Skip to main content
. 2010 Dec 31;11:612. doi: 10.1186/1471-2105-11-612

Table 1.

ROC scores of one transcriptomics and two proteomics datasets

Dataset SVM PITA TScan miRan PITAT TS_C mirT2 PicTa
Linsley All 0.81 0.76 0.75 0.55 0.60 0.61 0.63 0.58
ROC10*n 0.0129 0.0018 0.0173 0.0105 0.0035 0.0170 0.0196 0.0113
7m+C 0.73 0.61 0.69 0.43 0.57 0.59 0.67 0.57

Selback All 0.64 0.61 0.61 0.52 0.55 0.55 0.54 0.53
ROC10*n 0.0253 0.0042 0.0212 0.0079 0.0138 0.0213 0.0231 0.0210
7m+C 0.71 0.61 0.69 0.42 0.60 0.63 0.60 0.58

Baek All 0.56 0.56 0.56 0.51 0.52 0.53 0.52 0.52
ROC10*n 0.0193 0.0046 0.0157 0.0081 0.0148 0.0174 0.0086 0.0131
7m+C 0.59 0.60 0.62 0.44 0.56 0.61 0.54 0.54

Three benchmarks, All, ROC10*n, 7m+C (7mer+Conservation), were performed on one transcripomics (Linsley) and two proteomics (Baek and Selback) datasets. The ROC scores were calculated for eight algorithms, SVM, PITA, TScan (TargetScan), miRan (miRanda), PITAT (PITA Top), TS_C (TargetScan with conserved genes), mirT2 (mirTarget2) and PicTa (PicTar)