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In this review, we provide an overview of the methods employed in four recent studies that described novel
methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-
negative bacteria. We present the results of these studies in terms of performance at accurately predicting
secreted effectors and similarities found between secretion signals that may reflect biologically relevant
features for recognition. We discuss the Web-based tools for secreted effector prediction described in these
studies and announce the availability of our tool, the SIEVE server (http://www.sysbep.org/sieve). Finally, we
assess the accuracies of the three type III effector prediction methods on a small set of proteins not known prior
to the development of these tools that we recently discovered and validated using both experimental and
computational approaches. Our comparison shows that all methods use similar approaches and, in general,
arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal,
which was a point of disagreement in the studies. Our results show that there may be classes of effectors in
which the signal has a loosely defined motif and others in which secretion is dependent only on compositional
biases. Computational prediction of secreted effectors from protein sequences represents an important step
toward better understanding the interaction between pathogens and hosts.

Bacterial pathogens secrete numerous proteins, called effec-
tors, which promote virulence by interacting with the host
network and environment. In many Gram-negative bacteria,
specialized type III and type IV secretion systems that allow
injection of these effector proteins directly into the host cell
cytoplasm have evolved (11, 20). Effectors are generally known
to be targeted for secretion by a sequence in their N termini,
for type III, or C termini, for type IV, that has no easily
identifiable pattern. Recently, we and others have described
machine learning data integration methods to accurately iden-
tify proteins secreted by both secretion systems (4, 9, 41, 65).

Type III secretion systems are believed to have originated
from flagella (49) and are essential for virulence in most stud-
ied pathogens. This machinery is a needlelike structure that
spans the inner and outer membranes (20, 34, 85) and allows
injection of protein effectors directly into the cytoplasm of the
eukaryotic host cell (19). Since the pore is quite narrow (�25
to 30 Å), it is believed that secreted proteins must pass through
in a largely unfolded state, in some cases mediated by chaper-

one proteins (1). Each system has a repertoire of effector
proteins that enact the virulence program of the bacteria by
directly interacting with a number of host cell signaling path-
ways (19).

Type III secreted effectors are thought to have two possibly
overlapping N-terminal domains which mediate secretion.
Residues 1 to 25 form an N-terminal secretion signal that is
highly variable in sequence (44) and, in some cases, is highly
tolerant of mutations (63). In Yersinia pestis, the observations
that effectors with frameshift mutations were still secreted and
that synonymous mutations could abolish secretion led to the
conclusion that the 5� mRNA sequences of some effector genes
are responsible for targeting (3, 61, 70). However, it has been
demonstrated that the amino acid sequence is responsible for
targeting in other cases (23, 30, 63). In many effectors, a chap-
erone binding domain spans from residues 15 to 30 to around
residue 100 and allows a cognate chaperone protein to bind the
effector (38). Removal of either domain prevents the effector
from being targeted to the secretion system and subsequent
secretion or translocation through the type III secretion system
(40, 44, 71).

Most of the core components of the type III secretion system
are conserved between species (55), and several lines of evi-
dence indicate that the targeting mechanisms employed by the
system may also be conserved. The first is that, in some cases,
type III secretion systems can export proteins bearing secretion
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signals from other bacteria (18, 24, 62). The second is that a
recently discovered class of type III secretion inhibitor can
block secretion in multiple species—Y. pestis, Chlamydia tra-
chomatis, and Salmonella enterica serovar Typhimurium (5, 29,
45, 48, 53)—though the mechanism of inhibition is unclear
(48). It has been shown from available structures of effectors
bound to their cognate chaperones that the structure of this
interaction is conserved across species (39). The computational
approaches reviewed here also strongly suggest that features of
the secretion signal are conserved within and between organ-
isms.

