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Abstract

In the auditory system, the stimulus-response properties of single neurons are often described in terms of the
spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous
firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these
algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-
response function of auditory neurons using a generalized linear model (GLM). In this model, each cell’s input is described
by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron’s spiking history. The
output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike
train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch
auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare
this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power
and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to
both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the
same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs.
These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning
than does the NRC method when responses to complex sounds are studied in these neurons.
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Introduction

Characterizing neural responses to natural stimuli remains one of

the ultimate goals of sensory neuroscience. However, considerable

technical difficulties exist for correctly estimating neural receptive

fields (RFs) from natural stimuli. Two major difficulties are the

interactions between higher-order statistics of the stimuli and inherent

nonlinearities of neural responses [1,2] and the challenge of estimating

receptive fields in high dimensional spaces with limited data [3,4].

Neural responses are commonly characterized by a linear-

nonlinear (LN) model [5–7], in which the output of a linear filter

or receptive field (RF) applied to the stimulus is then transformed

by a static nonlinearity to determine the instantaneous firing rate

of the neuron. Reverse correlation (RC), the most widely used

estimation method, computes the RF of a neuron by multiplying

the spike-triggered average (STA) of the stimulus by the inverse of

the stimulus covariance matrix. It is well understood that, for an

LN neuron, RC is guaranteed to produce an unbiased estimate of

a neuron’s true underlying filter only if the distribution of the

stimuli used for estimation is elliptically symmetric [6]. Deviations

from either the LN framework (e.g., the existence of more than

one linear filter (multiple-filter LN), or extra terms that take into

account spiking history) or the elliptical symmetry condition (e.g.,

naturalistic stimuli which contain higher order correlations) can

introduce biases in the estimate of the RF.

The highly correlated structure of natural stimuli presents

additional numerical problems for RF estimation. Because natural

stimuli contain strong autocorrelations, the majority of the power in

the stimulus tends to be concentrated in a small number of

dimensions. Multiplication by the inverse of the stimulus covariance

matrix causes noise in the resulting RF to be strongly amplified

along the stimulus dimensions with low variance. Thus, the RC

fitting algorithms are adjusted (i.e. regularized) with a ‘‘regularizing’’

operation or term to prevent overfitting to noise [3,8–10].

In the auditory system, the stimulus-response properties of single

neurons are often described in terms of the spectrotemporal

receptive field (STRF), a linear kernel relating the spectrogram of

the sound stimulus to the instantaneous firing rate of the neuron.

Traditionally, STRFs have been estimated using normalized-

reverse correlation (NRC), a method that uses an approximation
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to the stimulus covariance matrix to obtain regularized estimates.

Regularization introduces a prior that imposes constraints in the

STRF estimate and, under noisy conditions, the specific regular-

ization used by the model can introduce biases in the estimates [4].

Methods other than NRC have recently been proposed to

characterize the tuning properties of auditory neurons from

responses to natural stimuli, each of which reduces the impact of

stimulus-correlation biases on the estimated STRFs [4,8,11]. These

algorithms differ in their functional models, cost functions, and

regularization methods. Here, we propose an approach for

characterizing the stimulus-response function of auditory neurons

based on a generalized linear model (GLM). This method is

advantageous because it requires relatively light computational

resources and provides easily interpretable results [12–14]. For

example, it has been successfully used to accurately predict spiking

responses of single retinal ganglion cells [15] as well as detailed

spatiotemporal correlations in the responses of a complete

population of macaque retinal ganglion cells [16]. As opposed to

most STRF estimation methods, our method takes into account

spiking history. Further, the output of the model is a series of spike

trains rather than average time-varying firing rate, allowing

comparison of the actual and predicted spike train responses.

In this study, we compare a GLM with a sparse prior and NRC

in terms of their ability to predict responses to novel stimuli and

the tuning properties of the STRFs they produce. We fit both

models to responses of single auditory neurons in the midbrain of

zebra finches probed with two types of stimuli: zebra finch songs

and modulation-limited noise. We find that the GLM predicts

responses to both stimulus classes significantly better than NRC,

and that GLM and NRC STRFs derived from the same data can

differ profoundly. Finally, the GLM method reduces differences in

tuning between stimulus classes.

Materials and Methods

Ethics Statement
Birds were cared for in accordance with the US National

Institutes of Health Guide for the Care and Use of Laboratory

Animals. All procedures were approved by the Columbia

University Institutional Animal Care and Use Committee.

2.1 Stimuli and average response properties
Two sound ensembles were used: a conspecific song ensemble

and a modulation-limited (ml) noise ensemble. The conspecific

song ensemble consisted of 20 songs (,2 sec in duration each)

from different adult male zebra finches. Each song was band-pass

frequency filtered between 250 Hz and 8 kHz. The ml noise

ensemble consisted of 10 samples of 2 sec of ml noise. Ml noise is a

behaviorally meaningless sound similar to white noise that was

designed to match song in frequency range, maximum spectral

and temporal modulations and power [17]. Stimuli were played

through a flat frequency response speaker positioned at 20 cm in

front of the bird, at a mean intensity of 72 dB SPL. This stimulus

intensity is comparable to behavioral sound levels during singing

and song perception [18–20] and is above the pure tone threshold

for auditory neurons in MLd [21]. Ten spike train response trials

were obtained for each of the 20 songs and 10 noise samples.

Trials for different stimuli were interleaved in random order. The

inter-trial interval was determined at random from a uniform

distribution between 1.2 and 1.6 seconds.

2.2 Electrophysiology
Electrophysiological recordings were made from single neurons

in the auditory midbrain, mesencephalicus lateralis dorsalis (MLd),

of adult male zebra finches as described in [22]. Briefly, an initial

preparatory surgery was performed 48 hrs before the first neural

recording session. Birds were deeply anesthetized with 0.03 ml

Equithesin and placed in a custom stereotaxic holder. For

recordings made from anesthetized birds, only the first layer of

skull was removed during the initial surgery. For recordings made

from awake birds, full craniotomies were made. A grounding wire

was cemented in place with its end just beneath the skull,

approximately 5 to 10 mm lateral to the junction of the midsagittal

sinus. A head post was cemented to the skull of the animal and

points were marked for electrode penetrations. Anesthetized

recording sessions were preceded by administering three doses of

0.03 ml of 20% urethane over a period of one hour. Recordings

were made using glass pipettes containing 1M NaCl, with

impedances ranging from 5 to 20 MOhms. The duration of the

recording sessions ranged from 4 to 15 hours. Awake recording

sessions were no longer than 6 hours. For a single animal, awake

recordings were performed over a period of approximately two

weeks and anesthetized recordings were performed in a single

session. After final recording sessions, the birds were euthanized

and brains were preserved for histological reconstruction of

electrode locations.

We recorded from 169 well-isolated MLd neurons (97 in

anesthetized birds and 72 in awake birds). Neurons recorded from

awake and anesthetized birds produced robust responses to songs

and ml noise. On average, midbrain neurons recorded from awake

birds showed higher spontaneous and stimulus-driven firing rates,

when compared to neurons recorded from anesthetized birds

(mean stimulus-driven firing rates were 22 Hz for the awake

preparation and 11 Hz for the anesthetized preparation). In

accordance with previous studies [17,23] we did not find

significant differences in mean (spontaneous or driven) firing rate

in responses to song and ml noise in awake or anesthetized birds,

at the single cell level. The responses of nearly all neurons were

stimulus-locked and reliable over multiple presentations of the

same stimulus (trials).

