
Application of Metamorphic Testing to Supervised Classifiers

Xiaoyuan Xie1, Joshua Ho2, Christian Murphy3, Gail Kaiser3, Baowen Xu4, and Tsong
Yueh Chen1
Xiaoyuan Xie: xxie@groupwise.swin.edu.au; Joshua Ho: joshua@it.usyd.edu.au; Christian Murphy:
cmurphy@cs.columbia.edu; Gail Kaiser: kaiser@cs.columbia.edu; Baowen Xu: bwxu@nju.edu.cn; Tsong Yueh Chen:
tychen@groupwise.swin.edu.au
1Centre for Software Analysis and Testing, Swinburne University of Technology, Hawthorn,
Victoria 3122 Australia
2School of Information Technologies, University of Sydney, Sydney, NSW 2006 Australia
3Department of Computer Science, Columbia University, New York NY 10027 USA
4Department of Computer Science and Technology, Nanjing University, Nanjing 210093 China

Abstract
Many applications in the field of scientific computing - such as computational biology,
computational linguistics, and others - depend on Machine Learning algorithms to provide
important core functionality to support solutions in the particular problem domains. However, it is
difficult to test such applications because often there is no “test oracle” to indicate what the correct
output should be for arbitrary input. To help address the quality of such software, in this paper we
present a technique for testing the implementations of supervised machine learning classification
algorithms on which such scientific computing software depends. Our technique is based on an
approach called “metamorphic testing”, which has been shown to be effective in such cases. More
importantly, we demonstrate that our technique not only serves the purpose of verification, but
also can be applied in validation. In addition to presenting our technique, we describe a case study
we performed on a real-world machine learning application framework, and discuss how
programmers implementing machine learning algorithms can avoid the common pitfalls
discovered in our study. We also discuss how our findings can be of use to other areas outside
scientific computing, as well.

1. Introduction
Many applications in the field of scientific computing - such as computational physics,
bioinformatics, etc. - depend on supervised Machine Learning (ML) algorithms to provide
important core functionality to support solutions in the particular problem domains. For
instance, [1] lists over fifty different real-world computational science applications, ranging
from facial recognition to computational biology, that use the Support Vector Machines [18]
classification algorithm alone. As these types of applications become more and more
prevalent in society [14], ensuring their quality becomes more and more crucial.

Quality assurance of such applications presents a challenge because conventional software
testing processes do not always apply: in particular, it is difficult to detect subtle errors,
faults, defects or anomalies in many applications in these domains because there is no
reliable “test oracle” to indicate what the correct output should be for arbitrary input. The
general class of software systems with no reliable test oracle available is sometimes known

Correspondence to: Christian Murphy, cmurphy@cs.columbia.edu.

NIH Public Access
Author Manuscript
Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

Published in final edited form as:
Proc Int Conf Qual Softw. 2010 January 15; 2009(2009): 135–144. doi:10.1109/QSIC.2009.26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as “non-testable programs” [19]; the fact that such programs exist is often referred to as “the
oracle problem”. Many of these applications fall into a category of software that Weyuker
describes as “Programs which were written in order to determine the answer in the first
place. There would be no need to write such programs, if the correct answer were known”
[19].

The majority of the research effort in the domain of machine learning focuses on building
more accurate models that can better achieve the goal of automated learning from the real
world. However, to date very little work has been done on assuring the correctness of the
software applications that perform machine learning. Formal proofs of an algorithm’s
optimal quality do not guarantee that an application implements or uses the algorithm
correctly, and thus software testing is necessary.

To help address the quality of scientific computing software, in this paper we present a
technique for testing implementations of the supervised machine learning algorithms on
which such software depends. Our technique is based on an approach called “metamorphic
testing” [3], which uses properties of functions such that it is possible to predict expected
changes to the output for particular changes to the input, based on so-called “metamorphic
relations” between sets of inputs and their corresponding outputs. Although the correct
output cannot be known in advance, if the change is not as expected, then either a defect in
the implementation must exist, or there is a violation between the algorithm and the user’s
expectation. In this way, we not only address the oracle problem so that it is possible to
verify the implementation of the machine learning program, but we can also validate
whether the chosen algorithm is an appropriate one to solve a given problem.

In our approach, we first enumerate the metamorphic relations based on the expected
behaviors of a given machine learning problem, and then utilize these relations to conduct
metamorphic testing on the applications of interest. Our approach can serve both the
purposes of verification and validation, of which details are presented in Section 3.

In addition to presenting our technique, we describe a case study we performed on the real-
world machine learning application framework Weka [20], which is used as the foundation
for such computational science tools as BioWeka [9] in bioinformatics. We also discuss how
our findings can be of use to other areas of computational science and engineering, such as
computational linguistics.

The rest of this paper is organized as follows: Section 2 describes the background of our
work, including an overview of machine learning and the particular algorithms we
investigated. Section 3 discusses our testing approach and provides a further explanation of
metamorphic testing. In Section 4, we present our findings in a case study of two machine
learning algorithms, and analyze and discuss the results in Section 5 and Section 6. Section 7
identifies related work, and Section 8 concludes.

2. Background
This section describes some of the basics of machine learning and the two algorithms we
investigated (k-Nearest Neighbors and Naïve Bayes Classifier) (we previously considered
Support Vector Machines in [15]), as well as the terminology used. Readers familiar with
machine learning may skip this section.