In all but one of the type III effector structures determined
by X-ray diffraction (XRD)-based methods, the N-terminal 15
to 35 residues were reported to be unstructured (17, 37, 39) or
were not included in the protein used for crystallization (21).
Unstructured N-terminal regions in crystal structures are the
result of diffuse electron density that cannot be associated with
the sequence. Studies showing that some N-terminal secretion
signals are highly tolerant of mutations (63) but are not mRNA
encoded indicate that some signals may be dependent upon a
truly unstructured state for recognition (16). Our recent struc-
tural characterization of N-terminal type III secretion signal
peptides found that these were unstructured in solution, sup-
porting this idea (8).

Though there are related families of type III effectors (43,
74), more than 75% of effectors have no detectable sequence
similarity to other known effectors. Approaches based on se-
quence similarity and on genomic location in pathogenicity
islands have been used to identify many currently known ef-
fectors (15, 43). Most recently, homology with known effectors
has been used to greatly expand the estimated number of
secreted effectors in pathogenic Escherichia coli O157:H7 (76).
This finding indicates that there may be a large number of
unknown effectors in pathogenic bacteria with type III or IV
secretion systems, even in well-studied organisms like S. Ty-
phimurium, Legionella pneumophila, and Y. pestis. General fea-
tures of the protein sequence have also been used to the same
end, focused on the N-terminal secretion signal. In the plant
pathogen Pseudomonas syringae, amino acid biases and pat-
terns, including amphipathicity, exposed polar residues, and a
net negative charge in the N-terminal secretion signal, were
used to identify novel effectors (25, 26, 58), though these same
criteria do not seem to work as well in other species (58).
Detection of common promoter elements has also been used
to identify novel effectors in P. syringae (77), but this approach
is limited to known and detectable motifs. Finally, detecting
chaperone genes using a number of genomic criteria and then
identifying effectors based on their genomic proximity to the
chaperone has been used successfully to identify novel effec-
tors (56). However, we and others have found these ap-
proaches to be ineffective in identifying secreted effectors in
general (4, 65).

Experimental data associated with the recognition of secre-
tion signals on effector proteins transported by the type IV
secretion system remain difficult to elucidate. Unlike the con-
served type III secretion platform, type IV secretion has been
separated into two distinct classes, T4a and T4b (13). The
T4a secretion pathway is exemplified by the VirB translocation
system in the plant pathogen Agrobacterium tumefaciens. This
translocation pathway is related to conjugal transfer machines

that support delivery of nucleic acid-protein hybrids from do-
nor to recipient cell (14). In A. tumefaciens, a mobilizing re-
laxase, VirD2, functions to nick DNA at an origin of transfer
and covalently bind to a single strand (57). The hybrid is
recognized by a membrane-bound coupling receptor that sup-
ports translocation (12). Secretion information in the VirD2-
DNA hybrid was determined to be confined to the C-terminal
end of the VirD2 protein component (79). Importantly, studies
revealed that additional proteins were recognized and trans-
ported into host cells via the virB type IV secretion system,
independent of DNA association (69, 78). The effector protein
VirF was subjected to positional mutagenesis and revealed a
consensus motif in the C terminus implicating positively
charged amino acid residues important for substrate recogni-
tion (79). Indeed, the majority of bacterial pathogens requiring
type IV secretion systems for virulence harbor genes that are
conserved with those of the virB system in A. tumefaciens.
Mutagenesis of conserved positively charged residues in the C
terminus of the effector protein CagA in the human pathogen
Helicobacter pylori did not impair T4 secretion, suggesting that
additional recognition elements are present (28).

The T4b secretion pathway represents a more sophisticated
secretion platform, based on the requirement for at least dou-
ble the protein components required for effector protein trans-
location into host cells (13, 66). Currently, genomic informa-
tion suggests that two intracellular pathogens, Legionella
pneumophila and Coxiella burnetii, use T4b secretion for trans-
port of effectors into host cells. L. pneumophila uses a type IV
secretion system termed “Dot/Icm” to support pathogenesis in
human phagocytes. To date, over 140 effector proteins have
been demonstrated to be transported into host cells by this
transporter (9). Analysis of confirmed effectors revealed little
conservation in primary amino acid sequence. However, it is
now clear that the majority of Dot/Icm substrates harbor se-
cretion information in their C-terminal ends (42, 46). Addi-
tionally, chaperone complexes recognize patterns on effectors
that are distinct from the C-terminal translocation signal, add-
ing a level of complexity to Dot/Icm substrate recognition (6,
10, 51).

