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Abstract
The amount of information we can actively maintain “in mind” is very limited. This capacity
limitation, as known as working memory capacity, has been of great interest due to its wide scope
influence on the variety of intellectual abilities. Recently, there has been an ongoing debate about
how this capacity should best be characterized. One viewpoint argues that working memory
capacity is allocated in a discrete fashion with an upper limit of 3-4 representations. An alternative
viewpoint argues that the capacity can be allocated in a continuous fashion with no upper limit in
the number of representations. In this article, we will review recent neurobiological and behavioral
evidence that has helped shape the debate regarding one of the more central mechanisms in
cognitive neuroscience.

Our limited ability to actively hold information “in mind” is facilitated by the working
memory (WM) system. WM is known to play a central role in most cognitive processes as a
form of mental workspace. WM performance is severely disrupted in many psychiatric and
neurological populations, and even within a healthy population individual differences in
WM ability are strongly predictive of intelligence and reasoning ability. Consequently,
many neuroscientists and psychologists have been motivated to better understand this central
cognitive limitation. Here, we discuss an ongoing debate regarding how to best characterize
the capacity limits of WM and how recent advances in neurophysiology have helped shape
the debate.

Capacity Limits: Discrete Slots or Flexible Resource?
Over the past several decades, both behavioral and neural studies have suggested a capacity
limit of only about 3-4 items in WM [1-10]. For example, Luck and Vogel [3] asked
observers to detect supra-threshold changes amongst arrays of colored squares following a
brief retention period, and found monotonic declines in change detection as the number of
items to be stored increased. Based on the observers' accuracy, they concluded that
observers could hold about four items worth of information in WM. Importantly, the same
apparent limit was observed regardless of whether observers had to maintain a single feature
(e.g., color) or multiple features (e.g., color and orientation) from each item, suggesting that
capacity limits in WM are better defined by the maximum number of items that can be
represented, rather than by the total quantity of information. This kind of item-based limit in
WM falls in line with so-called discrete resource or “slot” models of capacity in WM. The
discrete resource view suggests that resources for storage are quantized such that any item
represented in WM must be assigned to an available slot. Thus, this view predicts that only a
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subset of items will be represented from supra-capacity displays, while no information will
be retained for the remaining items [11]. By contrast, flexible resource models of capacity
suggest that mnemonic resources can be allocated in a continuous fashion, without set limits
on the number of items that can be represented [12,13]. Essentially, this view proposes that
each item in a display receives a share of WM resources and that performance is limited for
arrays with large numbers of items because each individual item receives only a small
proportion of the available resources. Thus, these models suggest that there is no upper limit
on the number of items that can be actively held in WM.

An extreme version of the discrete resource model might claim that observers can maintain
up to four perfect representations in WM, with all errors in a memory task accounted for by
monotonic declines as set size increases beyond this “magic” number. This caricature,
however, overlooks multiple demonstrations that representations in WM have limited
resolution or clarity. Discrete resource models can accommodate this result by
acknowledging that slots do not have unlimited resolving power [2,11,14,15]. For example,
it has been convincingly demonstrated that change detection performance is worse with
complex stimuli [1,16]. Although this result may appear to suggest that smaller numbers of
items can be represented as stimulus complexity rises, subsequent studies have shown that
declines in change detection performance with complex stimuli may be better explained by
high similarity between the items in complex stimulus categories. These studies showed that
increased sample-test similarity leads to reduced change detection performance because of
errors in detecting relatively small changes, rather than because of a reduction in the total
number of items represented. Thus, errors in detecting such changes may be best explained
by limited mnemonic resolution rather than by the storage of smaller numbers of items [2].