One complication in our work arose due to conflicting technical nomenclature: “testing”,
“regression”, “validation”, “model” and other relevant terms have very different meanings to
machine learning experts than they do to software engineers. Here we employ the terms

Xie et al. Page 2

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“testing”, “regression testing”, and “validation” as appropriate for a software engineering
audience, but we adopt the machine learning sense of “model”, as defined below.

2.1. Machine Learning Fundamentals
In general, input to a supervised machine learning application consists of a set of training
data that can be represented by two vectors of size k. One vector is for the k training
samples S = <s0, s1, …, sk-1> and the other is for the corresponding class labels C = <c0, c1,
…, ck-1>. Each sample s ∈ S is a vector of size m, which represents m features from which to
learn. Each label ci in C is an element of a finite set of class labels, that is, c ∈ L = <l0, l1,
…, ln-1>, where n is the number of possible class labels.

Supervised ML applications execute in two phases. The first phase (called the training
phase) analyzes the training data; the result of this analysis is a model that attempts to make
generalizations about how the attributes relate to the label. In the second phase (called the
testing phase), the model is applied to another, previously-unseen data set (the testing data)
where the labels are unknown. In a classification algorithm, the system attempts to predict
the label of each individual example. That is, the testing data input is an unlabeled test case
ts, and the aim is to predict its class label ct based on the data-label relationship learned from
the set of training samples S and the corresponding class labels C. The label ct must be an
element li ∈ L.

2.2. Algorithms Investigated
In this paper, we only focus on programs that perform supervised learning. Within the area
of supervised learning, we particularly focus on programs that perform classification, since
it is one of the central tasks in machine learning. The work presented here has focused on
the k-Nearest Neighbors classifier and the Naïve Bayes Classifier, which were chosen
because of their common use throughout the ML community. However, it should be noted
that the problem description and techniques described below are not specific to any
particular algorithm, and as shown in our previous work [4] [15], the results we obtain are
applicable to the general case.

In k-Nearest Neighbors (kNN), for a training sample set S, suppose each sample has m
attributes, <att0, att1, …, attm-1>, and there are n classes in S, <l0, l1, …, ln-1>. The value of
the test case ts is <a0, a1, …, am-1>. kNN computes the distance between each training
sample and the test case. Generally kNN uses the Euclidean Distance: for a sample si ∈ S,
the value of each attribute is <sa0, sa1, …, sam-1>, and the distance formula is as follows:

After sorting all the distances, kNN selects the k nearest ones and these samples are
considered the k nearest neighbors of the test case. Then kNN calculates the proportion of
each label in the k nearest neighbors, and the label with the highest proportion is predicted as
the label of the test case.

In the Naïve Bayes Classifier (NBC), for a training sample set S, suppose each sample has
m attributes, <att0, att1, …, attm-1>, and there are n classes in S, <l0, l1, …, ln-1>. The value
of the test case ts is <a0, a1, …, am-1>. The label of ts is called lts, and is to be predicted by
NBC.

Xie et al. Page 3

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



NBC computes the probability of lts belonging to lk, when each attribute value of ts is <a0,
a1, …, am>. In the Naïve Bayes method, we assume that attributes are conditionally
independent with one another given the class label, therefore we have the equation:

After computing the probability for each li ∈ {l0, l1, …, ln-1}, NBC chooses the label lk with
the highest probability, which is then predicted as the label of test case ts.

Generally NBC uses a normal distribution to compute P(aj ∣ lts = lk). Thus NBC trains the
training sample set to establish a distribution function for each attj ∈ {att0, att1, …, attm-1}
in each li ∈ {l0, l1, …, ln-1}, that is, for all samples with label li ∈ {l0, l1, …, ln-1}, it
calculates the mean value μ and mean square deviation σ of attj in all samples with li. It then
constructs the probability density function for a normal distribution with μ and σ.

For test case ts with m attribute values <a0, a1, …, am-1>, NBC computes the probability of
P(aj ∣ lts = lk) using a small interval δ to calculate the integral area. With the above formulae
NBC can then compute the probability of lts belonging to each li and choose the label with
the highest probability as the classification of ts.

3. Approach
Our approach is based on the concept of metamorphic testing [3], summarized below. To
facilitate that approach, we first identify the metamorphic relations that a supervised
classification algorithm is expected to exhibit between sets of inputs and sets of outputs. We
then utilize these relations to conduct our testing of the implementations of the algorithms
under investigation.

3.1. Metamorphic Testing
One popular technique for testing programs without a test oracle is to use a “pseudo-oracle”
[6], in which multiple implementations of an algorithm process the same input and the
results are compared; if the results are not the same, then one or both of the implementations
contains a defect. This is not always feasible, though, since multiple implementations may
not exist, or they may have been created by the same developers, or by groups of developers
who are prone to making the same types of mistakes [11].

However, even without multiple implementations, often these applications exhibit properties
such that if the input were modified in a certain way, it should be possible to predict the new
output, given the original output. This approach is what is known as metamorphic testing.
Metamorphic testing can be implemented very easily in practice. The first step is to identify
a set of properties (“metamorphic relations”, or MRs) that relate multiple pairs of inputs and
outputs of the target program. Then, pairs of source test cases and their corresponding
follow-up test cases are constructed based on these MRs. These test cases are then executed
using the target program, and outputs of the source and follow-up test cases are checked to
see whether they satisfy their corresponding MRs.