The first Dot/Icm-dependent effector protein described was
RalF (47). Analysis of the C terminus revealed a 20-amino acid
(aa) segment sufficient for translocation of a Cya reporter into
host cells (46). Nagai et al. (46) hypothesized that Dot/Icm
effector proteins harbored a conserved hydrophobic residue at
the �3 position relative to the carboxyl end. In RalF, substi-
tution of either serine or threonine for valine abrogated T4
secretion (46). Additionally, a positive charge in the RalF C
terminus was dispensable for substrate recognition, unlike with
T4a translocation. Substitution for this hydrophobic residue in
other known effectors has not translated to abrogation of se-
cretion similar to that of RalF (E. D. Cambronne laboratory,
unpublished observations). The crystal structure of the RalF
protein revealed that the C-terminal 20 amino acids were dis-
ordered, suggesting that a lack of secondary structure might
contribute to recognition of substrates by the Dot/Icm trans-
porter (2).

Kubori et al. developed a search algorithm based on po-
sitional features found in known effector proteins that al-
lowed them to successfully identify 19 novel effector pro-
teins in L. pneumophila (33). This feature parameter was
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applied to the study performed by Burstein et al. (9). It is
likely that a combination of physical features of positional
amino acids and the lack of secondary structure in the C-
terminal ends of Dot/Icm effector proteins provide the nec-
essary secretion signatures.

Recently, several groups, including ours, have independently
described computational methods to identify type III and type
IV secreted effectors on the basis of protein sequence infor-
mation (4, 9, 41, 65). These approaches all involve data inte-
gration methods that use machine learning techniques to train
on sets of known secreted effectors. The methods all accurately
identify secreted substrates of type III (4, 41, 65) or type IV (9)
systems in a range of bacteria. Machine learning describes a set
of computational approaches in which a method is “trained”
on a set of known examples to learn the relationships between
the input features from each example that allow the best dis-
crimination between the positive and negative example sets
(Fig. 1). Data of different kinds, for example, sequence infor-
mation and structural properties of a protein, can easily be
integrated using such methods to provide better and more
explanatory models. Three main elements go into the construc-
tion of a machine learning approach to classification (52, 75,
84). The first is the algorithm itself; for example, support vec-
tor machines (SVMs), artificial neural networks (ANNs), and
Bayesian classifiers provide different ways to learn classifiers
from input data. The second element is the features used as
input to the algorithm. The features are numeric representa-
tions of various attributes of the proteins or genes used as
examples. These include amino acid composition, G�C con-
tent, taxonomic distribution, and others that were used in the
studies reviewed here. The last element is the training data,
made up of positive and negative examples for the desired class
of proteins, in this case secreted effectors. Important to the
training data is the method used to examine the performance
of the approach with examples that were not used in the train-
ing set, for example, cross-validation techniques or validation
on other well-characterized data sets. Machine learning clas-
sification approaches have been used in a large number of
biological applications, including detection of remote homol-
ogy between proteins (67, 68, 82), detection of binding sites
and posttranslational modification sites (7, 59, 60) from
genomic features, and prediction of secondary structure and
disordered regions in proteins (27, 80, 81).

DESCRIPTION OF APPROACHES TO IDENTIFICATION
OF SECRETED EFFECTORS FROM TYPE III AND

TYPE IV SYSTEMS

Three papers were published recently by Arnold et al. (4),
Löwer and Schneider (41), and Samudrala et al. (65) that
describe the application of machine learning approaches to the
identification of type III secreted substrates; in addition, a
fourth study by Burstein et al. (9) reported the use of such
approaches to the prediction of type IV secreted effectors. We
first briefly describe the similarities and differences between
approaches. We compare the methods and protein features
used, the training and testing data sets used, and finally, the
prediction accuracy reported and important conclusions drawn
by each study.