2.3 Data preprocessing
The same preprocessing was applied to the data before fitting

both NRC and GLM. Spectrograms were generated from the

stimulus sound pressure waveforms using a bank of band-pass

filters with center frequencies ranging from 250 to 8000 Hz, which

covers the audible frequency range for zebra finches [24]. The

center frequencies were spaced linearly and had a bandwidth of

125 Hz. It has been shown that the predictive abilities of STRFs

can be improved by applying a compressive nonlinearity to the

stimulus spectrogram [25]. We therefore applied a logarithm to

the stimulus spectrogram prior to fitting the models, which mimics

peripheral auditory processing.

For the NRC method, both stimulus spectrograms and spike

trains were binned at 1 ms resolution (the temporal resolution

required by STRFPak, the publicly available Matlab toolbox for

STRF estimation we used in this study; see Section 2.5). For the

GLM method, both signals were further down sampled by a factor

of 3. Using time bins larger than 1 ms is common in the GLM

setting [26]. Expanding the bin size can avoid nonconvergence

problems related to the refractory periods of neurons [27], and

effectively reduces the computational load. In order to ensure that

the different bin sizes in the estimation of NRC and GLM STRFs

did not introduce a bias in predictive power or STRF shape, we

re-computed the STRFs of a subset of our population of cells (10

cells) using the GLM with 1 ms time bins. We found no significant

differences in STRF shape or predictive power of GLM STRFs

computed at 1 ms or 3 ms resolution (the average same-class

GLM with Natural Sounds
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prediction correlation for a novel song was 0.507 and 0.51,

respectively).

2.4 Generalized linear model for spike trains
We describe the encoding of a stimulus spectrogram (a

transformation of the sound pressure waveform into a time-

varying function of energy in each frequency band),~xx, in the spike

trains of an auditory neuron with a generalized linear model

(GLM, Figure 1A), a generalization of the well known linear-

nonlinear-Poisson (LNP) cascade model [12]. In this model, a cell’s

response is described by: 1) a stimulus filter, or STRF (~kk); 2) a post-

spike filter (~hh), which captures dependencies on the cell’s spiking

history (e.g. refractoriness); and 3) a constant offset b which sets the

baseline firing rate of the model. For each neuron, a static

nonlinear function is then applied to the summed filter responses

to obtain an instantaneous spike rate [13,14,28]. Although these

types of models are strictly phenomenological, their components

can be broadly compared to biophysical mechanisms. The

stimulus filter approximates the spectrotemporal integration of

the sound stimulus in an auditory neuron. The post-spike filter

mimics voltage-activated currents following a spike. And the

output nonlinearity implements a soft threshold converting

membrane potential to instantaneous spike probability.

2.4.1 Model fitting/parameter estimation. We fit the

model to extracellular single unit recordings from 169 auditory

midbrain neurons. To calculate the model parameters, stimuli (log

spectrograms) were computed and responses (spike trains) were

binned at a 3 ms resolution. The time bin was small enough that

more than one spike was almost never observed in any bin. The

spectral domain of the stimulus was divided into 20 equally spaced

frequency bins, which spanned frequencies between 250 and

8000 Hz. The parameters for each cell consisted of a stimulus filter

or STRF~kk, a constant offset b, and a post-spike filter~hh. The STRF

was a 400-dimensional vector (20 spectral 620 time bins,

including frequencies between 250 and 8000 Hz and latencies

between 0 and 60 ms, respectively), the post-spike filter was a 5-

dimensional vector (5 time bins spanning the 15 ms following each

spike) and the offset consisted of a scalar value, for a total of 406

unknown parameters. All the model parameters (b,~hh, and~kk) were

fitted simultaneously by maximum penalized likelihood. Increasing

the binning resolution would change the number of fit parameters

and could, in theory, improve the performance of the model.

However, the resolution used in this study is sufficient for

demonstrating the performance of GLM compared to NRC

under these experimental conditions.

The conditional spike rate in the model is given by

l tð Þ~f bz~kk:~xx tð Þz
XJ

j~1

h jð Þr t{jð Þ
 !

ð1Þ

where ~kk:~xx tð Þ~
P
f

P
t

k f ,tð Þx f ,t{tð Þ is the convolution between

the stimulus at time t and the STRF, and r(t-j) is the cell’s spike

Figure 1. Methods. (A) Generalized linear model (GLM) schematic. Each neuron has a stimulus filter or STRF (k), and a post-spike filter (h) that
captures dependencies on the cell’s own spiking history. Summed filter output passes through a static nonlinearity f to produce the instantaneous
spike rate. (B) Illustration of the effect of a sparse prior on the STRF estimate. Panels from left to right show STRFs estimated by maximum penalized
likelihood for increasing values of the penalization parameter g. Low values of g lead to noisy estimates. For very high values of g, very few
parameters are nonzero. The optimal value of g is determined by cross-validation STRFs have been plotted in their raw, low resolution state.
doi:10.1371/journal.pone.0016104.g001
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train history (J = 5). In the case in which the nonlinearity f is an

exponential function, the offset b corresponds to the log-

probability of spontaneous firing of the cell. The log-likelihood

of the observed spike data given the model parameters (~hh = {b, ~kk,
~hh}), and the observed stimulus ~xx is given by the point process log-

likelihood [29]

L~
X
tspk

log ltspk

� �
{

ð
l tð Þdt ð2Þ

where tspk denotes the set of spike times and the integral is taken

over the length of the experiment (all trials of the particular

stimulus class used to fit the model).

2.4.2 Static nonlinearity. Numerical optimization of Eq. 2 is

simplified by making two assumptions about the nonlinear

rectification function f (.): 1) f (u) is a convex function of its scalar

argument u; and 2) log f (u) is concave in u. With these assumptions,

the log-likelihood in Eq. 2 is guaranteed to be a concave function of

the parameters~hh [30]. This ensures that the likelihood has no local

maxima, and therefore the maximum likelihood parameters ~hhML

may be found by numerical ascent techniques. Several functions f(.)

satisfy these two constraints, including the standard linear rectifier

and the exponential function.

For each cell, our model converts linear input into an instanta-

neous spike rate by means of an exponential nonlinearity (see

Figure 1A). To assess the adequacy of this assumption, we compared

an exponential function with a direct reconstruction estimate of the

nonlinearity, computed using the raw distribution of filter outputs and

the observed spike responses [5] (see Figure 2C for an example).

These reconstructions look exponential for some cells in our dataset

and sub-exponential for others. To assess the performance of the

exponential nonlinearity against another nonlinearity, we also

performed a complete re-fitting of the model parameters using

output nonlinearities given by a function of the form

f ~
eu uƒ0

1zuz u2

2
uw0

,

�

which grows quadratically for u.0 and decays like eu for negative

values of u. This model exhibited slightly better predictive power

for ml noise (p,0.05, two-sample Kolmogorov-Smirnov test) but

not for songs across the population of 169 cells, and did not result

in a noticeable change in the fitted STRFs.

The weak dependence of the parameter estimates on the specific

form of the nonlinearities tested here (in addition, we also fitted a

linear model with a sparse prior which resulted in nearly identical

STRFs, see Section 3.6) led us to ask whether we could improve

the performance of the model by fitting a flexible nonlinearity for

each cell once the parameters (b,~kk, and~hh) were already known (in

general, the estimates will depend on the specific form of the

objective function used for optimization and a re-estimation step is

necessary after the nonlinear function f is fitted). We parameter-

ized the output nonlinearity as a cubic spline, and used this model

instead of the exponential nonlinearity to predict novel responses

and compared those to predicted responses that were generated

using the exponential nonlinearity. This addition conferred only a

slight improvement in cross-validation performance (see Section

3.6). Therefore, for simplicity, we restricted all further analyses in

this study to a GLM with an exponential nonlinearity.

