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�D proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to
promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within
the �10 element, and this motif is known to be recognized by � region 2.4 and critical for promoter
activity.

In the course of efforts to define gene expression determi-
nants from the thermophilic bacterium Aeribacillus pallidus
AC6 (2, 18), we identified flagellin (Hag) as being among the
most highly expressed proteins in this strain. To determine the
basis for high-level Hag expression, we isolated and sequenced
the hag gene and identified and expressed the protein required
for its expression in this organism, �D (�D

Ap). We here de-
scribe a comparison of �D

Ap with its ortholog from B. subtilis
(�D

Bs).
Cloning and sequencing of the hag and sigD genes of A.

pallidus AC6. SDS-PAGE analysis of whole-cell lysates from A.
pallidus AC6 identified an abundant �35-kDa protein. The
excised protein was sent to the Center of Advanced Proteomics
Research Laboratory (University of Medicine and Dentistry of
New Jersey) for tryptic digestion and matrix-assisted laser de-
sorption ionization–time of flight (MALDI-TOF) analyses.
The resulting peptide sequences displayed high similarity to B.
subtilis flagellin (NAQDGISLIQTAEGALTETHAILQR had
96% identity with amino acids [aa] 65 to 89 and LEHTINNL
GTSAENLTAAESR had 85% identity with aa 242 to 262).
Two degenerate primers (FlaF1 and FlaR1) were used to am-
plify the flagellin gene (hag) from A. pallidus AC6 chromo-
somal DNA. An �450-bp product was cloned into pGEM-T
Easy (Promega) for DNA sequencing. The remainder of hag
and its upstream region were obtained by inverse PCR. The
828-bp hag gene encodes a 275-amino-acid (29.7-kDa) protein
having 63% identity with B. subtilis Hag and is preceded by a
typical �D promoter.

To identify sigD, two degenerate primers were used to am-
plify a PCR fragment which was cloned into the pGEM-T Easy
vector system and sequenced. The flanking portions of sigD

were obtained by inverse PCR, and the gene was sequenced.
The 771-bp sigD gene encodes a 256-amino-acid (28.7-kDa)
protein having 67% overall identity with �D

Bs, with the highest
levels of similarity concentrated in conserved regions 2 and 4,
known to mediate promoter recognition.

A. pallidus AC6 flagellin is expressed from a �D-dependent
promoter. Transcription of hag initiates from a canonical �D-
dependent promoter at a G residue 79 bp upstream of the start
codon (Fig. 1). Analysis of hag::lacZ fusions integrated into B.
subtilis CU1065 and HB4035 (sigD::kan) indicated that activity
was �D dependent and highest at late logarithmic phase, as
previously reported for B. subtilis (19). Optimal promoter ac-
tivity required an AT-rich region just upstream of the �35
element (Table 1), which has similarity with the upstream
promoter (UP) element previously described for B. subtilis hag
(6). Sequence inspection suggests that high-level Hag expres-
sion may also benefit from a strong ribosome-binding site and
stabilization of the mRNA by a 5� hairpin sequence (24).

Purification �D of A. pallidus and B. subtilis and reconstitu-
tion of �D RNAP. �D proteins from A. pallidus AC6 and B.
subtilis were expressed under T7 RNA polymerase (RNAP)
control in Escherichia coli BL21(DE3)/pLysS (Novagen) by
using pECG1 and pECB1 (Table 2). For purification, inclusion
bodies were solubilized with Sarkosyl (1), refolded, and puri-
fied using DEAE-Sepharose and heparin-Sepharose chroma-
tography as described previously (9). B. subtilis core RNAP was
purified from a sigD-null mutant expressing a His6-tagged ��
subunit (strain EC3) by using Ni-nitrilotriacetic acid (NTA)
chromatography (USB) and heparin-Sepharose chromatogra-
phy (Pharmacia fast protein liquid chromatography [FPLC]
system) and used to reconstitute �D holoenzymes (9). Both the
�D

Ap and �D
Bs holoenzymes accurately and efficiently recog-

nized the A. pallidus hag promoter on plasmid pEC3 as judged
by both start site mapping (5� rapid amplification of cDNA
ends [5�-RACE]) and quantitative reverse transcription-PCR
(qRT-PCR) (data not shown).