A simple example of a function to which metamorphic testing could be applied would be
one that calculates the standard deviation of a set of numbers. Certain transformations of the
set would be expected to produce the same result: for instance, permuting the order of the
elements should not affect the calculation; nor would multiplying each value by -1, since the
deviation from the mean would still be the same. Furthermore, there are other

Xie et al. Page 4

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



transformations that will alter the output, but in a predictable way: for instance, if each value
in the set were multipled by 2, then the standard deviation should be twice as much as that of
the original set, since the values on the number line are just “stretched out” and their
deviation from the mean becomes twice as great. Thus, given one set of numbers (the source
test cases), we can use these metamorphic relations to create three more sets of follow-up
test cases (one with the elements permuted, one with each multiplied by -1, and another with
each multiplied by 2); moreover, given the result of only the source test case, we can predict
the expected result of the others.

It is not hard to see that metamorphic testing is simple to implement, effective, easily
automatable, and independent of any particular programming language. Further, since the
most crucial step in metamorphic testing is the identification of the MRs, we can harness the
domain knowledge. This is a useful feature since in scientific computing the programmer
may, in fact, also be the domain expert and will know what properties of the program will be
used more heavily or are more critical. Perhaps more importantly, it is clear that
metamorphic testing can be very useful in the absence of a test oracle, i.e., when the correct
output cannot be known in advance: regardless of the input values, if the metamorphic
relations are violated, then there is likely a defect in the implementation.

3.2. Identifying Metamorphic Relations
Previous work [15] broadly classified six types of metamorphic relations (MRs) that apply
in general to many different types of machine learning applications, including both
supervised and unsupervised ML. Roughly speaking, these properties include: adding a
constant to numerical values; multiplying numerical values by a constant; permuting the
order of the input data; reversing the order of the input data; removing part of the data; and,
adding additional data.

In this work, however, our approach calls for focusing on the specific metamorphic relations
of the application under test; we would expect that we could then create more follow-up test
cases and conceivably reveal more defects than by using more general MRs. In particular,
we define the MRs that we anticipate classification algorithms to exhibit, and define them
more formally as follows.

MR-0: Consistence with affine transformation—The result should be the same if we
apply the same arbitrary affine transformation function, f(x) = kx + b, (k ≠ 0) to every value
x to any subset of features in the training data set S and the test case ts.

MR-1.1: Permutation of class labels—Assume that we have a class-label permutation
function Perm() to perform one-to-one mapping between a class label in the set of labels L
to another label in L. If the source case result is li, applying the permutation function to the
set of corresponding class labels C for the follow-up case, the result of the follow-up case
should be Perm(li).

MR-1.2: Permutation of the attribute—If we permute the m attributes of all the
samples and the test data, the result should not change.

MR-2.1: Addition of uninformative attributes—An uninformative attribute is one that
is equally associated with each class label. For the source input, suppose we get the result ct
= li for the test case ts. In the follow-up input, we add an uninformative attribute to S and
respectively a new attribute in st. The choice of the actual value to be added here is not
important as this attribute is equally associated with the class labels. The output of the
follow-up test case should still be li.

Xie et al. Page 5

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MR-2.2: Addition of informative attributes—For the source input, suppose we get the
result ct = li for the test case ts. In the follow-up input, we add an informative attribute to S
and ts such that this attribute is strongly associated with class li and equally associated with
all other classes. The output of the follow-up test case should still be li.

MR-3.1: Consistence with re-prediction—For the source input, suppose we get the
result ct = li for the test case ts. In the follow-up input, we can append ts and ct to the end of
S and C respectively. We call the new training dataset S’ and C’. We take S’, C’ and ts as the
input of the follow-up case, and the output should still be li.

MR-3.2: Additional training sample—For the source input, suppose we get the result ct
= li for the test case ts. In the follow-up input, we duplicate all samples in S and L which
have label li. The output of the follow-up test case should still be li.

MR-4.1: Addition of classes by duplicating samples—For the source input, suppose
we get the result ct = li for the test case ts. In the follow-up input, we duplicate all samples in
S and C that do not have label li and concatenate an arbitrary symbol “*” to the class labels
of the duplicated samples. That is, if the original training set S is associated with class labels
<A, B, C> and li is A, the set of classes in S in the follow-up input could be <A, B, C, B*,
C*>. The output of the follow-up test case should still be li. Another derivative of this
metamorphic relation is that duplicating all samples from any number of classes which do
not have label li will not change the result of the output of the follow-up test case.

MR-4.2: Addition of classes by re-labeling samples—For the source input, suppose
we get the result ct = li for the test case ts. In the follow-up input, we re-label some of the
samples in S and C which do not have label li and concatenate an arbitrary symbol “*” to
their class labels. That is, if the original training set S is associated with class labels <A, B,
B, B, C, C, C> and c0 is A, the set of classes in S in the follow-up input may become <A, B,
B, B*, C, C*, C*>. The output of the follow-up test case should still be li.

MR-5.1: Removal of classes—For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we remove one entire class of samples in S of which
the label is not li. That is, if the original training set S is associated with class labels <A, A,
B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A, A, B,
B>. The output of the follow-up test case should still be li.