2.4.3 Regularized sparse solutions. Maximum likelihood

estimates can be extremely noisy when fitting high-dimensional

models. This overfitting phenomenon has been shown in the linear

regression case [3] (see section 2.5), where the noisiness of the esti-

mate of the filter ~kk is roughly proportional to the dimensionality

of ~kk divided by the total number of observed samples [6]. The

same type of effect occurs in the GLM context. Thus, in order to

obtain accurate fits, we added to the log-likelihood in Eq. 2 an

additional

term, Q(~kk), that acts as a ‘‘penalty function.’’

L{Q ~kk
� �

~
X
tspk

log ltspk

� �
{

ð
l tð Þdt{Q ~kk

� �
ð3Þ

Here Q(~kk) encodes our a priori beliefs about the true underlying
~kk. Whenever the penalizer 2Q(~kk) is a concave function of ~kk, the

penalized likelihood in Eq. 3 is also a concave function of ~kk, and

ascent-based maximization may proceed as before, with no local

maxima [30]. Thus, the penalty term Q can be any function within

the class of convex functions.

Here we used a sparse prior on the STRF (i.e., many of the

elements of ~kk are zero and only a small subset of the elements of~kk
is active) to regularize the model. This is equivalent to assuming

that the neuron’s firing is sensitive only to a small number of

stimulus features [4]. A common way to impose sparseness is based

on the L1 norm of ~kk [31,32],

Q ~kk
� �

~g
X

i

jkij: ð4Þ

This function is convex, but the term on the right in Eq. 4 is

non-differentiable and the resulting optimization problem can be

challenging. An alternative approach is to use a smooth

differentiable approximation to the L1-regularizer that would

allow the application of standard Newton methods to solve the

resulting unconstrained optimization problem. Within this con-

text, we use the interior point method proposed by [33] to solve

the optimization problem. This method relaxes the non-differen-

tiability of the L1-norm by a sequence of smooth approximation

functions. Solving this optimization problem requires the selection

of an additional hyperparameter, g, that controls the amount of

penalization: for large g we penalize strongly and for g= 0 we

recover the maximum likelihood unregularized solution

(Figure 1B). Here, we select this hyperparameter by cross-

validation, varying g until a maximum in prediction accuracy is

reached.

2.5 STRF estimation by normalized reverse correlation
For comparative purposes, we estimated STRFs from the same

data using normalized reverse correlation (NRC), a variant of the

classical linear regression that has been used to estimate STRFs

from natural stimuli in the auditory and visual systems [3,34,35].

NRC fits a linear STRF that minimizes the mean-squared error

between predicted and observed neuronal response:

~kkLS~ arg max
~kk

X
t

~kkT~xxt{rt

h i2

( )
: ð5Þ

A detailed description of the algorithm is described in [3]. Here

we provide a brief description of NRC for comparison to the GLM

method.

GLM with Natural Sounds
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The best-fit least-squares filter ~kkLS is given by

~kkLS~ X T X
� �{1

X T~rr ð6Þ

where the stimulus matrix X is defined as Xt = xt
T and r = (r(1) r(2)

… r(t))T. The term X T~rr corresponds to the spike-triggered average

- the conditional mean ~xx given a spike - and the matrix XTX/

D = CXX corresponds to the covariance matrix of the stimulus.

Here, the superscript T indicates a transpose operation and D is

the duration of the experiment.

This estimator gives an unbiased estimate of the filter ~kk for any

stimulus statistics if the underlying system is linear [36] or if the

stimulus is elliptically symmetric (i.e. contains only up to second

order correlations) if the underlying system is nonlinear. However,

in practice, for the case of high dimensional X with strong

Figure 2. A GLM as a neural encoding model. (A)–(B) Estimated parameters for an example auditory midbrain neuron. (A) STRF. (B)
Exponentiated post-spike filter, which may be interpreted as a spike-induced gain adjustment of the neuron’s firing rate. It produces a brief refractory
period and gradual recovery (with a slight overshoot). (C) Estimate of the nonlinearity transforming linear input to instantaneous spike rate (black
points), for the same example neuron (Chichilnisky 2001). The nonlinearity represents the probability of observing a spike for each value of net linear
input (b+k*x+h*r). An exponential function (grey line), the assumed nonlinearity for the model, provides a reasonable approximation to this function.
(D) Spectrogram (x) of one example song used in the experiments. (E) Stimulus filtered by STRF, k*x. (F) Recorded (gray) and predicted (red) raster
plots in response to the validation stimulus shown in (D).
doi:10.1371/journal.pone.0016104.g002

GLM with Natural Sounds
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autocorrelations, estimating ~kk with Eq. 6 can amplify noise

excessively [3]. To minimize these effects, NRC uses a pseudo

inverse to approximate the inverse of the stimulus autocorrelation

matrix. This approximation is based on setting dimensions in the

stimulus that have little power (below some noise threshold) to

zero. To compute the pseudo inverse, a singular value decompo-

sition is applied to the autocorrelation matrix,

Cxx~UT LU ð7Þ

The columns of U contain the unit-norm eigenvectors of CXX,

which correspond to the discrete Fourier transform (DFT) vectors.

The diagonal matrix L = diag(l1, l2, … , lN) contains the

corresponding eigenvalues ordered from largest to smallest, which

correspond to the power spectrum of the stimulus as a function of

temporal frequency. A tolerance value, t, specifies the fraction of

stimulus variance and the number of stimulus dimensions, m, to

preserve in the pseudoinverse C21
app:

C{1
app~UT L{1

appU~UT diag
1

l1
,

1

l2
, . . . ,

1

lm

,0, . . . ,0

� �
, ð8Þ

which results in penalization of high frequencies.

The final NRC estimate of the STRF is then,

~kk~
1

D
C{1

app X T~rr ð9Þ

Implementing NRC requires the selection of a single hyper-

parameter, the tolerance value, t. To choose t, the method uses a

cross-validation procedure. In this study, we use the Matlab

toolbox developed by the Theunissen and Gallant laboratories at

University of California, Berkeley (http://strfpak.berkeley.edu) to

estimate NRC STRFs.

2.6 Prediction accuracy
For both the GLM and NRC models, response prediction was

validated with song and noise data that were not used for fitting

the model. From the entire set of 20 song and 10 ml noise

stimuli, 19 songs or 9 ml noise samples were used to estimate the

models’ parameters (estimation data set). The models were then

used to predict the average response to the remaining song or ml

noise sample not included in the estimation set. This procedure

was repeated 20 times in the case of songs and 10 times in the

case of ml noise, excluding a different validation stimulus on each

repeat. This analysis ensures that no individual song (ml noise)

sampled can bias the STRF calculations or the quantification of

prediction accuracy because the responses to each song (ml noise)

have been removed from the STRF calculation once and the

responses to each song (ml noise) have been used as the testing

set once. The 20 (10) accuracies of these predictions were then

averaged to produce a single value representing the prediction

accuracy of a given model (NRC or GLM) in response to songs

or ml noise.

Prediction accuracy was determined by measuring Pearson’s

correlation coefficient between the predicted and observed

peristimulus time histogram (PSTH). For both NRC and GLM,

PSTHs were computed with a 3 ms time bin and were smoothed

with a 5 ms Hanning window. The width of the smoothing

window was chosen to match the integration time of auditory

midbrain neurons [37].

