach that
has been used in several recent clinical trials (Table 1).
This also provides the opportunity to minimize the
patient’s dependence on immunosuppressive steroids, a
possible confounding factor during active immunothera-
peutic approaches. However, not all patients have
disease that is amenable to surgery, and thus alternative
approaches that can target key molecular hubs that
mediate multiple mechanisms of immunosuppression
need to be identified and targeted.
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The signal transducer and activator of transcription
3 (STAT3) has been shown to be a potent regulator of
anti-inflammatory responses by suppressing innate65–68

and adaptive immunity.69 The STAT3 pathway
becomes constitutively active in diverse tumor-
infiltrating immune cells,69 markedly impairing their
effector responses.69,70 STAT3 also increases the func-
tional activity of the immunosuppressive Tregs.71–73

Furthermore, we have recently demonstrated that the
cancer stem cells are dependent on the STAT3 pathway
in mediating immunosuppression that can be reversed
with p-STAT3 inhibitors,60 indicating that this
pathway is a molecular hub of tumor-mediated
immunosuppression.

Targeting these molecular hubs is a paradigm shift
from previous approaches that attempted to overwhelm
the tumor with effector responses by now focusing
therapeutic attention on controlling tumor-mediated
immune suppression in a comprehensive, global
fashion and perhaps allowing intrinsic recognition of
tumor-associated antigen (TAA) and tumor-specific
antigen (TSA). Interestingly, adult malignant gliomas
appear to express more TAA and TSA than gliomas

within pediatric patients,74 likely related to better immu-
nologic reactivity (ie, less immune suppression) in the
pediatric patient relative to the adult75 and makes the
use of agents that can profoundly control tumor-
mediated immune suppression therapeutically compel-
ling. Thus, if we are going to be successful in treating
patients with glioblastoma multiforme (GBM) with
immunotherapy, we will also have to carefully consider
and combat the matrix of immunosuppressive mechan-
isms operating in these patients.

Clinical Trial Design

With immunologically based therapeutics, a maximum
tolerated dose cannot be identified in most cases. This
is especially true with biologic agents in which there is
a limitation to the amount of “drug” that can be feasibly
generated. Thus, in many cases, what can be obtained
during a phase I clinical trial of an immunotherapeutic
is a maximum feasible dose. Furthermore, for noncyto-
toxic agents and most immunotherapeutics, efficacy76

and toxicity77 are often not clearly dose related. Added

Table 1. Clinical efficacy data from representative immunotherapy clinical trials

Agent delivered/site Phase Sponsor or centers involved Results

PEP-3-KLH + GM-CSF (ACTIVATE)/
systemic120

II Duke University Medical Center/
The University of Texas MD
Anderson Cancer Center/
Celldex

Median survival time ¼ 2.4 years; newly
diagnosed; n ¼ 23

PEP-3-KLH + GM-CSF with TMZ (ACT II)/
systemic121

II Duke University Medical Center/
The University of Texas MD
Anderson Cancer Center/
Celldex/Pfizer

Median survival time ¼ 1.9 years; newly
diagnosed; n ¼ 21

DCs + PEP-3-KLH/systemic109 I/II Duke University Medical Center Median survival time ¼ 1.8 years; newly
diagnosed; n ¼ 14

Personalized peptide vaccines
(4)/systemic122

I Nigata University Median survival time ¼ 1.7 years; recurrent
GBM; n ¼ 17

DCs + CMV systemic123 II Duke University Medical Center Median survival time not reached yet but will
exceed 1.6 years; newly diagnosed GBM;
n ¼ 13

DCs + autologous tumor lysates124 II University of Leuven and
Wurzburg

Median survival time from relapse ¼ 0.8 years;
recurrent GBM; n ¼ 56

DCs + acid-eluted tumor peptides/
systemic125

I/II Cedars Sinai Medical Center Median survival time ¼ 1.3 years; newly
diagnosed GBM; n ¼ 7

DCs + tumor homogenate/systemic108 II Cedars Sinai Medical Center Median survival time ¼ 1.8 years for immune
responders vs 1.2 for nonimmune
responders; newly diagnosed GBM; n ¼ 11;
median survival time ¼ 1.6 years for
immune responders vs 1.1 for nonimmune
responders; recurrent GBM; n ¼ 21

DCs + acid-eluted tumor peptides/
systemic126

I UCLA Median survival time ¼ 2.0 years; newly
diagnosed and recurrent GBM patients;
n ¼ 12