MR-5.2: Removal of samples—For the source input, suppose we get the result ct = li for
the test case ts. In the follow-up input, we remove part of some of the samples in S and C of
which the label is not li. That is, if the original training set S is associated with class labels
<A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A,
A, B, C>. The output of the follow-up test case should still be li.

3.3. Analysis of Applying MT for Classifiers
Normally in the development of software, there are three parts: the problem to be solved, a
particular algorithm chosen to solve this problem, and an implementation of the chosen
algorithm.

Usually a problem has some expected behaviors. For example, in the classification problem,
one expected behavior is that the ordering of the training data set should not affect the
outcomes of a classifier.

Xie et al. Page 6

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In previous related studies on metamorphic testing, such as [3] and [5], the scope and the
expected behaviors of the problem were always well-defined. Hence the algorithm chosen or
designed to solve the problem always fulfilled all the expected behaviors of the problem.
Therefore, MRs derived from such expected behaviors of the problem can be considered the
necessary properties of the algorithm, which can be used for the purpose of verifying the
correctness of the implementation of the algorithm.

However, in machine learning, the situation is much more complicated. Generally speaking,
a problem that involves machine learning is less well defined and may even have varying
scope of definition from person to person. Usually there exist various algorithms for dealing
with a given machine learning problem. Since these algorithms are developed according to
different intuitions, a particular expected behavior of the machine learning problem may not
be satisfied by all of the algorithms. Consequently, even though we can still derive MRs
from the expected behaviors of a machine learning problem in general, they may not be
necessary properties of the chosen machine learning algorithm.

Therefore engineers actually face two tasks when they try to test the machine learning
programs: validation and verification. Validation considers whether the chosen algorithm is
appropriate for solving the problem, that is, whether the algorithm will satisfy all the
expected behaviors. Verification, on the other hand, considers whether the implementation
of the chosen algorithm is correct. Both of them are equally important.

To the best of our knowledge, current software testing methods have never taken validation
into consideration; that is, testing methods only address the purpose of verification, and are
therefore not obliged to serve the purpose of validation. Fortunately our technique serves for
both validation and verification.

In our technique, we derive a series of MRs based on the generally expected behaviors of the
machine learning problem. Before we use these MRs to drive metamorphic testing of the
applications we are investigating, we carry out a quick inspection and filtering process. If an
MR can be easily demonstrated as not being a necessary property of the chosen algorithm, it
is apparent that this algorithm will not fulfil all of our expected behaviors. In this situation,
we exclude this MR in further metamorphic testing. Otherwise, when the MRs are deemed
to be necessary properties of the algorithm, we use them to conduct metamorphic testing of
the implementation. If we cannot find any violation, we have no further information to draw
any conclusion; we cannot say that the implementation is defect-free, of course, but neither
have we discovered any defects. However, if violations occur, we then need to determine
whether the violations are due to defects in the implementation, or they just follow from the
fact that the violation-revealing MR is not actually a necessary property of the algorithm.
Hence we conduct both validation (is the algorithm appropriate for the problem?) and
verification (is the implementation of the algorithm correct?) in our method.

4. Experimental Study
To demonstrate the effectiveness of metamorphic testing in verifying and validating
machine learning applications, we applied the approach to the k-Nearest Neighbors (kNN)
classifier and Naïve Bayes Classifier (NBC) implementations in Weka 3.5.7 [20]. Weka is a
popular open-source machine learning package that implements many common algorithms
for data preprocessing, classification, clustering, association rule mining, feature selection
and visualization. Due to its large range of functionality, it is typically used as a
“workbench” for applying various machine learning algorithms. Furthermore, Weka is
widely used as the back-end machine learning engine for various applications in
computational science, such as BioWeka [9] for machine learning tasks in bioinformatics.

Xie et al. Page 7

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.1. Experimental Setup
The data model in our experiments is as follows. In one source suite, there are k inputs. Each
input_i consists of two parts: tr_i and t_i, in which tr_i represents the training sample set,
and t_i represents the test case. In each training sample set tr_i and test case t_i, there are
four attributes: <A0, A1, A2, A3>, and a label L. In our experiments, there are three labels in
all, that is, <L0, L1, L2>. The value for each attribute is within [1,20]. We generate the tr_i
and t_i values randomly, both in the value of the attribute and the label. Additionally, the
number of samples in tr_i is also randomly generated with a maximum of n.

This randomly generated data model does not encapsulate any domain knowledge, that is,
we do not use any meaningful, existing training data for testing: even though those data sets
are more predictable, they may not be sensitive to detecting faults. Random data may, in
fact, be more useful at revealing defects [8].

For the source suite of k inputs, we perform a transformation according to the MRs and get k
follow-up inputs for each MR-j. From running the k follow-up inputs and comparing the
results between the source and the follow-up cases for the each MR-j, we try to detect faults
in Weka or find a violation between the classifier under test and the anticipated behaviors of
the classifier.

For each MR-j, we conducted several batches of experiments, and in each batch of
experiments we changed the value of k (size of source suite) and n (max number of training
samples). Intuitively the more inputs we tried (the higher is k), the more likely we are to find
violations. Also, we would expect that with fewer samples in the training data set (the less is
n), the less predictable the data are, thus the more likely we are to find faults. In our
experiments, k ranges from 20 to 300 and n ranges from 20 to 50.

