Table 1.
Dataset | SVM | PITA | TScan | miRan | PITAT | TS_C | mirT2 | PicTa | |
---|---|---|---|---|---|---|---|---|---|
Linsley | All | 0.81 | 0.76 | 0.75 | 0.55 | 0.60 | 0.61 | 0.63 | 0.58 |
ROC10*n | 0.0129 | 0.0018 | 0.0173 | 0.0105 | 0.0035 | 0.0170 | 0.0196 | 0.0113 | |
7m+C | 0.73 | 0.61 | 0.69 | 0.43 | 0.57 | 0.59 | 0.67 | 0.57 | |
Selback | All | 0.64 | 0.61 | 0.61 | 0.52 | 0.55 | 0.55 | 0.54 | 0.53 |
ROC10*n | 0.0253 | 0.0042 | 0.0212 | 0.0079 | 0.0138 | 0.0213 | 0.0231 | 0.0210 | |
7m+C | 0.71 | 0.61 | 0.69 | 0.42 | 0.60 | 0.63 | 0.60 | 0.58 | |
Baek | All | 0.56 | 0.56 | 0.56 | 0.51 | 0.52 | 0.53 | 0.52 | 0.52 |
ROC10*n | 0.0193 | 0.0046 | 0.0157 | 0.0081 | 0.0148 | 0.0174 | 0.0086 | 0.0131 | |
7m+C | 0.59 | 0.60 | 0.62 | 0.44 | 0.56 | 0.61 | 0.54 | 0.54 |
Three benchmarks, All, ROC10*n, 7m+C (7mer+Conservation), were performed on one transcripomics (Linsley) and two proteomics (Baek and Selback) datasets. The ROC scores were calculated for eight algorithms, SVM, PITA, TScan (TargetScan), miRan (miRanda), PITAT (PITA Top), TS_C (TargetScan with conserved genes), mirT2 (mirTarget2) and PicTa (PicTar)