Autologous tumor cells with TGF-b2
antisense/systemic127

I Advanced Biotherapies/NovaRx Median survival time ¼ 1.4 years; progressing
GBM patients at enrollment; n ¼ 6

Poly-ICLC/systemic128 II North American Brain Tumor
Coalition

Median survival time ¼ 1.4 years; newly
diagnosed GBM patients; n ¼ 30

Autologous whole tumor with GM-CSF
and adoptive transfer of CD3-activated
lymphocytes/systemic129

II Tvax Biomedical Median survival time ¼ 1.0 years; recurrent
malignant glioma; n ¼ 19

KLH, keyhole limpet hemocyanin; poly-ICLC, polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose; GM-
CSF, granulocyte-macrophage colony–stimulating factor.
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to this is the practical matter that the chances of dose
escalation are very high with standard 3 + 3 designs,
even when the true rate of toxicity is quite high.
Shown below is the probability of escalating from one
dose to another as a function of the true unknown tox-
icity rate in a standard 3 + 3 trial:

True toxicity rate (%) 5 10 20 30 40 50

Probability of dose
escalation

0.97 0.91 0.71 0.49 0.31 0.17

As can be seen from this chart, there is a .90% prob-
ability of further dose escalation even when the dose-
limiting toxicity rate is as high as 10% in a 3 + 3 trial
design. These toxicity rates have seldom been seen
within the context of cancer immunotherapeutics.
Thus, in the context of clinical trials of immunothera-
peutics, there are little data to support a traditional
phase I dose-escalation approach based on toxicity
assessment alone.77

An alternative goal of “dose-escalation” immu-
notherapeutic trials has been to determine the most
effective dose. These studies usually list immune
response as a primary endpoint because most investi-
gators realize that the variability inherent in survival
endpoints prohibits obtaining the answer to this ques-
tion with a reasonable number of patients. Although a
laudable goal, this is also often ill-conceived because of
the variability in immune responses seen among patients
as well as the small magnitude of the responses, which
makes these assessments prohibitive in early-phase
trials as well. For example, consider a clinical trial in
which even a fairly dramatic doubling of immune
response is sought between groups given different
doses of a vaccine. Suppose the expected mean
immune response in Group 1 is 1.0 U and that in
Group 2 is 2.0 U. What sample size is required to
demonstrate this difference? Consider the 4 following
scenarios that assume a 2-tailed test conducted at the
0.05 level of significance with 80% power:

Group Mean
response

(U)

Standard deviation

Scenario
#1

Scenario
#2

Scenario
#3

Scenario
#4

One 1.0 0.1 0.5 1.0 2.0

Two 2.0 0.2 1.0 2.0 4.0

Sample
size

6 24 82 318

Few (if any) immunotherapy studies demonstrate a
doubling in mean immune response, and fewer still
have such consistent responses that variability is
reduced to the levels shown in the above table. As a
result, large cohorts of patients will be required at each
dose to obtain meaningful data that are sufficiently
powered. As such, we do not recommend that the immu-
notherapeutic clinical trials be devised to detect differ-
ences in immune response with different doses of an
immunotherapeutic.

Most of the phase II immunotherapeutic clinical trials
conducted to date typically enroll small numbers of
patients with unique eligibility criteria (Table 1) that
preclude robust analysis of confounding prognostic vari-
ables because of insufficient statistical power and the
lack of robust databases such as those that are main-
tained by the FDA for other diseases. Although compari-
sons with such databases using a historical cohort
matched to enrollment criteria and prognostic variables
may have some value, in the last 10 years, in part owing
to the introduction of new agents and our more aggres-
sive care of this patient population, the outcome for
patients with GBM has rapidly shifted. For example, in
the definitive clinical trial supporting the efficacy of
temozolomide (TMZ) in patients newly diagnosed
with GBM, the median survival time was initially
reported to be 15 months.78 However, more contem-
poraneous clinical trials evaluating the efficacy of
TMZ have demonstrated a median survival interval of
18.2 months.79 Although one could argue that these
differences may be attributed to subtle differences in
the timing of administration of the TMZ (concomitant
with and after radiation therapy vs strictly after radi-
ation therapy), these differences probably reflect
changes in the treatment regimens of these patients,
especially upon tumor recurrence. The survival benefit
of more intensive medical intervention is further sup-
ported by an analysis of the median survival time of
GBM patients who, based only on the criterion of
being enrolled in a clinical trial regardless of the treat-
ment agents, had a median survival time of 19.680 to
21 months.81 Thus, because the historical cohort con-
sists of retrospective data, its use as a comparative popu-
lation may not reflect current treatment responses and
could convey a false sense of response unless the data-
bases are large, homogeneous, and tightly regulated.
We therefore recommend that given the recent shift in
the survival time of GBM patients, randomization to a
control standard-of-care arm (or an equivalent) is essen-
tial during phase II testing.