COMPARISON OF METHODS AND PROTEIN
FEATURES USED TO CLASSIFY

SECRETED EFFECTORS

The selection of features from effector proteins for use as
input in the classification method is very important to the
outcomes of the study, and the choice of classification algo-
rithm can have a significant impact as well. In our study (65),
we used an SVM to classify proteins on the basis of five protein
features: amino acid composition in the N-terminal 30 resi-
dues, two measures of protein evolutionary conservation, the
G�C content of the cognate gene, the phylogenetic distribu-
tion of similar proteins in more than 50 other organisms, and
the amino acid sequence for the N-terminal 30 residues. Burst-
ein et al. (9) used a similarly broad range of input features to
classify type IV effectors: similarity to known effectors and

FIG. 1. Machine learning approaches to secreted effector identifi-
cation. Each of the methods described in this review follows a similar
process. Step 1, sets of known secreted effectors (positive examples)
and proteins that are not secreted or assumed to be not secreted
(negative examples) are chosen. Step 2, features of the protein se-
quence (e.g., amino acid conservation, sequence, phylogenetic distri-
bution, etc.) are derived from all proteins and transformed into a
numeric representation. Step 3, a machine learning algorithm (e.g., a
support vector machine) learns to discriminate the positive examples
from negative examples in a high-dimensional space formed by the
chosen protein features. Step 4, the performance of the approach is
assessed by applying the model learned in step 3 to independent
examples that were not included in the training. Step 5, experimental
validation must then be applied to finally determine whether or not a
protein is secreted.
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proteins in eukaryotes, taxonomic distribution, identities of
neighboring genes, G�C content, and presence of two regu-
latory elements. Also, a search for a set of previously described
C-terminal secretion signal patterns was included in a second-
round filter to improve results (33). In that study (33), Kubori
et al. used these as input to SVM, an artificial neural network
(ANN), two Bayesian methods, and a voting method that clas-
sified proteins on the basis of the results from all four methods.
In contrast, the other two type III classification studies used a
set focused on the protein sequence: Arnold et al. (4) used
amino acid composition and di- and tripeptide pattern fre-
quency in a number of different machine learning algorithms,
and Löwer and Schneider (41) used a sliding window of pri-
mary protein sequence as input to both SVM and ANN algo-
rithms.

COMPARISON OF EXAMPLES USED FOR TRAINING
AND VALIDATION OF SECRETED

EFFECTOR CLASSIFICATION

The process of training a classification algorithm involves
learning patterns of positive examples (e.g., known secreted
effectors) that distinguish them from the negative examples
(e.g., nonsecreted proteins). The nature of this approach is
to define the best classifier based on the examples used for
training. Unfortunately, this can often lead to a situation in
which the classifier works very well on the training data but
is unable to generalize, that is, accurately classify other
examples that were not used in the training set. In machine
learning, this problem is typically addressed using cross-
validation approaches in which a set of the training data is
left out of the process and used later to assess the “true”
performance of the method. To get an accurate estimate of
performance, this process is repeated a number of times
using different sets of training examples in each iteration.
This process can still provide a biased estimate of perfor-
mance of a method since the examples are still drawn from
the same set, but it is often the best approach to address a
difficult issue when there are few positive examples known.

Our study used two relatively well-characterized bacteria
for training and validation: the animal pathogen S. Typhi-
murium and the plant pathogen Pseudomonas syringae (65).
Both organisms have experimentally characterized sets of
type III secreted effectors that are approximately the same
size, about 35 to 40 effectors each. For negative training
examples, we used all proteins in each organism that are not
positive examples. This establishes a conservative training
set, since some of the examples in our negative set may be
undiscovered secreted effectors (at least five were; see be-
low), but it is a “real-world” set that should provide a good,
though conservative, estimate of performance. Additionally,
any method of filtering negative examples to provide a more
confidently nonsecreted set might introduce significant bi-
ases in the data set that could render classification trivial.
Imagine that we filtered the negative examples to include
only metabolic enzymes. These proteins are very different
from secreted effectors, in general, and many trivial classi-
fication methods would perform very well on this set but not
provide accurate identification of new effectors. We used
two validation approaches. For the results presented in the

paper, we simply trained on the examples in one organism
and assessed performance on the set of examples from the
other organism, after first eliminating significantly similar
sequences from the set. As an alternate approach, we used
a leave-one-out cross-validation method in which each pos-
itive example was excluded from training in turn and per-
formance was evaluated on it and a representative set of
negative examples.