2.7 Tuning properties derived from STRFs
In addition to comparing the GLM and NRC methods in terms of

their predictive power where the complete STRFs (both their

inhibitory and excitatory portions) were used for response estimation,

we parametrically compared STRFs from both methods using three

measures of tuning properties commonly used to characterize

auditory neurons [23,38]; 1) best excitatory (inhibitory) frequency,

eBF (iBF), the spectral frequency that evokes the strongest (weakest)

neural response; 2) excitatory (inhibitory) spectral bandwidth, eBW

(iBW), the range of frequencies that are associated with an increase

(decrease) from mean firing rate; and 3) excitatory (inhibitory)

temporal bandwidth, etBW (itBW), the time over which relevant

frequencies lead to an increase (decrease) from mean firing rate. eBF,

iBF, eBW, iBW, etBW, and etBW were computed from the STRFs

using standard methods [39]. Briefly, the eBF (iBF) was measured by

setting negative (positive) STRF values to zero and averaging along

the time axis. The resulting spectral tuning curve was convolved with

a 5-point symmetric Hanning window, and the eBF (iBF) was taken to

be the position of the peak (valley) of the smoothed curve. The eBW

(iBW) was measured from the smoothed curve as the width (Hz) at

half-height (half-depth) around the eBF (iBF). The etBW (itBW) was

measured by setting all negative (positive) STRF values to zero and

averaging along the spectral axis. The resulting temporal tuning

curve was convolved with a 5-point symmetric Hanning window, and

the etBW (itBW) was measured from the smoothed curve as the width

(ms) at half-height (half-depth) around the peak.

Results

3.1 Responses of single auditory midbrain neurons are
well modeled using a GL model

We modeled the functional relationship between sound stimuli and

neuronal responses with a generalized linear model (GLM) for each

neuron (see Figure 1A). Figure 2A shows an example GLM STRF

estimated from responses to song and Figure 2B shows the

corresponding exponentiated post-spike filter representing the

influence of spiking history on spiking probability for the same

neuron. For most of the cells in our sample, the shape of the post-spike

filter corresponds to a brief period of refractoriness (5.3+/20.2 ms,

mean +/2 SE) and gradual recovery (see Figure 2B for an example).

Figure 2C shows the static nonlinearity estimated for this neuron

[5] (black dots), together with the exponential nonlinearity (gray

line) employed by the model. Although the exponential function

used by the model does not provide an excellent fit to the underlying

nonlinearity for this neuron (a subexponential nonlinearity performs

slightly better; see Methods), the model does predict responses to a

novel stimulus with good accuracy (see below).

In order to test how well the GLM method predicted song

responses in individual trials, we used it to predict the responses to

a validation song (Figure 2D–F) that was included in the recording

experiment but was not included in the estimation of the model

parameters. Recorded and predicted spiking responses to the

validation stimulus are shown in Figure 2F. For this neuron, the

model predicts the spiking responses to the validation song

reasonably well; the mean cross correlation between actual and

predicted response PSTHs was 0.69.

3.2 A GLM outperforms normalized reverse correlation
(NRC) when predicting responses of single auditory
neurons to songs and noise

We next compared the GLM to the more traditional STRF

estimation method, NRC, in the ability to predict single neuron

responses to zebra finch songs and ml noise.

GLM with Natural Sounds
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Figure 3 shows NRC and GLM response predictions for three

neurons in response to the song in Figure 2D. Although the

predicted traces for both models (blue for NRC and red for GLM)

account for broad variations in the actual PSTHs, neither of them

captures their precise shape. One common failure of the models to

predict responses is best demonstrated in Figure 3B and C. These

two neurons show highly reliable responses to the song and,

although the models predict the timing of the responses, in several

cases they underestimate their amplitudes. This effect is more

pronounced for NRC than for the GLM. Changing the nonlinear

link function of the model (from an exponential to another type of

nonlinearity, see Eq. 1 and Section 2.4.2) could, in principle, help

to increase the amount of variance in the response described by

the model. However, within the groups of nonlinearities we tried

on our data (see Methods), we observed only slight or no

improvements in prediction accuracy. We later discuss (see

Discussion) several extensions to the GLM that could improve

the predictive power of the model. Finally, Figure 3 shows spike-

train predictions for the GLM method in response to the same

song. The predicted spike trains capture the overall structure of

the recorded spiking activity.

We then compared the prediction accuracy of the GLM and

NRC methods across the entire set of 169 auditory midbrain

neurons. Since we did not find noticeable differences in predictive

power between awake and anesthetized recordings, we report the

prediction accuracy for the two data sets combined.

We first compared the ability of both models to predict

responses to a novel stimulus taken from the same stimulus class

used in the estimation set (we refer to this case as ‘‘same-class

predictions’’, Figure 4A). We found that the performance of both

models varies widely across our population of cells; on this

moderately small timescale (predicted and actual responses were

computed using 3 ms time bins and were smoothed with a 5 ms

Hanning window; see Methods), the prediction correlation was as

high as 0.77 for some neurons and below 0.1 for others. For low

firing rate neurons, we found a relatively moderate correlation

(0.36) between the number of spikes in the estimation set and the

prediction performance of the models. We found that the

prediction performance becomes independent of the number of

spikes in the estimation set for N ,2000, which corresponds to

firing rates of ,10 Hz. Since the goal of this study is to test the

GLM method under different conditions and compare its

Figure 3. The GLM outperforms NRC when predicting responses to songs. (A)–(C) Examples of NRC and GLM response prediction (PSTHs
and spike trains) and corresponding GLM STRFs for three auditory midbrain neurons. Recorded and predicted responses correspond to the song
shown in Figure 2D. Spike trains and PSTHs were computed with a 3 ms time bin and PSTHs were smoothed with a 5 ms Hanning window prior to
computing correlation coefficients. (STRFs have been up sampled by a factor of 3 for visualization). The GL model performs consistently better than
NRC when used to predict average responses to a validation stimulus. In addition, the GLM spike-train predictions capture the overall structure of the
actual spike trains.
doi:10.1371/journal.pone.0016104.g003
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performance to NRC, we included all the data in our sample in

the analysis regardless of prediction accuracy.

The average same-class prediction correlation for the GLM for

novel song and ml noise stimuli is rs = 0.4760.01 and rn = 0.4660.01,

respectively (mean 6 SE). These values are significantly greater than

the average for NRC, rs = 0.4260.01 and rn = 0.4060.008 (p,0.001,

two-sample Kolmogorov-Smirnov (KS) test).

To evaluate how well the GLM and NRC methods estimated

from responses to one of the stimulus classes generalized to a

second stimulus domain, we compared how well these models

predicted responses to the other stimulus class (‘‘across-class

predictions’’). In this way, we used the models that were estimated

using song data to predict responses to ml noise and vice-versa

(Figure 4B). As in the case of same-class predictions, the GLM

predicts responses to the opposite class (rs = 0.3860.01 and

rn = 0.460.01) significantly better than NRC (rs = 0.3460.01 and

rn = 0.2960.01, p,0.001, two-sample KS test).

The absolute prediction accuracy for both models in the across-

class case is significantly lower than in the same-class case. For the

GLM, the mean prediction correlation is 15% lower in the across-class

case than in the same-class case, both for noise and song predictions.

For NRC, the mean prediction correlation is 15% lower in the across-

class case than in the same-class case for song predictions, and 28%

lower for noise predictions. This decrease in performance suggests that

neither model generalizes completely to other stimulus classes.

Because of nonlinear response properties, STRFs estimated using

one stimulus class tend to predict responses to other stimulus classes

with worse accuracy [1,23]. However, the better performance of the

GLM suggests that it provides a more general characterization of

spectrotemporal tuning across different stimulus conditions.