4.2. Results
In our experimental study, the original MRs were derived from the commonly expected
behaviors of a machine learning classifier, which are described above in Section 3.2. In the
first inspection and filtering process, we did not identify any MR that is clearly not a
necessary property of the algorithms under investigation, kNN and NBC. Thus we used all
the MRs in metamorphic testing of the implementations of the two algorithms.

The experimental results reveal violations in some MRs for both kNN and NBC. With the
information we acquired from these violations, we conducted a much deeper inspection of
the two algorithms, and found that only some, but not all, of the MRs were actually
necessary properties of the corresponding algorithm. Table 1 summarizes the results of
testing kNN and NBC with all these MRs. In the table, NP indicates whether the given MR
is a necessary property of the corresponding algorithm, and VP indicates the percentage of
violations in our experiments (that is, the number of test cases in which a violation of the
property was revealed).

Violations in those MRs that are necessary properties imply defects in the implementation of
the related algorithm, which serves the purpose of verification. On the other hand, violations
in MRs that are not necessary properties do not reveal defects in the implementation, but
rather provide us information to support validation, which could not be demonstrated in the
first quick inspection process.

Due to space limitations, we do not formally prove these necessary properties in Table 1 for
the k-Nearest Neighbors and Naïve Bayes Classifiers. Rather, we demonstrate here that the
rest of the MRs are not necessary properties of the corresponding algorithms of interest, and
how they serve the purpose of validation.

Xie et al. Page 8

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For kNN, five of the metamorphic relations (MR-1.1, MR-2.2, MR4.1, MR5.1 and MR-5.2)
are not necessary properties but can instead be used for validation purposes. MR-1.1
(Permutation of class labels) may not hold because of tiebreaking between two labels for
prediction that are equally likely: permuting their order may change which one is chosen by
the tiebreaker, and hence affect the output.

Another one is MR-4.1 (Addition of classes by duplicating samples). Suppose the label of
test case is li. MR-4.1 duplicates all the samples without label li. Thus the number of
samples without li in the k nearest neighbors will increase or remain the same. Therefore the
number and the proportion of samples with li in the k nearest neighbors will decrease or
remain the same. Therefore the follow-up prediction may be different to the source
prediction.

Additionally, MR-5.1 (Removal of classes) is also not a necessary property. Suppose the
predicted label of the test case is li. MR-5.1 removes a whole class of samples without label
li. Consequently this will remove the same samples in the set of k nearest neighbors, and
thus some other samples will be included in the set of k nearest neighbors. These samples
may have any labels except the removed one, and so the likelihood of any label (except the
removed one) may increase. Therefore there are two situations: (1) If in the k nearest
neighbors of the source case, the proportion of li is not only the highest, but also higher than
50%, then in the follow-up prediction, no matter how the k nearest neighbors change, the
prediction will remain the same, because no matter which labels increase, the proportion of
li will still be higher than 50% as well. Thus the prediction remains li. Now consider
situation (2), in which in the k nearest neighbors of the source case, the proportion of li is the
highest but lower or equal to 50%. Since the number of each survived label may increase,
and the original proportion of li is lower or equal to 50%, it is possible that the proportion of
some other label increases and becomes higher than li: thus, the prediction changes.

Similar logic can be used to show that MR-2.2 (Addition of informative attributes) and
MR-5.2 (Removal of samples) also may not hold if the predicted label has a likelihood of
less than 50%.

For the Naïve Bayes Classifier, three of the metamorphic relations are not considered
necessary properties, which can be used for validation: MR-3.1 (Consistence with re-
prediction), MR-4.2 (Addition of classes by re-labeling samples), and MR-5.2 (Removal of
samples). The first of the three could not be proven as a necessary property, and thus is
considered not necessary; the other two introduce noise to the data set, which could affect
the result.

5. Findings and Analysis
Our investigation into the kNN and Naïve Bayes implementations in Weka demonstrated
violations in some MRs that are not necessary properties of kNN or NBC, which serves the
purpose of validation. Additionally we also found violations in some MRs that are necessary
properties of NBC, thus revealing defects in the implementation.

5.1. k-Nearest Neighbors
In our experiments, none of the MRs that are necessary properties of kNN were violated,
which indicates that no defect in the implementation of kNN in Weka has been found by our
testing.

On the other hand, we did uncover violations in some of the MRs that are not necessary
properties and can be used for validation. Although these are not necessarily indicative of

Xie et al. Page 9

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



defects per se, they do demonstrate a deviation from what would normally be considered the
expected behavior, and indicate that the algorithm may not be appropriate for a given ML
problem.

1. Calculating distribution—In the Weka implementation of kNN, a vector
distance[numOfSamples] is used to record the distance between each sample from the
training data and the test case to be classified. After determining the values in distance[],
Weka sorts it in ascending order, to find the nearest k samples from the training data, and
then puts their corresponding labels into another vector k-Neighbor[k].

Weka traverses k-Neighbor[], computes the proportion of each label in it and records the
proportions into a vector distribution[numOfClasses] as follows: For each i, distribution[i] is
initialized as 1/numberOfSamples. It then traverses the array k-Neighbor[], and for each
label in k-Neighbor[], it adds the weight of its distribution value (in our experiments, the
weight is 1), that is, for each j, distribution[k-Neighbor[j].label] + 1. Finally, Weka
normalizes the whole distribution[] array.