Interactions between number and resolution in WM
One empirical pattern that has sometimes been argued to support flexible resource accounts
is the inverse relationship between resolution in WM and set size [11,12,14]. At first glance,
this result is naturally explained by flexible resource models that posit a smaller proportion
of resources for each item as set size increases. However, the inverse relationship between
set size and WM resolution does not distinguish between discrete and flexible resource
models, given that both models allow for variations in mnemonic resolution in sub-span
displays. For example, Barton et al. [14] proposed that a limited number of discrete “slots”
may determine the maximum number of representations that can be held in WM, while a
separate resource determining mnemonic resolution is divided amongst the currently active
slots. Thus, given that both models can accommodate an inverse relationship between
resolution and set size in sub-span arrays, the most diagnostic aspect of this function comes
after the putative item limit has been exceeded. Only the discrete resource model predicts
that resolution should reach a stable lower bound after a specific item limit, because those
models assume that displays exceeding that limit do not actually lead to the storage of
additional items. In line with this prediction, Zhang and Luck [11] observed that resolution
remained stable for arrays sizes that exceed the item limit in their study, in line with the
predictions of the discrete resource model. This is still a controversial issue, however. For
example, Bays and Husain [12] measured mnemonic resolution in a spatial WM task, and
concluded that there was “no evidence for any discontinuity in the region of four items.”
However, one caveat that may apply to both of these models is the fact that there are strong
variations across individuals in their performance in these memory tasks [10,17,18]. Given
that various studies have found that individual capacity estimates range from around 1 to 6
items, it may be overly simplistic to search for a single set size at which aggregate measures
of resolution reach a stable asymptote. From this perspective, a convincing test of whether
mnemonic resolution reaches an asymptote as at a specific item limit needs to take into
account individual variations in capacity.
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Another reason to give careful consideration to individual differences is that the discrete and
flexible resource models make different predictions regarding whether number and
resolution in WM will co-vary across individuals. Specifically, flexible resource models
suggest that both aspects of memory are determined by a single pool of resources. If so, then
individuals with ample mnemonic resources should excel both in terms of the maximum
number of items that can be represented, as well as the resolution of those online
representations. Awh et al. [2] tested this prediction by obtaining separate measures of
number and resolution in WM across stimuli that varied in complexity. This analysis
revealed that the maximum number of stimuli that could be maintained was highly
correlated across both simple and complex stimuli, suggesting that a common slot system
may constrain how many items can be stored, regardless of stimulus complexity. By
contrast, there was no correlation between the number of items that could be maintained and
the resolution of the stored representations, despite evidence supporting the reliability of the
measures. Thus, number and resolution in WM seem to be best accounted for by a two-
factor model in which they represent distinct aspects of memory ability. This two-factor
model contradicts flexible resource models that posit a single resource to explain both
aspects of memory performance.

Neural evidence for WM capacity limits
The most important criterion for WM is that it is an “online” memory system. This aspect is
often ambiguous in behavioral measures partly because it is often difficult to assess whether
performance was primarily determined by active maintenance in WM or if “offline” long
term memory representations that were retrieved at test were also contributing to the
subject's behavioral report. Here, neural measures of WM have a critical advantage because
they can isolate sustained activity that occurs exclusively during the maintenance period. For
example, Vogel & Machizawa [19] recorded EEG from subjects as they performed a
lateralized WM change detection task in which they must remember arrays of simple objects
presented in a cued hemifield. 300ms following the onset of the memory array, they
observed a large, negative-voltage wave over posterior contralateral electrodes that persisted
throughout the maintenance period. This contralateral delay activity (CDA) has been shown
to be strongly modulated by the number of items that must be remembered. It monotonically
rises in amplitude from 1- to 3-items; reaching an asymptote at approximately 4-items. That
is, this activity reaches a limit at approximately the same point as behavioral estimates
predict that capacity is exhausted. Indeed, the specific point at which the CDA reaches
asymptote is different for each subject depending upon his or her WM capacity. Thus, this
“online” measure of WM is highly sensitive to individual differences in behavioral WM
performance. In subsequent studies, the amplitude of this activity has been found to be
unaffected by a number of factors such as object size & spacing, perceptual difficulty,
number of locations, task difficulty, and arousal [20,21]. Similarly, recent WM
neuroimaging studies have shown that activation in the human intra-parietal sulcus also
increases with set size and reaches an asymptote at approximately four items for both simple
and complex items [5,7,22]. Together, results from two separate neural techniques provide
similar “online” measures of a limit on the maximum number of items that can be
simultaneously represented in WM.

The patterns of neural activity described above are most easily explained by discrete
resource models of WM because they show evidence that capacity is exhausted for arrays of
four items and that these limits can be measured during the active maintenance stage of the
task. It's not clear how a flexible resource model could account for the finding that activity
asymptotes at a fixed number of items because they propose that all items in a display are
equally represented in WM, just with dwindling levels of precision. Furthermore, the basic
finding that the CDA is modulated by number of items is also challenging to these models.
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In particular, flexible resource models generally explain that superior mnemonic precision
for 1-item arrays over 3-item arrays is because all WM resources can be dedicated to that
single item in memory rather than being divided across three items. Thus, the same amount
of WM resources are always consumed irrespective of how many items are being
remembered on that trial, which results in varying levels of precision for report. However, if
this is correct, then one would expect that a neural measure of WM resources should show
equivalent levels of activation for 1- and 3-item arrays, but this is not the case. These models
could potentially account for neural set size effects by postulating that when the objects
don't require high levels of precision, some proportion of WM resources can be held in
reserve. This would predict that objects that require high levels of mnemonic precision
should show little or no modulation of the CDA across different set sizes. Recently, we
tested this prediction by comparing CDA amplitudes for arrays of brightly colored squares
with arrays of complex abstract shapes [23]. Figure 4 shows that while behavioral
performance affirmed that the complex items were substantially more difficult to remember
accurately, the CDA set size effects were identical for both complex and simple objects.
Thus, corroborating the behavioral findings of Awh et al. [2] these results suggest that an
equivalent number of items can be stored in visual WM, regardless of complexity [24,25]