Binding affinity of �D of RNAP for the hag promoter. We
have previously shown that �D

Bs recognizes promoter DNA in
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vitro in the absence of core RNAP, as judged by electro-
phoretic mobility shift assay (EMSA) and chemical footprint-
ing (4). We here compared the DNA-binding abilities of �D

Ap

and �D
Bs by using a fluorescence anisotropy-based assay with

specific duplex oligonucleotides corresponding to the A. palli-
dus AC6 hag promoter and a control, nonspecific duplex (Fig.
2). Specific binding of �D

Ap and �D
Bs was apparent at several

tested temperatures (Fig. 3 and data not shown). The observed
affinities were relatively low (dissociation constant [Kd], �10 to
20 �M) compared with those reported for truncated primary �
factors (5), but the specificities of the interactions were high.
Previously, a somewhat higher affinity (Kd, �1 �M) was esti-
mated for �D

Bs by using EMSA with a different labeled pro-
moter fragment (4).

We tested two duplexes with changes within the �10 TCC
GATAT consensus (M1 [TCCGCGCG] and M2 [TCTAAT

AT] [substitutions are underlined]; Fig. 2). Remarkably, the
M2 mutation drastically affected binding by both � factors,
indicating that the CG bases within the �10 element are crit-
ical for recognition and binding. This is consistent with muta-
tional studies demonstrating that the CG motif is critical for
�10 element function (14, 28, 30). Even though M1 represents
a more drastic change in sequence (a 4-bp substitution), this
had a more modest effect on binding, particularly when tested
with �D

Bs. However, a significant decrease in affinity for �D
Ap

was observed at elevated temperatures (Fig. 3).
Concluding remarks. Recognition of flagellin promoters by

�D orthologs is conserved across distantly related species (3,
11, 27). We here demonstrate this conservation for A. pallidus;
the hag promoter, like that in B. subtilis (6), is �D dependent
and appears to include a strong UP element.

As a class, isolated � factors are often considered to have
little if any affinity for promoter DNA despite the fact that
recognition of both the �35 and �10 elements involves specific
�-DNA contacts (7). DNA binding by primary � factors (e.g.,
�70) can be revealed by removal of an amino-terminal domain
(region 1) thought to allosterically mask the DNA-binding
determinants (5). However, many alternative � factors lack
region 1, and a different mechanism of self-inhibition likely
pertains. Indeed, solution studies suggest a predominant �
conformation incompatible with DNA binding (22, 25). For
�D, structural analysis of a �D::FlgM complex revealed a com-
pact � conformation with the two DNA-binding domains (re-
gions 2 and 4) closely apposed (26). Disulfide cross-linking
suggests that a similarly compact conformation predominates
in solution (25). Conversely, other studies support the idea that
� factors may specifically recognize elements of the promoter
even in the absence of core RNA polymerase (12, 16, 23). We
suggest that there is an equilibrium between the compact con-

FIG. 1. The A. pallidus hag regulatory region. The hag gene is predicted to be transcribed as a monocistronic mRNA with a 5� stem-loop (top).
The regulatory region includes a predicted UP element and recognition signals (�35 and �10) for �D RNAP. The start site in A. pallidus AC6
was determined by 5�-RACE from RNA isolated from cells grown in LB medium at 60°C with shaking and corresponds to the indicated G (�1).
The ribosome-binding site (RBS) and initial coding sequence are indicated. For expression studies (Table 1), promoter-lacZ fusions were
generated from the indicated upstream endpoints ({) and either of the two downstream endpoints, designated a and b (}).

TABLE 1. �-Galactosidase activity in B. subtilis CU1065 containing
various hag::lacZ promoter fusions integrated into the thrC locusa

Promoter
construct

Extent of promoter
DNA (positions)

B. subtilis CU1065

�-Galactosidase activity
(Miller units) % activity

hag185 �186 to �22 1,016 � 49 100
hag138a �139a to �22 914 � 99 89.9
hag138b �139b to �4 909 � 63 89.4
hag117a �126a to �22 65 � 10 6.4
hag117b �126b to �4 63 � 15 6.2
hag98 �99 to �22 0 0
hag56 �57 to �22 0 0

a See also Table 2. Strains were grown in Schaeffer’s sporulation medium (21),
samples were collected in late logarithmic phase, and activity was measured using
the method of Miller (17). Values reported are averages and standard deviations
of triplicate determinations.
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formation, unable to interact specifically with DNA, and a
more open conformation in which specific DNA binding is
possible.