Figure 1 shows two data sets, with the training data on the left, and the test case to be
classified on the right. For the test case to be classified, the (unsorted) values in the array
distance[] are {11.40, 7.35, 12.77, 10.63, 13, 4.24}, and the values in k-Neighbor are {1, 2,
0}, assuming k = 3. The array distribution[] is initialized as {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}.
After traversing the array k-Neighbor[], we get distribution[] = {1+1/6, 1+1/6, 1+1/6, 1/6,
1/6, 1/6} = {1.167, 1.167, 1.167, 0.167, 0.167, 0.167}. After the normalization,
distribution[] = {0.292, 0.292, 0.292, 0.042, 0.042, 0.042}.

The issue here, as revealed by MR-5.1 (Removal of classes), is that labels that were non-
existent in the training data samples have non-zero probability of being chosen in the array
distribution[]. Ordinarily one might expect that if a label did not occur in the training data,
there would be no reason to classify a test case with that label. However, by initializing the
distribution[] array so that all labels are equally likely, even non-existent ones become
possible. Although this is not necessarily an incorrect implementation, it does deviate from
what one would normally expect.

2. Choosing labels with equal likelihood—Another issue comes about regarding how
the label is chosen when there are multiple classifications with the same probability. Our
testing indicated that in some cases, this method may lead to the violation in some MR
transformations, e.g. MR-1.1 (Permutation of class labels).

Consider the example in Figure 1 above. To perform the classification, Weka chooses the
first highest value in distribution[], and assigns its label to the test case. For the above
example, l0, l1, and l2 all have the same highest proportion in distribution[], so based on the
order of the labels, the final prediction is l0, since it is first.

However, if the labels are permuted (as in MR-1.1, for instance), then one of the other labels
with equal probability might be chosen if it happens to be first. This is not a defect per se
(after all, if there are three equally-likely classifications and the function needs to return only
one, it must choose somehow) but rather it represents a deviation from expected behavior
(that is, the order of the data set shall not affect the computed outputs), one that could have
an effect on an application using this functionality.

3. Choosing labels with the highest proportion—This operation seems very
reasonable for a classifier, however it does lead to an unexpected result after some
metamorphic transformation. The first situation is that the selected label only has the highest

Xie et al. Page 10

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proportion in the k nearest neighbors, rather than the proportion higher than 50%. In this
case, a violation may be found in some MRs, particularly MR-2.2 (Addition of informative
attributes), MR-5.1 (Removal of classes) and MR-5.2 (Removal of samples). The reason is
that even though these transformations do not actually decrease the proportion of the
selected label, they may increase the proportion of other labels. If the proportion of the
selected label is less than 50%, proportions of other labels may increase until becoming the
new highest proportion.

However, as for metamorphic relations like MR-4.1 (Addition of classes by duplicating
samples), even if the highest proportion is higher than 50%, the transformation may also
lead to an unexpected result. In this situation, the proportion of the selected label may
decrease while others may increase, which could result in a new highest proportion in the k
nearest neighbors.

5.2. Naïve Bayes
Our investigation into the Naïve Bayes algorithm revealed a number of violations in MRs
that are its necessary properties, which indicate defects in the implementation.

1. Loss of precision—Precision can be lost due to the treatment of continuous values. In
a pure mathematical model, a normal distribution is used for continuous values. However, it
is impossible to realize true continuity in a digital computer. To implement the integral
function, for instance, it is necessary to define a small interval δ to calculate the area. In
Weka, a variable called precision is used as the interval. The precision for attj is defined as
the average interval of all the values. For example, suppose there are 5 samples in the
training sample set, and the values of attj in the five samples are 2, 7, 7, 5, and 10
respectively. After sorting the values we have {2, 5, 7, 7, 10}. Thus precision = [(5-2) +
(7-5) + (10-7)] / (1 + 1 + 1) = 2.67.

However, Weka rounds all the values x in both the training samples and test case with
precision pr by using round(x / pr) * pr. These rounded values are used for the computation
of the mean value μ, mean square deviation σ, and the probability P(lts = lk ∣ a0a1…am-1).
This manipulation means that Weka treats all the values within ((2k-1)* pr/2, (2k+1)* pr/2]
as k*pr, in which k is any integer.

This may lead to a loss of precision and our tests resulted in the violation of some MR
transformations, particularly MR-0 (Consistence with affine transformation) and 5.1
(Removal of classes). Since both of these are necessary properties, they demonstrate defects
in the implementation.

There are also related problems of calculating integrals in Weka. A particular calculation
determines the integral of a certain function from negative infinity to t = x - μ / σ. When t >
0, a replacement is made so that the calculation becomes 1 minus the integral from t to
positive infinity. However, this may raise an issue because in Weka, all these values are of
the Java datatype “double”, which only has a maximum of 16 bits for the decimal fraction. It
is very common that the value of the integral is very small, thus after the subtraction by 1.0,
there may be a loss of precision. For example, if the integral I is evaluated to
0.0000000000000001, then 1.0 - I =0.9999999999999999. Since there are 16 bits of the
number 9, in Java the double value is treated as 1.0. This also contributed to the violation of
MR-0 (Consistence with affine transformation).