Neural Oscillations and Capacity limits
A specific neurophysiological mechanism for WM capacity limits has been proposed by
computational models that utilize neural oscillations as the primary representational scheme
for information being held in WM. These models propose that each item held in WM is
represented through a unique pattern of synchronous firing across large populations of
neurons with each coding different attributes of the item (e.g., color, shape, position, etc).
When multiple items must be held simultaneously in WM, the oscillatory activity for each
item must be kept “out of phase” with the others in memory so they won't interfere with one
another. For example, Lisman & Idiart,[26], proposed that the number of high frequency
EEG cycles (e. g. gamma band, 25∼100hz) that can be embedded in the low frequency EEG
cycle (e.g. theta band, 4∼7hz) determines the number of separated representations that can
be held in WM without interference. Using a similar oscillatory modeling approach, Raffone
& Wolters [27] suggested that the maximal number of asynchronous representations was
about three to four items. One compelling aspect of these oscillatory models is that a
discrete, item-based WM capacity limit may ultimately be due to a basic biophysical
limitation surrounding how represented information can be segregated in the brain.

While these oscillatory models do provide a plausible neurophysiological explanation of
capacity limits, to date there has been scant direct evidence that the brain actually employs
such a phase-coding scheme in WM. However, in the last year there have been multiple
studies that have begun to do just that. For example, Siegel et al [28] found that when
monkeys performed a two-item sequential STM task, gamma oscillations over prefrontal
cortex contained information about each object in separate phase orientations. That is, item 1
was always coded in a specific range of phase orientations that did not overlap with item 2.
However, on trials when the monkey made an error, these phase orientations did indeed
overlap. While these results alone are not sufficient to confirm oscillatory capacity limit
models, they do provide the first critical demonstration that the brain uses phase-coding
during WM tasks. With humans, multiple labs have begun taking an oscillatory approach to
characterizing the CDA, which we have shown to be highly sensitive to capacity limitations.
One challenge to this is that ERP components like the CDA are measured by averaging
together many trials, which would likely wash out any oscillatory activity that wasn't in
phase-locked to the stimulus. However, Jensen and colleagues [29,30] have recently
demonstrated that the posterior alpha band (∼10hz) is often modulated asymmetrically. That
is, alpha amplitude changes are reflected more in the peaks of the oscillation than in the
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troughs, which often remain unchanged. The consequence of such an asymmetrical
modulation is that it results in a sustained slow wave, which is likely the source signal of the
CDA. Consistent with this alpha-power viewpoint, multiple studies have recently shown that
visual WM load modulates alpha power and that the magnitude of this modulation appears
to predict individual differences in WM capacity [31,32].

Conclusions
The debate between discrete and continuous models of WM capacity isn't likely to end soon,
partly because as the models have become more complex their predictions about behavior
have become increasingly similar. However, we are optimistic that recent developments of
precise neural measures of WM will help to better distinguish between these two models. To
us, the CDA appears to provide a powerful “online” measure of the number of items that are
currently in WM and thus provides strong evidence for discrete capacity models. New work
is beginning to characterize the underlying oscillatory source of this “number of items”
signal. At present, there is no “online” neural activity that has been shown to directly
correspond to the resolution of information in WM. Though, some recent neuroimaging
approaches examining activity in V1 and the lateral occipital complex have shown
considerable potential in this regard [33,34]. We see this as likely being the next frontier in
characterizing the capacity limits of this central cognitive mechanism.
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1.
A. Typical change detection stimuli and procedure. Subjects must judge whether the colors
in the test array are the same or different from those originally presented in the memory
array. B. Average accuracy on change detection as a function of number of items (adapted
from Luck & Vogel, 1997).
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2.
A. Visual WM recall procedure (adapted from Zhang & Luck, 2008). Subjects must
remember the colors in the sample array across a 900ms retention interval. At test, subjects
must report the original color of the cued item by clicking on the color wheel. B. Theoretical
predictions of a mixture model of recall performance. This combines a Gaussian model of
the resolution of the items held in WM (centered around the original color value) and a
uniform distribution for the items that were not stored in memory. C. Results comparing set
size 3 and 6. Note that while the standard deviation (reflecting the resolution) is equivalent,
the tails of the function (reflecting missing items) increases for set size 6.
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3.
A. The contralateral delay activity (CDA). ERPs time-locked to the onset of the memory
array in a bilateral change detection task. Posterior electrodes are averaged together in terms
of whether they are ipsilateral or contralateral with respect to the visual field of the
remembered items. B. Mean amplitude of CDA as a function of number of items in memory
array. C. The correlation of CDA asymptote and individual memory capacity (adapted from
Vogel & Machizawa, 2004).

Fukuda et al. Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.
A. Example stimuli for colored squares and complex items. The memory arrays consisted of
1, 2, or 3 items. B. CDA difference waves across set sizes for colors and complex items. C.
Average change detection accuracy for the two conditions across set sizes. D. Mean
amplitude of the CDA for both conditions across the three set sizes.
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