Figure 4. The GLM has higher predictive power than does NRC within- and across stimulus classes. Both methods were evaluated by
their ability to predict responses to a validation song and ml noise data set that was not used for parameters’ estimation. (A) Same-class predictions:
NRC and GLM were used to predict responses to a novel song or ml noise stimulus when only songs or ml noise were used to train the model.
(B) Across-class predictions: NRC and GLM were used to predict responses to a novel song or ml noise stimulus when the other stimulus ensemble
was used to train the model. Each point plots the correlation coefficient between the observed and predicted average response (PSTH), for NRC
(horizontal axis) and GLM (vertical axis) for a single neuron. White dots indicate responses to ml noise and gray dots indicate responses to song. We
found that on average, the GLM predicts responses significantly better than NRC (*p,0.001, two-sample KS test) both in the same-class and across-
class cases. Error bars represent SEs.
doi:10.1371/journal.pone.0016104.g004
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3.3 GLM STRFs are more stable to changes in the
stimulus statistics than are NRC STRFs

The fact that the GLM produces better response predictions

across stimulus classes than does NRC (see Figure 4B), suggests

that it generalizes better to changes in the statistics of the stimulus

used to estimate the model. In agreement with this, we found that

GLM STRFs were more similar to each other between stimulus

classes than NRC STRFs for the entire population of 169 cells.

Figure 5A–C shows GLM (top panel) and NRC (bottom panel)

STRFs derived from responses to song (Ks) or ml noise (Kn) for

three example neurons. In agreement with previous observations

[1,23,35], we found that, for some neurons, NRC STRFs

estimated from different stimulus classes show significant differ-

ences (see, for example Figure 5B and 5C). Figure 5A shows an

example neuron for which Kn and Ks do not differ, and

Figure 5B–C shows example cells for which NRC STRFs

estimated from recorded responses to ml noise and song differ

significantly. In contrast, GLM song and noise STRFs appear

significantly more similar for all three cells.

To quantify the differences between song and ml noise STRFs

(Kn and Ks) derived using a GLM or NRC, we measured a

similarity index (SI, pixel by pixel correlation). A similarity index

of 1 indicates a perfect match, and an index of 0 indicates no

correlation between STRFs. Figure 5D shows the distributions of

SIs between Kn and Ks for the GLM (white) and NRC (grey) for

the set of 169 neurons. These distributions differ significantly

(p,0.001 KS test). The shift to the right in the SI distribution for

the GLM shows that GLM STRFs are more similar across

stimulus classes than are NRC STRFs at the population level

(median of the SI distribution 0.76 for the GLM and 0.61 for

NRC).

In addition, we found that differences between NRC and GLM

STRFs derived from responses to ml noise (compare GLM Kn vs.

NRC Kn in Figure 5A–C) were smaller than differences between

NRC and GLM STRFs derived from responses to songs (compare

GLM Ks vs. NRC Ks in Figure 5A–C), as would be predicted

theoretically. When stimuli that contain only second-order

correlations are used to derive the STRF, NRC and GLM should

give the same answer in the limit of infinite data [5,6,11]. Non-

Gaussian effects in the ml noise stimulus ensemble are smaller than

in the song ensemble, which explains the smaller differences

between GLM and NRC STRFs for this stimulus class.

3.4 Tuning properties of GLM and NRC STRFs
In Section 3.3 a nonparametric comparison between song and

ml noise STRFs derived under a GLM or NRC showed that GLM

Figure 5. GLM STRFs are more similar across stimulus classes than are NRC STRFs. (A)–(C) Top row: GLM STRFs estimated from recorded
responses to ml noise (Kn) and song (Ks) for three example midbrain auditory neurons. Bottom row: ml noise (Kn) and song (Ks) NRC STRFs for the
same three cells. (A) An example cell for which Kn and Ks do not differ, both for the GLM and NRC. (B)–(C) Two example cells for which Kn and Ks
differ significantly for NRC, but differ much less for the GLM. (D) Distributions of similarity indices (SIs) computed between Kn and Ks for NRC (grey)
and GLM (white) for the population of 169 cells. One indicates an exact match between STRFs and 0 indicates no correlation. The GLM produces
STRFs that are more similar across stimulus classes as seen by the shift to the right of the SI distribution (median of the SI distribution for the GLM was
0.76 as opposed to 0.61 for NRC). GLM and NRC distributions differ significantly (p,0.001, two-sample KS test). Letters indicate example STRFs.
doi:10.1371/journal.pone.0016104.g005
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STRFs are more similar across these two stimulus classes than are

NRC STRFs. Measures of excitatory (Figure 6) and inhibitory

(Figure 7) tuning taken from STRFs showed significant differences

between NRC and GLM STRFs. Best excitatory and inhibitory

frequency (eBF and iBF, respectively) did not differ between NRC

and GLM STRFs (Figures 6A and 7A, respectively). Excitatory

spectral bandwidths (eBW) were significantly different between

NRC and GLM STRFs for song and noise; song NRC eBWs were

larger than GLM eBWs (Figure 6B). The mean eBW for song

STRFs was 13126100 Hz for NRC and 917641 Hz for GLM,

and 703631 and 798635 for noise STRFs. For both song and ml

noise, the difference in eBW between NRC and GLM STRFs was

highly significant (p,1023, two-sample KS test). Inhibitory

spectral bandwidths (iBW) were significantly different between

NRC and GLM STRFs for noise but not for song; noise GLM

iBWs were larger than NRC iBWs (Figure 7B, p,1023, two-

sample KS test). Mean iBW for song STRF was 786680 Hz for

NRC and 808635 Hz for GLM, and 603642 and 812631 Hz

for noise. Finally, both excitatory and inhibitory temporal

bandwidths (etBW and itBW, respectively) also differed between

NRC and GLM STRFs (Figures 6C and 7C, respectively). For

song STRFs, the mean etBW (itBW) was 9.460.5 (1060.5) ms for

NRC and 5.660.16 (5.361.2) ms for GLM. For ml noise STRFs,

mean etBWs (itBWs) were 7.960.17 (8.360.3) ms and 5.160.12

(5.160.2) ms, respectively. For both song and ml noise, the

difference in etBW and itBW between NRC and GLM STRFs was

highly significant (p,1023, two-sample KS test).

When comparing song and noise STRFs within a neuron, we

found no significant differences in eBF or iBF for the NRC or

GLM (Figures 6D and 7D, respectively). The differences in eBW

and iBW between song and noise STRFs were significantly larger

for NRC than for GLM (Figure 6E, p,1023, and Figure 7E,

p,0.05, two-sample KS test). Finally, we found no significant

differences in etBW or itBW between noise and song GLM STRFs

(Figure 6F, p.0.1 and Figure 7F, p.0.1), but differences were

significant for NRC STRFs (Figures 6F and 7F, p,1023).

In summary, for the population of neurons studied here, GLM

and NRC STRFs estimated from the same song and ml noise data

show substantial differences. Further, ml noise and song STRFs

differed significantly in their spectral and temporal properties, but

differences were larger for NRC STRFs than for GLM STRFs.

