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Eight rifampin-resistant streptococci of the mitis group were identified at the species level by using a
concatenated 16S rRNA gene-sodA-rpoB-hlpA sequence. Characterization of their rpoB alleles showed single
amino acid changes involved in rifampin resistance. Comparison of RpoB sequences from pneumococcal
recombinant isolates, viridans isolates, and type strains revealed a species-specific amino acid signature, which
allowed it to be ascertained that recombinant RpoBs were originated in genetic interchanges with Streptococcus

mitis and Streptococcus oralis.

Viridans streptococci (VS) form part of the microbiota of the
oropharynx and the gastrointestinal and female genital tracts (13,
37). However, they cause endocarditis in native valves and pneu-
monia in neutropenic cancer patients (7, 8, 43). By their 16S
rRNA gene sequences, VS can be classified into five groups:
mutans, salivarius, anginosus, sanguinis, and mitis (18). Species of
the mitis group (SMG) include Streptococcus mitis, Streptococcus
sanguinis, Streptococcus parasanguinis, Streptococcus gordonii,
Streptococcus oralis, Streptococcus cristatus, Streptococcus infantis,
Streptococcus peroris, Streptococcus pneumoniae, and Streptococ-
cus pseudopneumoniae. Clinical features, together with their op-
tochin susceptibility and bile solubility, distinguish S. pneumoniae
bacteria from other SMG (27, 30, 39), although optochin-suscep-
tible VS have been found (6, 32).

SMG isolated from blood cultures of cancer patients are
commonly resistant to antibiotics (2, 16, 21, 22, 25, 42) and
constitute a reservoir of resistance by acting as donors in the
horizontal transfer of DNA to pneumococci, as observed for
penicillin and fluoroquinolones (5, 17, 35, 38, 40). Rifampin is
used in the treatment of tuberculosis and in meningitis caused
by multiresistant pneumococcal strains, combined with either
B-lactams or vancomycin (9, 31, 36). Rifampin binds to the
DNA-dependent RNA polymerase (RpoB), inhibiting its func-
tion (10), which is essential for bacterial growth (15, 26). Re-
sistance changes have been identified in four conserved regions
(N, L, II, and III) of RpoB in several bacteria (3, 4, 14, 24, 34).
This resistance in S. pneumoniae is due to spontaneous muta-
tions, and it has been suggested to also be acquired by recom-
bination with SMG (19). In this study, we have characterized
rifampin-resistant SMG isolates, complementing the unique
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study of S. mitis (1), to ascertain the origin of the recombinant
rpoB genes found in S. pneumoniae isolates.

Identification of viridans streptococci isolates to the species
level. Among 1,272 VS isolates collected from adult patients at
Hospital de Bellvitge (Barcelona) during 10 years (1998 to
2007), 10 (0.79%) were rifampin resistant as determined by
broth microdilution and agar dilution assays (11, 12). Eight of
them with high resistance levels (MIC = 32 pg/ml) were avail-
able for this study (Table 1). Although one VS isolate per
patient was recovered, isolate 113 collected from patient 3 also
yielded a rifampin-resistant S. anginosus isolate (113A) that
was used for sequence comparisons. The global incidence of
rifampin resistance observed in this study was similar to that
found in Spain for S. pneumoniae (0.70%) (19), although a
higher rate (3%) has been found in SMG isolated from hema-
tologic cancer patients (1).