2. Calculating proportions of each label—In NBC, to compute the value of P(lts = lk ∣
a0a1…am-1), we need to calculate P(lk). Generally when the samples are equally weighted,
P(lk) = {number of samples with lk} / {number of all the samples}. However, Weka uses

Xie et al. Page 11

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Laplace Accuracy by default, that is, P(lk) = {number of samples with lk + 1} / {number of
all the samples + number of classes}.

For example, consider a training sample with six classes and eight labels as follows: { l0, l0,
l1, l1, l1, l2, l3, l3 }. In the general way of calculating the probability, the proportion of each
label is {2/8, 3/8, 1/8, 2/8, 0/8, 0/8} = {0.25, 0.375, 0.125, 0.25, 0, 0}. However in Weka,
using Laplace Accuracy, the proportion of each label is {(2+1)/(8+6), (3+1)/(8+6), (1+1)/
(8+6), (2+1)/(8+6), (0+1)/(8+6), (0+1)/(8+6)} = {0.214, 0.286, 0.143, 0.214, 0.071, 0.071}.
This difference caused a violation of MR-2.1 (Addition of uninformative attributes), which
was also considered a necessary property.

3. Choosing labels—Last, there are problems in the principle of “choosing the first label
with the highest possibility”, as seen above for kNN. Usually the probabilities are different
among different labels. However in Weka, since the non-existent labels in the training set
have non-zero probability, those non-existent labels may conceivably share the same highest
probability. This caused a violation of MR-1.1 (Permutation of class labels), which was
considered a necessary property.

On the other hand, our experiments also found violations in MRs that are not necessary
properties, which demonstrate a deviation from what would normally be considered the
expected behavior of a classifier. Investigation into these violations reveals that after these
metamorphic transformations, e.g. MR-3.1 (Consistence with re-prediction) and MR-5.2
(Removal of samples), we may accidentally remove noise from or bring noise into the
original training data, which could lead to an unexpected result.

6. Discussion
6.1. Addressing Violations in MRs

Our testing discovered the violation of four MRs for kNN; however, none of these were its
necessary properties and are mostly related to the fact that the algorithm must return one
result when there is more than one “correct” answer. However, in NBC, we uncovered
violations in some MRs that are its necessary properties, which indicate defects; the lessons
learned here serve as a warning to others who are developing similar applications.

To address the issues in NBC related to the precision of floating point numbers, we suggest
using the BigDecimal class in Java rather than the “double” datatype. A BigDecimal
represents immutable arbitrary precision decimal numbers, and consists of an arbitrary
precision integer unscaled value and a 32-bit integer scale. If zero or positive, the scale is the
number of digits to the right of the decimal point. If negative, the unscaled value of the
number is multiplied by ten to the power of the negation of the scale. The value of the
number represented by the BigDecimal is therefore (un-scaledValue * 10-scale). Thus, it can
help to avoid the loss of precision when calcuating “1.0 - x”.

The use of Laplace Accuracy also led to some of the violations in the NBC implementation.
Laplace Accuracy is used for the nominal attributes in the training data set, but Weka also
treats the label as a normal attribute, because it is nominal. However, the label should be
treated differently: as noted, the side effect of using Laplace Accuracy is that the labels that
never appear in the training set also have some probability of being selected as the
classification; thus, they may interfere with the prediction, especially when the size of the
training sample set is quite small. In some cases the predicted results are the non-existent
labels. We suggest that the use of Laplace Accuracy should be set as an option, and the label
should be treated as a special-case nominal attribute, with the use of Laplace Accuracy
disabled.

Xie et al. Page 12

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6.2. More General Application
Our technique has been shown to be effective for these two particular algorithms, but the
MRs listed above hold for all classification algorithms, and [15] shows that other types of
machine learning (ranking, unsupervised learning, etc.) exhibit the same behaviors
classification algorithms do; thus, the approach is feasible for other areas of ML beyond just
kNN and NBC.

More importantly, the approach can be used to validate any application that relies on
machine learning techniques. For instance, computational biology tools such as Medusa [13]
use classification algorithms, and some entire scientific computing fields (such as
computational linguistics [12]) rely on machine learning; if the underlying ML algorithms
are not correctly implemented, or do not behave as the user expects, then the overall
application likewise will not perform as anticipated. As long as the user of the software
knows the expected metamorphic relations, then the approach is simple and powerful to
validate the implementation.

Last, the approach can also be used outside the field of machine learning as well.
Applications that fall into the category of “non-testable programs” can be tested using the
technique as long as they exhibit metamorphic properties. For instance, discrete event
simulation systems can be tested using properties like “if all timings are doubled, overall
resource usage should stay the same” since everything just takes twice as long. Similar
properties can be used in optimization problems, too. Thus, the approach extends beyond
scientific computing and machine learning into other domains.

7. Related Work
Although there has been much work that applies machine learning techniques to software
engineering in general and software testing in particular (e.g., [2]), we are not currently
aware of any other work in the reverse sense: applying software testing and validation
techniques to machine learning applications. ML frameworks such as Orange [7] provide
testing functionality but it is focused on comparing the quality of the results, and not
evaluating the “correctness” of the implementations. Repositories of “reusable” data sets
have been collected (e.g., [17]) for the purpose of comparing result quality, i.e., how
accurately the algorithms predict, but not for the software engineering sense of testing (to
reveal defects).