The �10 element is highly conserved in �D promoters. The

GCCG motif is a composite recognition element: the GC is
recognized by R91 from region 3 of E. coli �28 (the �D or-
tholog), whereas the CG is recognized by R84 and D81 from
region 2.4 (14). The corresponding residues in �D

Ap are R104

FIG. 2. Promoter recognition by �D proteins. The �35 region is recognized by region 4.3 (not shown), and the �10 element is recognized by
region 2 and an Arg residue from the amino terminus of region 3 (14). The �D

Ap and �D
Bs proteins are aligned from the initial portion of region

3 through region 2.3 (note that the direction of the protein sequences is inverted relative to conventional orientation). There are only three amino
acid substitutions in this region (identical residues are indicated by dashes) and all residues known to contact DNA are identical. The underlined
residues implicated in sequence specific promoter recognition include (�D

Ap numbering) R104 in region 3 and R97 and D94 in region 2.4. Residues
in region 2.3 corresponding to positions involved in promoter melting in other � factors are also underlined (15). Fluorescently labeled
(6-carboxyfluorescein [6-FAM]) oligonucleotide duplexes were used for fluorescence anisotropy analysis of �-DNA interactions. The �35 and �10
elements are shaded, and the substituted bases are highlighted. �1 indicates the start site for transcription. WT indicates the wild type. M1 and
M2 are mutants with mutations in the core �10 element, and NS represents a nonspecific control DNA.

TABLE 2. Bacterial strains, plasmids, and primers used in this study

Strain, plasmid, or
primer Description or relevant characteristicsa Reference, source, or

purpose

Bacillus subtilis
CU1065 W168 trpC2 attSP� Lab stock
HB4035 CU1065 sigD::kan Lab stock
HB7707 JH642 trpC2 pheA1 rpoC::His6 Spcr Lab stock
EC3 HB4035 rpoC::His6 Sptr Kanr This study

Plasmids
pDG1663 Integrational plasmid (inserts at thrC locus) 8
pECG1 pET11a carrying sigD gene of A. pallidus AC6 This study
pECB1 pET11a carrying sigD gene of B. subtilis CU1065 This study
pEC3 pDG1663 containing hag promoter from �185 to �385 from start codon This study
pEC3-185 series Series of pDG1663 derivatives with truncated hag promoters as EcoRI-

HindIII fragments (suffix indicating the upstream endpoint)

Primers
FlaF1 GCNGGNGAYGAYGCNGCNGGNYTNGC hag (degenerate)
FlaR1 GTNCCNARRTTRTTDATNGTRTGYTC hag (degenerate)
SigDF2 AARTTYGAYACNTAYGCNTCNTTYMG sigD (degenerate)
SigDR2 GMRTGDATYTGNGADATNCKNGANGTNG sigD (degenerate)
Gpa sigDf TATCACCATATGATGGTCCAATCGATGACACTG Cloning into pET11a
Gpa sigDr TATGGATCCTTAAGATAAAAGCTTAACGAGC Cloning into pET11a
Bsu sigDf TATCACCATATGATGCAATCCTTGAATTATGAAG Cloning into pET11a
Bsu sigDr TATGGATCCTTATTGTATCACTTTTTCCAGC Cloning into pET11a

a Italics indicates a restriction site. Sptr, spectinomycin resistant; Kanr, kanamycin resistant.
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from region 3 and R97 and D94 from region 2.4. E. coli �28

R91 recognizes a G residue at either of the first two positions
of the extended �10 element (15), and �D

Ap R104 is therefore
predicted to contact G on the template strand at position �14
(Fig. 2). The neighboring AT-rich motif (ATAT) likely func-
tions in DNA melting, presumably via interaction with region
2.3 (13, 15). In general, it is not yet known whether the down-
stream portion of the �10 element is recognized as duplex
DNA or whether this region establishes close interactions with
� only after promoter melting. For nearly all � factors, this
region is AT rich (and often includes alternating AT residues).
Since it is unlikely that � factor alone can melt DNA (29), this
may explain the relatively modest effects of the substitutions in
M1 on binding by �D

Bs. Conversely, the notable effect of the
M1 substitution on DNA binding by �D

Ap at elevated temper-
atures hints that duplex recognition of this region may also play
a role.

In sum, these results suggest that �D proteins may prove to
be a useful model system for investigation of �-DNA recogni-
tion. Despite recent progress in RNAP structural biology (re-
viewed in reference 20), we still lack a high-resolution view of

key transcription intermediates in open-complex formation.
Development of simplified model systems is one promising
approach for dissecting the interactions that occur during tran-
scription initiation (10, 23, 29).

Nucleotide sequence accession numbers. The hag and sigD
gene sequences have been submitted to GenBank under ac-
cession numbers GU991850 and HM126480, respectively.
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