The 8 VS isolates were identified by phenotypic (39) and
molecular methods. We used concatenated 16S rRNA gene-
sodA-rpoB-hlpA sequences made with partial 16S rRNA genes,
rpoB, and sodA (1,198, 344, and 324 bp, respectively) and the
full-length hlpA (276 bp). To amplify the 16S rRNA genes and
hipA, we used the following primers: 16SDNAF1 (5'-GAGTT
GCGAACGGGTGAGT-3"), 16SDNARI1 (5'-AGCGATTCC
GACTTCAT-3"), huATG (5'-ATGGCAAACAAACAAGAT
T-3"), and huTAA (5'-TTATTTAACAGCGTCTTTAAGAG
C-3"). The partial sodA and rpoB genes were amplified and
sequenced as described previously (28, 19). These genes were
selected for their polymorphism among streptococci and be-
cause they have been used as part of the ddl-gdh-rpoB-sodA
sequence to differentiate SMG isolates (29). We assumed that
hlpA (encoding the histonelike DNA binding protein HU)
would improve our concatenated sequence discrimination ca-
pacity since HU, as an architectural cofactor, may require
different DNA binding geometries (41) and, probably, se-
quence specificity. Clustering (bootstrap values, =92%) of the
2,142-bp 16S rRNA gene-sodA-rpoB-hipA sequences of the
eight isolates and type strains in a phylogenetic tree allowed
species identification (Fig. 1 and Table 1). Accession numbers
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TABLE 1. Summary of isolation data, resistance characteristics, and identification of isolates used in this study

s . Phenotypic Molecular

Isolate Origin Resistance pattern® characteri};gtion characterization®

60 DB PEN, ERY, RIF S. sanguinis S. parasanguinis (98.6)

79 AF ERY, CLI, SXT, RIF S. sanguinis S. oralis (97.6)

113 WS PEN, RIF S. oralis S. oralis (98.1)

395 AF RIF S. sanguinis S. gordonii (98.9)

745 AF ERY, CLI, TET, SXT, RIF S. sanguinis S. oralis (98.4)

779 BL RIF S. mitis S. mitis (98.7)

889 B PEN, SXT, RIF S. parasanguinis S. parasanguinis (97.4)

971 E ERY, TET, RIF S. sanguinis S. parasanguinis (95)

“ DB, duodenal biopsy specimen; AF, ascitic fluid; WS, wound swab; BL, bronchoalveolar lavage fluid; B, blood; E, eye.
® PEN, intermediate or highly resistant to penicillin (MIC = 0.25 pg/ml); TET, resistant to tetracycline (MIC = 8 pg/ml); ERY, resistant to erythromycin (MIC =
1 pg/ml); CLI, resistant to clindamycin (MIC = 1 ug/ml); SXT, resistant to trimethoprim-sulfamethoxazole (MICs = 4 and 76 ng/ml); RIF, resistant to rifampin

(MIC = 4 pg/ml).

¢ The species identification was based on clustering with type strains in a phylogenetic tree obtained with concatenated partial sequences of 16S rRNA genes, sodA,
rpoB, and hipA. Numbers in parentheses indicate the percentage of identity with the corresponding type strain.

of the sequences used for comparisons can be found in Table
S1 in the supplemental material. Among the six clusters ob-
served (plus the out-group), all except S. pneumoniael/S. pseu-
dopneumoniae and S. sanguinis/S. gordonii formed species-spe-
cific groups.