Applying metamorphic testing to situations in which there is no test oracle was first
suggested in [3] and is further discussed in [5]. Metamorphic testing has previously been
shown to be effective in testing different types of machine learning applications [16], and
has recently been applied to testing specific scientific computation applications, such as in
bioinformatics [4]. The work we present here seeks to extend the previous techniques to
scientific computation domains that rely on machine learning, and into the realm of software
validation.

8. Conclusion
As noted in [10], “scientists want to do science” and do not want to spend time addressing
the challenges of software development. Thus, it falls upon those of us in the software
engineering community to develop simple yet powerful methods to perform testing and
validation. Our contribution is a set of metamorphic relations for classification algorithms,
as well as a technique that uses these relations to enable scientists to easily test and validate
the machine learning components of their software; this technique is also applicable to

Xie et al. Page 13

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



problem-specific domains as well. We hope that our work helps to increase the quality of the
software being developed in the fields of computational science and engineering.

Acknowledgments
This project is partially supported by an Australian Research Council Discovery Grant (ARC DP0771733), as well
as the National Science Foundation for Distinguished Young Scholars of China under Grant 60425206 and the
National Natural Science Foundation of China under Grants 90818027 and 60633010. Ho is supported by an
Australian Postgraduate Award and a NICTA Research Project Award. Murphy and Kaiser are members of the
Programming Systems Lab, funded in part by NSF CNS-0717544, CNS-0627473 and CNS-0426623, and NIH 1
U54 CA121852-01A1.

References
1. SVM application list. http://www.clopinet.com/isabelle/Projects/SVM/applist.html
2. Briand L. Novel applications of machine learning in software testing. Proc of the Eighth

International Conference on Quality Software 2008:3–10.
3. Chen, TY.; Cheung, SC.; Yiu, S. Technical Report HKUST-CS98-01. Dept of Computer Science,

Hong Kong Univ of Science and Technology; 1998. Metamorphic testing: a new approach for
generating next test cases.

4. Chen TY, Ho JWK, Liu H, Xie X. An innovative approach for testing bioinformatics programs
using metamorphic testing. BMC Bioinformatics 2009;10:24. [PubMed: 19152705]

5. Chen TY, Tse TH, Zhou ZQ. Fault-based testing without the need of oracles. Information and
Software Technology 2002;44(15):923–931.

6. Davis MD, Weyuker EJ. Pseudo-oracles for non-testable programs. Proc of the ACM ’81
Conference 1981:254–257.

7. Demsar, J.; Zupan, B.; Leban, G. Faculty of Computer and Information Science, University of
Ljubljana; Orange: From experimental machine learning to interactive data mining.
www.ailab.si/orange

8. Duran J, Ntafos S. An evaluation of random testing. IEEE Transactions on Software Engineering
1984;10:438–444.

9. Gewehr JE, Szugat M, Zimmer R. BioWeka - extending the Weka framework for bioinformatics.
Bioinformatics 2007;23(5):651–653. [PubMed: 17237069]

10. Kelly D, Sanders R. Assessing the quality of scientific software. Proc of the First International
Workshop on Software Engineering for Computational Science and Engineering. 2008

11. Knight J, Leveson N. An experimental evaluation of the assumption of independence in multi-
version programming. IEEE Transactions on Software Engineering 1986;12(1):96–109.

12. Manning, CD.; Sch¨utze, H. Foundations of Statistical Natural Language Processing. The MIT
Press; 1999.

13. Middendorf M, Kundaje A, Shah M, Freund Y, Wiggins CH, Leslie C. Motif discovery through
predictive modeling of gene regulation. Research in Computational Molecular Biology 2005:538–
552.

14. Mitchell, T. Machine Learning: An Artificial Intelligence Approach. Vol. III. Morgan Kaufmann;
1983.

15. Murphy C, Kaiser G, Hu L, Wu L. Properties of machine learning applications for use in
metamorphic testing. Proc of the 20th international conference on software engineering and
knowledge engineering (SEKE) 2008:867–872.

16. Murphy C, Shen K, Kaiser G. Automatic system testing of programs without test oracles. Proc of
the 2009 ACM International Symposium on Software Testing and Analysis (ISSTA). 2009

17. Newman, DJ.; Hettich, S.; Blake, CL.; Merz, CJ. UCI repository of machine learning databases.
University of California, Dept of Information and Computer Science; 1998.

18. Vapnik, VN. The Nature of Statistical Learning Theory. Springer; 1995.
19. Weyuker EJ. On testing non-testable programs. Computer Journal November;1982 25(4):465–470.

Xie et al. Page 14

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.clopinet.com/isabelle/Projects/SVM/applist.html


20. Witten, IH.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques. 2. Morgan
Kaufmann; 2005.

Xie et al. Page 15

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Sample data sets

Xie et al. Page 16

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xie et al. Page 17

Table 1

Result of testing kNN and NBC

MR kNN NBC

NP VP NP VP

0 Y 0 Y 7.4%

1.1 15.9% Y 0.3%

1.2 Y 0 Y 0

2.1 Y 0 Y 0.6%

2.2 4.1% Y 0

3.1 Y 0 0

3.2 Y 0 Y 0

4.1 25.3% Y 0

4.2 Y 0 3.9%

5.1 5.9% Y 5.6%

5.2 2.8% 2.8%

Proc Int Conf Qual Softw. Author manuscript; available in PMC 2011 January 12.