In the two remaining type III secreted effector classifica-
tion studies, a large set of experimentally characterized se-
creted effectors was assembled from published studies (76)
and databases. Because the organisms we chose for our
study (65) are two of the best characterized in terms of type
III secretion, both of these example sets had significant
overlap with our positive example sets. In studies by both
Löwer and Schneider (41) and Arnold et al. (4), negative
example sets were constructed and used in approximately
equal numbers to positive examples: 1:1, positive to nega-
tive, by Löwer and Schneider and 1:2, positive to negative,
by Arnold et al. By comparison, the ratio in our study (65)
was approximately 1:120, positive to negative, which is close
to the naturally occurring ratio in the two organisms exam-
ined. One potential problem with using a training set with
equal numbers of positive and negative examples in cross-
validation is that it can artificially inflate performance esti-
mates because the number of false-positive classifications is
proportional to the number of examples classified. So ap-
plying these methods to all proteins in an organism may
result in a large number of false-positive identifications.
Interestingly, Löwer and Schneider (41) included proteins
known to be secreted by other secretion systems as negative
examples for training in order to provide a method capable
of discriminating type III secreted proteins from other se-
creted proteins. Both studies used cross-validation to obtain
performance estimates. Also in both studies, the C-terminal
portions of positive examples were used as negative exam-
ples in independent control experiments, which provides a
good control for potential biases, for example, in amino acid
composition, that are not specific to secretion.

Finally, Burstein et al. (9) focused on just L. pneumophila
and, thus, used the known effectors for positive examples
and L. pneumophila proteins that are not shared with Esch-
erichia coli as a set of negative examples in a 1:5 positive-
to-negative ratio. A potential issue with this choice of
negative examples is that the features used included infor-
mation based on evolutionary relationships, which could
cause the classification algorithm to choose a trivial, but
effective, classification. However, this does not appear to
have affected their final results, based on their experimental
validation results. Because their positive examples (known
secreted effectors) are not likely to be shared with E. coli,
this approach does not introduce significant artificial bias
between their positive- and negative-example proteins that
would be exploited by the classification algorithms. Their
approach was iterative, and so they included effectors iden-
tified in the previous round for each new training iteration,
which seems to provide better results, although they did not
analyze this in their paper.
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COMPARISON OF RESULTS AND CONCLUSIONS FROM
SECRETED EFFECTOR CLASSIFICATION STUDIES

Given the different approaches and methods of validation, it
is difficult to compare the performances of the studies directly.
Here we compare the results reported in each of the studies,
and below we examine the performances of the three type III
secreted effector prediction methods on an independent data
set. Three of the studies used a measure of classification per-
formance called the receiver operator characteristic (ROC)
area under the curve (AUC). The ROC plots sensitivity against
specificity, with an AUC of 1.0 representing perfect classifica-
tion (all the positive and negative examples classified correctly)
and an AUC of 0.5 being equivalent to random chance (64).
Our study (65) reported an ROC AUC of 0.95 when the SVM
was trained on S. Typhimurium and tested on P. syringae or
0.96 when trained on P. syringae and tested on S. Typhimurium.
These are very good results but are limited in breadth because
we chose to focus on only two bacteria and did not examine the
method’s performance with other bacteria. Burstein et al. re-
ported an ROC AUC of 0.98 for classification of type IV
effectors, which is extremely good (9). Additionally, this is the
only study of the four that performed experimental validation.
In total, 40 of the predictions made were validated, signifi-
cantly expanding the known secreted effector repertoire in L.
pneumophila. The experimental results reported indicate that
the estimate of performance made using a cross-validation
approach is close to the true performance of the method. One
caveat is that only 50 proteins with the highest scores were
selected for validation, and it remains unknown how many
effectors might be missed by this approach (i.e., the false-
negative percentage). This could be addressed by validating a
sample of predictions with a range of scores. Arnold et al.
reported ROC AUCs in a range of 0.85 to 0.87 for their entire
test set (4). These results are significant, and though they are
not perfect, they represent a test of a much larger set of
proteins from many different organisms. The study by Löwer
and Schneider was also the only one to use a measure of
classification other than the ROC (41). This study used the
Matthew’s correlation coefficient (MCC) and reported a max-
imum correlation of 0.63. Since MCC values range from per-
fect correlation at 1.0 to random classification equivalence at 0,
the results can be very roughly compared to the ROC results by
scaling the MCC to 0.82, which agrees well with the results