3.5 Effects of estimation algorithm-induced biases on
STRFs

As mentioned earlier, for a linear neuron, reverse correlation (RC)

methods are guaranteed to produce an unbiased estimate of a

neuron’s true underlying STRF regardless of the stimulus statistics

[36]. For a linear-nonlinear (LN) neuron, RC is guaranteed to

produce an unbiased estimate of a neuron’s true underlying filter

only if the distribution of the stimuli used for estimation is elliptically

Figure 6. Excitatory tuning differences between GLM and NRC STRFs. (A)–(C) Comparison of excitatory tuning properties of GLM and NRC
STRFs. (A) Best frequency of the excitatory region (eBF), (B) excitatory spectral bandwidth (eBW), and (C) excitatory temporal bandwidth (etBW). We
found no significant differences in eBF between NRC and GLM STRFs derived from neural responses to ml noise, or those derived from responses to
song (p.0.9, two-sample KS test). However, we found that differences in eBW and etBW determined by the estimation algorithms were highly
significant (**p,10-3, two-sample KS test). (D)–(E) Comparison of excitatory tuning properties of song and noise STRFs. (D) eBF, (E) eBW and (F) etBW.
We found no significant difference in eBF between song and noise STRFs in ether of the models (p.0.9). Differences in eBW between song and noise
STRFs were considerably larger for NRC than for GLM (**p,1023 and *p,0.05). Finally, we found significant differences between song and noise
STRFs in terms of etBW for NRC but not for the GLM (*p,0.05 and p.0.1, respectively). Error bars represent SEs.
doi:10.1371/journal.pone.0016104.g006
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symmetric [6]. However, in the presence of stimuli with higher-order

correlations, such as zebra finch songs, RC can introduce biases in

the estimate of the STRF. Something similar occurs with the GLM:

if the underlying neuron behaves like a GLM, then a GLM will

produce an asymptotically unbiased estimate of the STRF of the cell

for any stimulus ensemble. However, any deviation from the GLM

framework can introduce biases in the estimates [12].

In addition, the highly correlated structure of zebra finch songs

presents additional numerical problems for STRF estimation,

causing noise in the resulting STRF to be strongly amplified (see

Methods for further details). Thus, some form of regularization is

applied to the estimation method to obtain accurate STRFs [3,8–

10]. In the presence of limited or noisy data (a common scenario in

neurophysiological experiments), regularization introduces a prior

that constrains the STRF estimate in a way that is independent of

the underlying tuning properties of the neuron, but can introduce

additional biases in the STRF. Because of these types of effects, in

some cases, STRFs can reflect statistical properties of the stimuli

used for estimation or biases introduced by the estimation

algorithm (e.g. the particular prior) rather than actual tuning

properties of the underlying neuron [2,4].

We asked whether and how much of the tuning differences we

observe between song and ml noise STRFs (see Figs. 5, 6 and 7)

can be explained in terms of biases introduced by the estimation

algorithm. To address this, we used Kn and Ks (see Section 3.3) as

LNP-type generative models to synthesize responses to both

stimulus classes and re-estimate the STRFs.

Briefly, for NRC, we generated synthetic responses to song or

ml noise with the following model: rs = k*xs +b or rn = k*xn +b,

respectively. Similarly, for the GLM, we generated responses to

both stimulus classes using Eq. 1. Here K and b (and h, for the case

of the GLM) were either derived from recorded responses to song

(Ks, bs) or ml noise (Kn, bn). Thus, we are left with two types of

synthetic responses to song (rss and rns), and two types of synthetic

responses to noise (rsn and rnn), which correspond to using Ks or

Kn in the generative model. These four sets of responses were then

used to compute two second-generation ml noise STRFs (Knn and

Kns) and two second-generation song STRFs (Ksn and Kss)

derived from synthetic responses to ml noise or songs, respectively.

The differences between these new STRFs and the original STRFs

were then quantified. Our rationale was that, if the estimation

algorithms were free of biases, we should recover Kn and Ks with

some added noise, regardless of the stimulus class used to re-

estimate the STRFs. In particular, Knn and Kns should show

small differences when compared to Kn, and Ksn and Kss should

show small differences when compared to Ks.

Figure 8A–C shows the original NRC STRFs derived from

recorded data and the re-estimated STRFs for the same three cells

Figure 7. Inhibitory tuning differences between GLM and NRC STRFs. (A)–(C) Comparison of inhibitory tuning properties of GLM and NRC
STRFs. (A) Best frequency of the excitatory region (iBF), (B) excitatory spectral bandwidth (iBW), and (C) excitatory temporal bandwidth (itBW). We
found no significant differences in iBF between NRC and GLM STRFs derived from neural responses to ml noise, or those derived from responses to
song (p.0.8, two-sample KS test). However, we found that differences in iBW determined by the estimation algorithms were significant for noise but
not for songs (**p,1023, two-sample KS test), and differences in itBW were highly significant both for songs and noise (**p,1023, two-sample KS
test). (D)–(E) Comparison of inhibitory tuning properties of song and noise STRFs. (D) iBF, (E) iBW and (F) itBW. We found no significant difference in
iBF between song and noise STRFs in ether of the models (p.0.1). Differences in iBW between song and noise STRFs were significant for NRC
(*p,0.05) but not for the GLM (p.0.8). Finally, we found significant differences between song and noise STRFs in terms of itBW for NRC but not for
the GLM (*p,0.05 and p.0.4, respectively). Error bars represent SEs.
doi:10.1371/journal.pone.0016104.g007
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shown in Figure 5. We found that, in some cases, the underlying

noise and song STRFs are recovered by the simulations (Figure 8A,

compare Kn with Kns and Knn, and Ks with Ksn and Kss).

However, we also found cases for which the simulated noise and

song STRFs differ significantly from the ones derived from recorded

responses (Figure 8B–C). In the example shown in Figure 8B, biases

in the estimation algorithm are not sufficient to explain the original

differences between Kn and Ks, indicating the presence of actual

nonlinearities in the responses that result in stimulus-dependent

tuning. In contrast, for the example shown in Figure 8C, differences

between Kn and Ks can be explained by biases introduced by the

estimation algorithm (that is, Kns is significantly more similar to Ks

than to Kn, even though the responses used to compute Kns were

originally generated from Kn).

We next repeated the same type of simulations for the GLM.

Figure 8D–F shows the results of these simulations for the same

three cells in Figures 8A–C, and 5. Figure 8D shows an additional

example cell with broader spectral tuning and stronger inhibition.

For all four examples, the GLM recovers STRFs from the

simulations that are highly similar to the true underlying STRFs.

Thus in these examples, it is visually clear that the GLM reduces

algorithm-induced biases in the STRFs.