The within-group sequence diversity (mean * standard de-

0.005

viation) for S. pneumoniae/S. pseudopneumoniae (0.4% =
0.1%), S. mitis (1.2% * 0.3%), and S. oralis (2.0% * 0.5%)
clusters reflected low sequence diversity. Our S. pneumoniaelS.
pseudopneumoniae value was nearly half of that obtained using
the ddl-gdh-rpoB-sodA concatenates (29), and for S. mitis, it
was 4- to 5-fold lower than the value obtained by multilocus
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FIG. 1. Phylogenetic tree of concatenated sequences of 16S rRNA genes, sodA, rpoB, and hipA. Analysis was conducted with the MEGA
program (version 4.0.2), using the Neighbor Joining algorithm. Bootstrap confidence intervals exceeding 90% are shown in italics. The scale bar
calculated by the MEGA program indicates the genetic divergence. Eight S. pyogenes strains were used as the out-group. Shadowed in gray are
clusters that identified S. pneumoniae (Spn) plus S. pseudopneumoniae (Sps), S. mitis (Smi), S. oralis (Sor), S. parasanguinis (Spa), S. sanguinis (Ssa)
and S. gordonii (Sgo), S. anginosus (San), and S. pyogenes (Spy) strains. SMG isolates characterized in this work appear in boldface and followed
by an asterisk. The arrow indicates the node that separates S. pneumoniae plus S. pseudopneumoniae from the rest of the clusters.
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FIG. 2. Amino acid sequence variations in RpoB (V475 to A702) of rifampin-resistant recombinant isolates of S. pneumoniae (Spn-M) and
SMG rifampin-resistant isolates characterized in this work (boldface and marked with an asterisk). RpoB is represented as a bar with clusters N,
I, I, and III as black boxes and zigzagged areas showing sequenced areas. The amino acids present at each polymorphic site are shown in full for
S. pneumoniae strains (R6, P1031, Hungary, Taiwan1, TIGR4, and JJA). For the other strains, only sites that differ from those are shown. Residue
numbers are indicated vertically above the sequences, and black boxes below the numbers localize clusters I and III. Amino acid changes involved
in rifampin resistance are shown in boldface and underlined. Species nomenclature is as defined in the Fig. 1 legend. A superscript T indicates a
type strain. Recombinant sequences are shadowed in gray. Squares group sequences with the highest similarity according to scores obtained by

ClustalW alignments.

sequence typing (20, 23). Additionally, S. pneumoniae/S. pseu-
dopneumoniae, S. mitis, and S. oralis clusters were clearly sep-
arated, as their genetic distances to the node formed with the
branch of S. pneumoniae/S. pseudopneumoniae were 1.1% =
0.7%, 1.9% = 0.0%, and 3.2% = 0.4%, which are statistically
significant values (P < 0.0001).

Determination of mutations involved in rifampin resistance.
RpoB regions L42 to V175 and Q464 to T702 were sequenced
as described previously (19) and compared. Changes were
found in the Q464-to-T702 region (Fig. 2). Among them, only
H499N had been described in rifampin resistance in SMG
isolates (1), while the rest, with the exception of S504F (isolate
395), had been involved in resistance in S. pneumoniae (19). To
test its role in resistance, transformation of S. pneumoniae R6
with the Q464-to-T700 fragment carrying S504F was per-
formed as described previously (33). The transformant had the
same rifampin MIC as isolate 395, showing that this change
was indeed involved in resistance. Additional changes in clus-

ter III, which were present in both susceptible and resistant
strains (Fig. 2), are not believed to be involved in resistance.

RpoB sequence comparisons revealed that most changes not
involved in rifampin resistance were conserved among the spe-
cies (no more than two amino acid differences in regions I, II,
and III) (Fig. 2). These changes could be considered a species-
specific amino acid signature that give information about the
phylogenetic origin of the isolates, as observed for ComC (29).
On the basis of similarity scores with type strains (ClustalW),
six groups could be deduced (Fig. 2), coinciding with the six
clusters of the phylogenetic tree based on 16S rRNA gene-
sodA-rpoB-hlpA sequences (Fig. 1). Two exceptions were ob-
served: the S. pseudopneumoniae type strain that shared the
same similarity with S. pneumoniae and S. mitis, and isolate 889
(S. parasanguinis by the concatenated sequence) that shared
the same similarity with S. gordonii and S. sanguinis. Further-
more, this amino acid signature allowed us to ascertain the
origin of recombinant RpoBs. Six rifampin-resistant S. pneu-
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moniae recombinant isolates, which we had previously charac-
terized (19), were compared with other VS. Four of them
grouped with S. mitis and S. oralis (RIF13, -25, -24, and -56)
(Fig. 2). The source for isolates RIF31 and RIF65 could not be
deduced because of the partial recombinational nature of the
first (19) and poor scores with any of the type strains for the
second, due to either the donor not being included in this
comparison or the occurrence of several recombination events.
In conclusion, S. pneumoniae and SMG share the same mech-
anisms of rifampin resistance, and recombination events in
S. pneumoniae take place mostly with S. mitis and S. oralis
species.
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