reported by Arnold et al (4). As mentioned above, one poten-
tial caveat with the results from both Arnold et al. (4) and
Löwer and Schneider (41) is that they may produce more false
positives in a real-world application than indicated by the per-
formance estimates, due to the limited number of negative
examples used for training and cross-validation. However, our
independent test of these methods in this review (see below)
suggests that this difference in training approaches does not
have a significant impact on false-positive prediction rates.

Each of these studies also performed additional analysis
using the developed models to investigate the nature of the
secretion signal (Table 1). Our study (65) reported that the
information contained in the signal extends only to around
residue 30 and that the first 15 residues are most important for
classification in both S. Typhimurium and P. syringae effectors.
Furthermore, we identified a significant sequence pattern in
this region that was similar between effectors in the two bac-
teria. The sequence pattern was enriched in serine and isoleu-
cine residues and depleted in leucine residues at several posi-
tions. Additionally, the pattern agrees with some other
patterns and biases previously described for secreted effectors
from various organisms. In contrast, Arnold et al. concluded
that there is no position-specific sequence motif that identifies
secreted effector signal sequences (4). They postulate that the
primary determinant of secretion is based only on nonposi-
tional amino acid composition in this region. This conclusion
was partially based on the failure of traditional sequence align-
ment methods to detect a motif in this region, something we
observed as well. In addition, they analyzed point mutations
and frame shifts in effector and noneffector sequences and
determined that most secretion signal sequences are robustly
tolerant of point mutations but are sensitive to frameshift mu-
tations. We discuss this difference in “Conclusions and Future
Prospects” below. Arnold et al. (4) performed several other
analyses of the secretion signal and found that these regions
are significantly enriched in serine, threonine, and proline res-
idues and that leucine is depleted in this region, again agreeing
well with our findings. Finally, they predicted secondary struc-
ture for these regions and found that they were generally
enriched in random coil, indicating a possible lack of structure.
Arnold et al. (4) determined that the secretion signal informa-
tion was contained in the first 30 residues in animal pathogens,
though extended to 50 residues in plant pathogens. They also

TABLE 1. Important features of type III and type IV secretion signalsa

Important feature

Identification by:

Arnold et
al. (4)

Löwer and
Schneider (41)

Samudrala
et al. (65)

Burstein
et al. (9)

Previous
observations

Positional sequence pattern No Yesa Yes Yes Yes
Disordered structural motif Yes Yes Yes
Charged residue biases Yes Yesa Yes Yes
Serine/threonine bias Yes Yesa Yes Yes
Proline bias Yes Yesa No No
Hydrophobic bias Yes Yesa Yes Yes
Terminal 20 to 30 residues important Yes Yes Yes Yes Yes
G�C gene content bias Yes Yes Yes
Taxonomic distribution Yes Yes Yes

a The study results implied the indicated importance but did not specifically call it out.
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concluded that the first 15 residues provided the maximum
discriminatory power. Löwer and Schneider also investigated
the length of the secretion signal by its information content in
classification and found that the optimal length for classifica-
tion was 30 residues (41). Both of these findings closely agree
with ours and indicate that the signal for type III secretion is
located in the first 30 or so residues, with a particularly impor-
tant region in the first 15 residues.