To quantify the amount of biases introduced in the STRFs by

the GLM and NRC at the population level, we measured the

similarity index (SI) between STRFs derived from recorded and

simulated data. In particular, we measured the similarity between

Kn and Kns (STRF estimated from synthetic responses to song

when the true underlying filter in the LNP-model was Kn), and

between Ks and Ksn (STRF estimated from synthetic responses to

ml noise when the true underlying filter in the LNP-model was

Ks). Figure 8H shows these distributions for the GLM (white) and

NRC (grey) for our set of 169 cells. If the estimation algorithms

Figure 8. Effects of algorithm-induced biases on STRFs. (A)–(C) Top row: NRC STRFs (Kn and Ks) for the same three units shown in Figures 5A–
C (c.f. Figure 5A–C, bottom row). Middle row: NRC STRFs estimated from simulated responses to ml noise (Knn) and song (Kns) when Kn is used as an
LNP-type generative model for the neuron. Bottom row: NRC STRFs estimated from simulated responses to ml noise (Ksn) and song (Kss) when Ks is
used as an LNP-type generative model for the neuron. (A) An example cell for which NRC STRFs estimated from recorded responses to ml noise (Kn)
and song (Ks) and STRFs estimated from simulated responses to ml noise and song stimuli (Knn, Kns, Ksn, and Kss) do not differ. (B) An example cell
for which Kn and Ks differ significantly. These differences cannot be explained by biases introduced by the estimation algorithm. (C) As in (B), but in
this case the differences between Ks and Kn can be explained by biases introduced by the estimation algorithm, since Kns closely resembles Ks and
not Kn. In addition, Ksn is more similar to Ks than Kn. (D)–(F) GLM STRFs for the same three units shown in panels A–C. (G) Additional example unit
with broader spectral tuning and stronger inhibition. In all four examples the GLM reduces algorithm-induced biases (in all cases Kns closely
resembles Kn rather than Ks and Ksn is closer to Ks than to Kn). (H) Distributions of similarity indices (SIs) between STRFs estimated from recorded
and simulated data, for NRC (grey) and GLM (white). One indicates an exact match between STRFs and 0 indicates no correlation. Top: distribution of
SIs computed between STRFs estimated from recorded responses to ml noise (Kn) and Kns (STRFs estimated from simulated responses to song using
Kn as a generative model for the neuron). Bottom: distributions of SIs computed between STRFs estimated from recorded responses to song (Ks) and
Ksn (STRFs estimated from simulated responses to ml noise stimuli using Ks as a generative model for the neuron). In both cases, the SI distributions
for the GLM appear shifted to the right (and are centered closer to 1) when compared to the same distributions for NRC. In both cases, GLM and NRC
distributions differ significantly (p,0.001, two-sample KS test). Letters indicate example STRFs.
doi:10.1371/journal.pone.0016104.g008
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introduced no (or little) bias in the STRF estimates, then the SI

distribution should be, up to some variability, a narrow

distribution located close to 1. For NRC, we observe a broad

distribution with median = 0.64 when we measure SIs between

Kn and Kns, and with median = 0.73 when we measure SIs

between Ks and Ksn. In contrast, SI distributions for the GLM are

narrower and centered closer to 1 (median = 0.94 and 0.87,

respectively), and differ significantly from NRC distributions

(p,0.001, KS test, in both cases).

These analyses show that, in some cases, differences in tuning

between STRFs derived from responses to song and ml noise

stimuli can be explained in terms of biases introduced by the

estimation algorithm, rather than actual tuning nonlinearities [2].

However, these effects are larger when NRC instead of the GLM

is used.

3.6 Effect of the regularization prior on STRFs and
predictive power

In Section 3.2 we showed that the GLM has a higher predictive

power than NRC, both within and across stimulus classes (Figure 4).

In addition, and in accordance with a higher across-class prediction

power, we found that the GLM produces STRFs that are more

similar across stimulus classes than does NRC (Figures 5, 6 and 7).

We also found that, in some cases, the differences between song and

noise NRC STRFs as well as the differences between NRC and

GLM STRFs can be explained in terms of biases introduced in the

STRFs by NRC (See Figure 8). In this Section, we addressed a

related question: what component of the GLM is responsible for

reducing algorithm-induced biases in the STRFs and at the same

time increasing the predictive power of the model?

The GLM and NRC methods differ in three ways that result

from the different assumptions about neural responses made by

each of the two methods. First, the two methods optimize different

objective functions; the GLM assumes point-process responses

with an exponential nonlinearity while NRC assumes Gaussian

noise and uses a simpler linear model. Second, the GLM and

NRC use different regularization methods. Our method imposes a

sparse prior on the STRF while NRC uses a lowpass Gaussian

prior. Third, the GLM includes a spike history term that takes into

account the recent firing probability of the neuron, while NRC

does not. In principle, each of these factors may contribute to the

better predictions and less-biased STRFs produced by the GLM.

In order to study the effect of each component of the GL model,

we removed each of these factors from the GLM framework.

We first tested the hypothesis that the differences observed

between NRC and GLM STRFs, and the higher predictive power

of the GLM, are due to the fact that our method optimizes a

different objective function than NRC. In particular, the nonline-

arity employed by the GLM might be the important difference

between the models. To test this, we re-fitted the GLM with a sub-

exponential nonlinearity that was closer to the actual response

nonlinearity in the data (see Methods). We found that this led to a

slight (but statistically not significant) improvement in the predictive

power and, importantly, no change in the shape of the STRFs. This

weak dependence of the STRFs on the specific nonlinearity led us to

ask whether it was possible to increase the predictive power of the

model by fitting a cubic spline nonlinearity for each cell once the

model parameters were already known (we refer to this model as

spline GLM, see Methods for further details). This flexible

nonlinearity conferred only a slight (but not significant) increase in

predictive power for songs but not for ml noise responses when

compared to the exponential GLM (see Figure 9).

Another difference between the two models is the extra term in

the GLM that accounts for the neuron’s spiking history. The post-

spike filter could contribute to changes in the prediction accuracy

of the model and in the shape of the STRF. To account for the

effects of the post-spike filter on predicted responses, we re-fitted

the GLM without this term, referred to here as exponential LN.

We found no differences between GLM and LNP STRFs. We did,

however, find that the prediction power of the GLM was slightly

(but not significantly) better than the prediction power of the LN

model when trying to predict responses to noise (Figure 9). It is

likely that the small contribution of the spiking history to response

prediction is due to the relatively low firing rate of the neurons in

our sample. Spiking history may contribute to an accurate

description of the detailed structure of response spike trains in

higher firing rate neurons, as has been shown in the retina [15].

Finally, to test the effect of the regularization prior on predictive

power and STRF shape, we fitted the same linear model used by

NRC (Eq. 5), but with an L1 regularizer (Eq. 4) instead of the

lowpass Gaussian prior imposed by NRC (we refer to this model as

linear L1). We found that the linear L1 model has significantly

higher predictive power than does NRC (see Figure 9). We found no

significant difference in predictive power between the linear L1

model and the nonlinear models, with or without the history term

(i.e., Exp GLM, spline GLM and Exp LN). Importantly, we found

no significant differences in STRF shapes. These comparisons

between STRFs and predictions generated by different models

employing an L1 regularizer and NRC indicate that the differences

between NRC and GLM are mostly due to the fact that the two

estimation algorithms assume different priors about the STRF.

Discussion

We used a generalized linear model (GLM) with a sparse prior

to characterize the stimulus-response relationships of single

Figure 9. Predictive power of the different models tested. For
both predictions of song and ml noise responses, all the models that
use a sparse prior or L1 regularizer (i.e., Exp GLM, Exp LN, spline GLM,
and Linear L1) have an average prediction correlation that is
significantly higher than the average prediction correlation for NRC,
which uses a smoothing prior to regularize the STRFs. We found no
significant difference in predictive power across the models that
employ a sparse prior. Error bars show SEs.
doi:10.1371/journal.pone.0016104.g009
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auditory midbrain neurons, and compared the performance of our

model to that of normalized reverse correlation (NRC) for

predicting the responses to novel sounds. We found that a GLM

can be successfully used to predict single-trial responses to

synthetic and natural stimuli, and that, for the population of 169

cells used in this study, the GLM had a better predictive power

than NRC. The performance of the GLM was better than NRC

both within and across stimulus classes. The good performance of

the GLM across stimulus classes suggests that our method

generalizes better to changes in stimulus statistics. Differences

between STRFs computed from responses to different stimulus

classes (e.g. song and noise STRFs) were significantly smaller than

those observed when STRFs were computed with NRC.

Differences in the STRFs computed with the GLM and NRC

methods were largely due to differences in the estimates of

excitatory spectral bandwidths and temporal bandwidths. Below,

we discuss the computational differences between the GLM and

NRC that lead to differences in predictive power and STRF

shapes, and compare the GLM method to other proposed

methods for characterizing stimulus-response relationships in

auditory neurons.

