Table 2.
Performance of SVM classifiers
Datatype_kernel | TP | FP | TN | FN | TPR | FPR | Accuracy |
---|---|---|---|---|---|---|---|
micro_linear | 42 | 17 | 53 | 4 | 0.91 | 0.24 | 0.82 |
micro_poly | 39 | 24 | 46 | 7 | 0.85 | 0.34 | 0.73 |
micro_RBF | 37 | 3 | 67 | 9 | 0.80 | 0.04 | 0.90 |
chip_binary_linear | 35 | 10 | 60 | 11 | 0.78 | 0.13 | 0.84 |
chip_binary_poly | 36 | 5 | 65 | 10 | 0.78 | 0.07 | 0.87 |
chip_binary_RBF | 39 | 8 | 62 | 7 | 0.85 | 0.11 | 0.87 |
chip_contin_linear | 38 | 7 | 63 | 8 | 0.83 | 0.10 | 0.87 |
chip_contin_poly | 36 | 8 | 62 | 10 | 0.78 | 0.11 | 0.84 |
chip_contin_RBF | 39 | 5 | 65 | 7 | 0.85 | 0.07 | 0.90 |
weight_binary_linear | 39 | 9 | 61 | 7 | 0.85 | 0.13 | 0.86 |
weight_binary_poly | 37 | 5 | 65 | 9 | 0.80 | 0.07 | 0.88 |
weight_binary_RBF | 40 | 4 | 66 | 6 | 0.87 | 0.06 | 0.91 |
weight_contin_linear | 41 | 9 | 61 | 5 | 0.89 | 0.13 | 0.88 |
weight_contin_poly | 37 | 8 | 62 | 9 | 0.80 | 0.11 | 0.85 |
weight_contin_RBF | 42 | 5 | 65 | 4 | 0.91 | 0.07 | 0.92 |
simple_binary_linear | 39 | 9 | 61 | 7 | 0.85 | 0.13 | 0.86 |
simple_binary_poly | 37 | 3 | 67 | 9 | 0.80 | 0.04 | 0.90 |
simple_binary_RBF | 42 | 3 | 67 | 4 | 0.91 | 0.04 | 0.94 |
simple_contin_linear | 41 | 9 | 61 | 5 | 0.89 | 0.13 | 0.88 |
simple_contin_poly | 43 | 17 | 53 | 3 | 0.93 | 0.24 | 0.83 |
simple_contin_RBF | 41 | 3 | 67 | 5 | 0.89 | 0.04 | 0.93 |
Comparison of performance of several kernel functions used for SVM learning applied on single and heterogeneous data types (mRNA expression and ChIP-seq). The best performer for each category is bold-highlighted. Kernel functions include: linear kernel, polynomial kernel (poly) and Gaussian radial basis kernel (RBF) (see methods). Datasets include: micro-mRNA expression microarrays; chip_binary-ChIP-seq data with pre-processing into binary feature values; chip_contin-ChIP-seq data with pre-processing into continuous feature values. Performance of two data integration strategies: "weight"- weighted kernel matrices; "simple"- one kernel matrix by concatenation of the two data types (see methods). As an example, "simple_binary_poly" means the approach of concatenating microarray and binary ChIP-seq data and training using an SVM with a polynomial kernel function.