It is apparent that immunotherapy has been more suc-
cessful in other tumors than GBM. For example, 2
immunotherapeutic agents, interferon (IFN)-a and
IL-2, have long been approved by the FDA for stages II
and III melanoma patients who had relatively low malig-
nancy burdens based on the response rates of 10%–
33% and prolongations in survival.82–85 More recently,
immunotherapy has been shown to be efficacious even in
advanced prostate cancer86 and unresectable stage III
and IV melanoma,87 indicating that significant tumor
burden can be overcome using immunotherapy
approaches. What remains unclear is whether the
degree or types of operational mechanisms of immune
suppression are fundamentally different between malig-
nant gliomas and other types of malignancy. As we move
forward in the design of immunotherapeutic clinical
trials, we recommend stratifying our patients based on
the amount of residual disease and on the operational
mechanisms of immunosuppression that are occurring.
For example, it would seem appropriate to stratify
patients according to the Treg fraction53,54,88 for clinical
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trials testing anti-Treg approaches.89 This would serve
to identify those patients likely to benefit from those
agents rather than patients who are relying on other
mechanisms of immune suppression. Furthermore,
Parsa et al.45 have suggested that patients who have
lost tumor suppressor PTEN function and thus have
upregulated B7-H1 may not be suitable candidates for
active immunotherapeutic approaches at all. In the
future, factors that may predict immunotherapeutic
resistance—such as B7-H1 expression, Treg level,
PTEN deletion, STAT3 phosphorylation, and CD133
expression—could be used as part of an immunosup-
pressive genetic signature90–93 to stratify patients enrol-
ling in immunotherapeutic clinical trials. Thus, we
recommend that in future immunotherapeutic clinical
trials, patients be stratified based on residual disease
and that the evaluation of markers that may reflect
immunotherapeutic resistance (such as B7-H1, Tregs,
PTEN, p-STAT3, and CD133 expression) be included
in the context of a secondary endpoint or as stratification
variables in the trial design.

Immune response monitoring

To date, no T cell–based immune response measure has
been universally validated in cancer immunotherapy
(Table 2).94–100 This is partly because of the lack of
standardization or even definitive agreement on prioriti-
zation of these assays. It is also likely that evaluating a
single immune cell population will be insufficient
because antitumor immune responses are probably an
orchestrated effort among a variety of immune cell
populations that are not captured in popular rudimen-
tary assays. Attempts to resolve this issue have included
ascertaining polyvalent immune responses using multi-
parameter flow analysis. These assays, while accounting
for more global immune responses, may also still reflect
the functional status or overall immune responsive
nature of a subset of patients and only in a specific com-
partment at a specific time.

The best data available for defining an immune surro-
gate with clinical response come from infectious disease
studies101–103 in which an increasing proportion of
polyfunctional T cells, T cells that simultaneously
secrete IFN-g, tumor necrosis factor-2a, and IL-2
along with coordinated expression of CD107a as a
marker for cytotoxicity, prospectively predict long-term
nonprogressors in patients with human immunodefi-
ciency and cytomegalovirus (CMV) infection.101,104,105

Increased numbers of polyfunctional antitumor T cells
have also predicted improved antitumor efficacy, albeit
only in animal models to date.106,107

In addition to polyfunctional T cell responses, there
may be some hints in support of other immune surrogates
in cancer. For example, Wheeler et al.108 showed a corre-
lation between IFN-g production and survival. In the
phase III study that demonstrated the efficacy of
sipuleucel-T (PA2024) (Provenge; Dendreon), the stimu-
lation index of fresh T cells in response to antigen was
�8-fold higher in the treatment group than in the

controls.86 Of note, we conducted a similar analysis on
the peptide-based vaccine targeting epidermal growth
factor receptor vIII and used this same measure of
immune response and were widely criticized during peer
review.109 In addition to the lack of consistency and vali-
dation in T cell–based immunologic monitoring, immune
monitoring has generally neglected other immune effec-
tors such as monocytes, natural killer cells, and antibody-
dependent cellular cytotoxicity, which may in fact be the
mechanism of in vivo activity that should be more com-
prehensively evaluated in the context of these trials. In
the interim, we should focus on validated surrogate
immune markers from other fields and aggressively
attempt to validate them in this field.