Computational differences between the GLM with a
sparse prior and NRC

As discussed before (see Section 3.6), the sparse GLM and NRC

contain three fundamental differences: the two methods optimize

different objective functions, use different regularization methods,

and the GLM takes into account the recent firing probability of

the neuron, while NRC does not. For the neurons studied here, we

found that the differences in STRFs produced by both methods

and the higher predictive power of the GLM are largely due to the

different priors used by the two methods. Even though the GLM

takes into account the cell’s spiking history and uses a different

nonlinearity than NRC, we found that the contribution of the

spike history term as well as more complex nonlinearities led to

little or no increase in the model’s predictive power (see Methods

and Section 3.6), and no noticeable change in STRF shape.

NRC estimates the STRF only in the stimulus subspace that

contains most of the variance of the stimulus to reduce noise in the

estimates and avoid overfitting [3]. With increasing levels of noise,

and depending on the specific spectrotemporal characteristics of

the stimulus, NRC produces STRFs that are biased towards being

smooth (see Methods). This is particularly the case for songs and

other natural stimuli for which the majority of the power tends to

be concentrated at low spectrotemporal frequencies [40]. In this

case, the spectral and temporal features at high frequencies tend to

be excluded from the STRFs estimated using NRC, resulting in

STRFs that substantially overestimate the contribution of low-

frequency components to neural filtering [1,4]. In contrast, the

sparse GLM imposes a sparse prior on the STRFs. In this case, the

amount of regularization applied to the STRF depends on the

overall level of noise in the data, and in the case of a low signal-to

noise ratio, GLM STRFs will be overly sparse (see Methods). Even

though both NRC and GLM methods introduce biases in the

STRFs, the GLM leads to better predictions and model stability

across stimulus classes. However, even though the GLM leads to

increased predictive power (Section 3.2), the increase we observe

for our model with respect to NRC is relatively modest, if one

considers the substantial differences in tuning between NRC and

GLM STRFs (Section 3.5). This may seem a surprising result,

since the differences in fine spectral and temporal structure of the

GLM and NRC STRF do not seem to affect differences in

predictive power accordingly. Nevertheless, it is important to

consider that zebra finch songs, like many other natural sounds,

contain relatively broadband components and change relatively

slowly in time. Thus, the songs we use in this study contain

relatively little power at high spectral modulation rates (i.e.,

modulation of stimulus power across frequency channels) and little

power at high temporal modulation rates (i.e., modulation of

stimulus power over time). This is why these high rates and high

scales, which correspond to the stimulus domain typically excluded

by NRC, and are responsible for the differences between NRC

and GLM STRFs, only contribute a modest amount to prediction

accuracy, as songs contain little power in that space.

Comparison of the GLM to other methods
An alternative approach for estimating a sparse STRF is boosting

[41,42]. Boosting is an estimation technique that uses coordinate

ascent to minimize the number of no nzero parameters, effectively

imposing a sparse prior on the STRF. [4] applied boosting on the

same objective function as NRC (i.e., a linear model), to derive

STRFs for primary auditory cortex neurons. Their results showed,

in agreement with our findings, that boosting STRFs lead to better

prediction power and show narrower spectral and temporal

bandwidths than do NRC STRFs. The differences in predictive

power between NRC and GLM reported here are slightly larger

than the differences reported in [4] for NRC and boosting STRFs.

This is presumably due to the different nonlinearities employed by

the two methods. Finally, boosting can also be applied to estimate

GLMs with sparse priors [42].

Several other algorithms have been developed for STRF

estimation in the visual and auditory systems [8,11,43]. Maximally

informative dimensions (MID) [11] is an information-theoretic

method that finds relevant directions (a set of ~kk vectors,
~kk1,~kk2, � � �
n o

) in the stimulus space. In its one dimensional version

(1d-MID), this method searches for the spectrotemporal filter or

STRF ~kk, whose output, ~kk:~xx, carries the most mutual information

about the measured neural response r(t). Once the filter is known,

the nonlinearity of the LNP model is computed from the recorded

data. With the GLM method, we first find the filter ~kk1 for a fixed

nonlinearity (e.g. an exponential function) by maximizing the

corresponding likelihood, and then use the filter to fit the output

nonlinearity to the recorded data (see Methods). It has been shown

that in a number of problems, including estimation of GLMs,

maximizing information is equivalent to performing likelihood

maximization [44]. Thus, if in the GLM method, we iterate

between estimating the STRF ~kk1 for a fixed nonlinearity and

fitting the nonlinearity of the model to the recorded data, the 1d-

MID and GLM methods are equivalent (except that the MID

method as usually employed, does not contain any spike history

terms). Here, however, we have shown that for our data set, the

estimated filter is only weakly dependent on the specific form of

the nonlinearity (see Methods and Section 3.6), which makes the

iteration procedure in the GLM unnecessary.

Another useful method for STRF estimation is evidence

optimization, introduced by [8]. This method uses a Bayesian

approach to include both sparse and smooth ‘‘optimized priors’’

on the STRFs. These prior distributions are optimized with

reference to the data, and thus they are no longer priors in the

strict sense and instead become part of a hierarchical probabilistic

model. The authors show that, by learning hyperparameters that

control the smoothness and sparsity of the STRF in a linear model,

it is possible to improve the predicting power of a model that

considers only sparseness or smoothness of the estimates.

Finally, a promising future research direction is known in the

statistics literature as Bayesian LASSO [45]. This method is

potentially advantageous because it provides Bayesian error bars

for the estimates, and is based on integrating over the posterior
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distribution instead of maximizing it and has some advantages in

terms of how much sparsity can be enforced. This method has

been previously applied [45,46] to L1-linear regression problems

but this can be easily generalized for GLMs.

Extensions of the GLM
The same approach used by [8] to combine smoothness and

sparsity priors in a linear model can be applied to a GLM. Because

both smooth and sparse regularization frameworks have been

shown to improve the prediction power of unregularized models

[1,3,8], it is likely that combining features of both methods can

further improve the quality of the estimates. For instance, using a

prior that combines smoothness and sparsity would allow

recovering smooth STRFs, while suppressing the apparent

background estimation noise at high spectrotemporal frequencies.

It has been shown that the prediction performance of an LN

model can be increased by using a nonlinear transformation of the

stimulus (e.g., a transformation may capture nonlinearities at

earlier stages of processing) that precedes the linear filtering stage

[25,47,48]. [25] showed that a transformation of the sound

stimulus using a biologically inspired model of the first stages of

auditory processing [49] prior to STRF estimation with NRC led

to better predictions. This model incorporates the approximate

logarithmic spacing of filter center frequencies (log at high

frequencies and more linear at low frequencies) in the auditory

nerve and an adaptive gain control mechanism, which was

important for improving the predictive power of the model. In a

different approach, [47] used a learned nonlinear transform on the

stimulus that converts the initial numerical representation of a

stimulus value to a new representation that provides optimal input

to the subsequent model. The authors apply this technique to fit an

LN model to data from rodent barrel cortex, and showed that the

model predicts responses to novel data accurately. Both of these

two approaches can be easily applied when fitting a GLM to

auditory data.

Two applications of the GLM setting are fast optimal stimulus

decoding [50], and optimal stimulus design [51]. Stimulus

reconstruction methods provide an important tool for understand-

ing how sensory information is represented in neural activity. For

high-dimensional stimuli such as sound spectrograms, an encoding

model that suitably describes how stimuli are transformed into the

spike trains of a neuron constitutes a key component for

developing efficient decoding methods [52,53]. Adaptive experi-

mental designs, on the other hand, are particularly valuable in

domains where the data are expensive or limited. This is

particularly the case in STRF estimation, which requires the

exploration of high-dimensional stimulus spaces, and where the

inability to collect enough data has important consequences on the

estimates. The GLM method described here permits the

development of efficient algorithms for optimally adapting the

experimental design, allowing more efficient data collection [51].
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