Toxicity and adverse events

The lack of significant toxicity, such as autoimmunity-
associated, with immunotherapeutic approaches for
GBM may indicate that insufficient immune responses
are being generated for tumor eradication. In the case of
melanoma immunotherapeutics, autoimmune responses
have been shown to correlate with treatment response
for both IL-2 and IFN-a.110,111 Although autoimmunity
is not a perfect correlate of success in immunotherapy
for melanoma, such autoimmune responses do indicate
that robust immune responses against the target cell
type can be obtained. A recent case of a patient with a
brain metastasis from melanoma treated with cytotoxic
T-lymphocyte antigen–4 antibodies demonstrated that
when strong immune responses against brain antigens
are unleashed, the immune response will probably have
side effects.112 Similar adverse events were seen in the
immunization trials against amyloid-b in the treatment
of Alzheimer’s disease in which 15% of patients devel-
oped severe encephalitis induced by T cells.
Examination of the patients’ brains appeared to indicate
that the inflammatory response was able to clear typical
Alzheimer’s neuropathology.113 Thus, if adverse events
are an indication of strong effective immune stimulation,
its absence from clinical immunotherapy trials could be of
significance. However, enthusiasm for generating signifi-
cant effector responses needs to be counterbalanced
with the consideration that an expanding mass of inflam-
mation within the relatively closed compartment of the
CNS could result in herniation or fatal autoimmunity
against CNS antigens.114 These adverse autoimmune
events could also be reflective of the lack of tumor speci-
ficity. Thus, we recommend targeting TSA in the context
of approaches that generate robust immune effector
responses. However, this specificity can limit the
durable response by the development of antigen negative
tumor clones.115

Extrinsic Factors

We are in the midst of a transformation in the pharma-
ceutical industry, and it is one that may not be favorable
for the development of novel therapeutics for primary
brain tumors. Although the approval of TMZ
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Table 2. Immune assays commonly used in immunotherapeutic clinical trials

Immune assay Advantages Disadvantages

DTH

Injection of an antigen intradermally and
measurement of erythema and/or in duration
after 48–72 hours

Easy to perform Cutoff for positive response not
standardized—subjective

May correlate with T cell proliferative
responses130

Amount of antigen not standardized

May not be antigen specific131,132

May be a surrogate marker for better
performance status/less immune
suppression

Peptide MHC tetramers

Soluble, fluorescently labeled, MHC-peptide
complex that binds to antigen-specific T cells

May correlate with cytotoxicity
assays133

Antigen must be known

May correlate with T cell avidity for
antigens134

Tetramer positive cells may not kill
target135

Can be used to select antigen-specific
T cell for further analysis136

Only MHC I tetramers are available
routinely

May bind both naı̈ve and memory T cells137

Lymphoproliferative assay

Purified T cells or PBMCs are stimulated with
antigen in the presence of irradiated
autologous APCs. After 72–100 hours,
proliferation is measured and compared with
the proliferative index of cells without antigen

Can be performed directly on
peripheral blood samples

In vitro culture conditions can alter results

May reflect the overall immune
suppression state of patient

High proliferation by a few cells or low
levels of proliferation by a few cells
would give a similar stimulation index

ELISA/multiplex flow cytometric assay

PBMCs are incubated with an antigen. Then the
supernatant from the culture is harvested, and
specific cytokines are detected

Easy to perform Definition of positive results differs

Is not based on individual cells

Measures the ability of the cells to secrete
cytokines and not necessarily the in
vivo characteristics

ELISPOT

A microtiter plate is coated with a
cytokine-specific antibody and then incubated
with the T cells. Each spot represents a single
cell secreting the cytokine of interest. Precursor
frequency is determined by the total number of
cells placed into the wells

Reliably detects the number of
antigen-specific T cells138

Can be rapidly read with
computerized plate readers,
making it suitable for a large-scale
study

Intracellular cytokine detection by multiparameter flow cytometry

In vitro T cell stimulation followed by prevention
of cytokine secretion, surface staining, fixation,
permeabilization, and staining with antibody

Can evaluate multiple immune
populations simultaneously

Cell viability is lost; so unable to perform
subsequent functional assays

Cytotoxicity assays

Mix T cells or PBMCs with labeled antigen,
expressing and measuring release of the target

Thought to be relevant marker for in
vivo antitumor activity

Requires in vitro stimulation that may
alter the activity from the in vivo state

Because autologous tissue is difficult to
obtain, other targets are used that may
not reflect tumor biology

Does not measure perforin, granzymes, or
Fas-Fas-ligand cytotoxic killing—only
direct cytotoxicity
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demonstrated that drugs used for GBM can be profit-
able, this enthusiasm may not be sustained. According
to Munos,116 pharmaceutical companies have on
average developed only one new drug or biologic agent
per year over the last 60 years. As a result, new drugs
must be priced tremendously high and serve a large
patient population to meet investors’ expectations,
which means few, if any, drugs or biologics developed
specifically for GBM will appear attractive. Moreover,
large pharmaceutical companies, which have the
capital to perform the required large and expensive
phase III trials, are shifting their focus from early discov-
ery and development to marketing. This is partially in
response to demands from investors for nearer-term
returns, but it leaves a significant void in early develop-
ment that cannot be met by the current funding levels
available to investigators from the National Institutes
of Health. Even the cost of providing data for an
initial investigational new drug application can mean
an insurmountable financial burden (usually in the
range of $1–2 million or more) for the investigator.
This frequently does not even include manufacturing
of the agent. Added to this is the cost for the initial clini-
cal trials. Even for simple, off-the-shelf immunothera-
peutics such as a peptide vaccine, the cost can be as
high as $20 000 per patient/year in addition to the stan-
dard of care; thus, for a small and probably insufficiently
powered clinical trial enrolling 25 patients, the cost to
the investigator could be .$500 000.117 The price tag
further escalates if the trial extends to other institutions
because an extensive data and regulatory infrastructure
needs to be put in place.

The increasing complexity of conducting clinical trials
in the United States is further confounded by the increas-
ing legal issue of indemnification. Multi-institutional
clinical trials are advantageous because they rapidly
enroll patients and may reduce institutional bias;
however, negotiating participating institution indemnifi-
cation can result in unexpected delays and further esca-
late clinical trial costs. Increasingly, as a result of this
and other financial pressures, pharmaceutical companies
are conducting clinical trials outside the United States.118

In fact, in just under 10 years (1997–2007), the percen-
tage of clinical trials registered with the FDA to be con-
ducted in the United States dropped from 86% to 57%,
whereas sites in places such as India and China rose
from 5% to 29%.119 As a result, very creative strategies
will be needed to translate any immunotherapeutic for
GBM beyond the dubious single-institution early-phase
trial and to demonstrate sufficient efficacy to attract the
interest of companies with sufficient resources to bring
these agents to market. These extrinsic factors pose a
real threat to the emergence of a standard-of-care immu-
notherapy for GBM and will need to be addressed
creatively.

Conclusions and Recommendations

Although the benefits of immunotherapy are becoming
evident in other fields, its use in neuro-oncology

remains limited. To advance these promising approaches
toward a standard of care will require that lessons
learned from basic science investigations in neuro-
immunology and immunotherapy in other fields be
applied creatively and cost-effectively. A number of con-
clusions and recommendations can be derived from our
review.

1. Immune responses exert therapeutic effects within
the CNS; therefore, immunotherapy is a viable
approach to CNS malignancies.

2. Although tumors within the CNS are not completely
protected from an immune attack, sufficiently potent
immune responses need to be generated to overcome
profound immunosuppression, or the immunosup-
pression has to be minimized by tumor resection or
with agents that target tumor-mediated immunosup-
pression globally or at key molecular hubs. Successful
approaches will probably incorporate both.

3. Clinical trial design should be carefully considered.
Traditional paradigms may not be informative. An
immune response endpoint may not yield meaningful
results. Given the recent shifting in GBM patient sur-
vival time, randomization should be strongly con-
sidered even during early testing. Furthermore, the
selection criteria during early phases of clinical trial
testing should be the same as in the final registration
clinical trial. Immunotherapeutic prognostic markers
need to be identified and accounted for as secondary
endpoints.

4. Immunologic surrogates that predict the efficacy of
immunotherapeutic approaches in cancer are not cur-
rently available but are desperately needed. Clues as
to which responses are important may come from
existing studies or from infectious disease investi-
gations and may not be as expected. Effective antitu-
mor immune responses may require coordinated
actions among several components of the immune
system, all of which may need to be monitored.
Immune monitoring results will become useful only
when they are standardized and prospectively
validated.

5. New and creative development and marketing para-
digms will definitely be needed if we are to achieve
translation of immunotherapeutics for brain tumors
into widely used therapeutics.
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