Though the C-terminal type IV secretion signal detected by
Burstein et al. is evolutionarily distinct from the N-terminal
type III secretion signal, similar approaches were employed to
characterize its composition (9). Those authors found that the
C-terminal 20 residues of type IV effectors had amino acid
compositional biases that were positional, i.e., the preference
for particular types of amino acids varies over the length of the
secretion signal. Specifically, they found that negatively
charged residues (aspartic acid and glutamic acid) were de-
pleted at C-terminal positions 4 to 6 but favored at positions 8
to 18, hydrophobic residues were depleted at positions 8 to 12,
and aliphatic hydroxyl group-bearing residues (serine and
threonine) were favored at positions 3 to 11. These biases
mirror the biases noted in the type III effector prediction
studies to a certain extent: an enrichment of serine and threo-
nine residues in the N termini of type III secretion signals and
depletion of hydrophobic residues, particularly leucines (4, 65).
Negatively charged residues were found to be depleted in type
III secretion signals (4), which is seen in the very C-terminal
region of type IV secretion signals. These similarities (Table
1), and the fact that both type III and type IV secretion signals
seem to be disordered, suggest that recognition of secretion
signals from both systems may have very similar requirements
and may involve similar mechanisms.

IS THE TYPE III SECRETION SIGNAL DEPENDENT ON
ORDER OF AMINO ACID RESIDUES?

As discussed above, a major point of discrepancy between
the findings reported by our study (65) and those of Arnold et
al. (4) is that of whether the secretion signal is primarily based
on general amino acid composition or if there is a positional
importance, similar to that found in more traditional sequence
motifs. For the purposes of this discussion, we refer to the
former possibility as sequence order independence (SOI) and
the latter as sequence order dependence (SOD). We were
interested in examining this difference using our model and
reasoned that SOI would result in randomly scrambled secre-
tion signals having scores equal to or better than the wild-type
signals. Accordingly, we generated 500 random sequence per-
mutations of each signal in our set of secreted effectors from S.
Typhimurium and then analyzed these sequences by our
method, SIEVE (SVM-based identification and evaluation of
virulence effectors), trained on P. syringae effectors (65), by the
method described by Arnold et al., EffectiveT3, trained on
plant pathogens (4), and by the method of Löwer and Schnei-
der (using a reduced number of sequences to accommodate
their server) (41). We then considered effectors in which 30%
or less of the scores from the scrambled sequences exceeded
the score for wild-type sequences to be SOD. Surprisingly, we
found that SIEVE and EffectiveT3 predicted identical ratios of
SOI to SOD effectors, 35%, though the two methods did not

classify all effectors identically. The method of Löwer and
Schneider (41) produced a ratio of 62% SOI to SOD effectors,
which was much higher. All three methods agreed in catego-
rizing 10 of the effectors, including InvJ and SipB, as sequence
order dependent. These effectors are both SOD members and
have small, well-defined sequences that are necessary for se-
cretion (31, 63), indicating that they are indeed sequence order
dependent. Additionally, we have generated two randomly
scrambled variants of the SseJ secretion signal that were pre-
dicted with high (SseJ-H) and low (SseJ-L) SIEVE scores (8).
We examined these for secretion experimentally and found
that both were secreted but that the SseJ-L was secreted at very
low levels, consistent with our predictions. The difference in
ability to direct secretion of three sequences (SseJ, SseJ-H, and
SseJ-L) demonstrates that the secretion signal for SseJ is SOD.

These observations suggest that there may be at least two
different types of type III secretion signals in S. Typhimurium,
one that is dependent on a degenerate SOD motif, as sug-
gested in our study (65), and another that is more dependent
on the general amino acid composition in the N-terminal 30
residues. It is certainly possible that these differences are due
to details of the computational models rather than the under-
lying biology, and further computational and experimental in-
vestigation is under way to help clarify this difference.

APPLICATIONS AND EXPERIMENTAL VALIDATION OF
SECRETED EFFECTOR PREDICTIONS

Pathogens have evolved complicated and multifaceted
means to manipulate host networks in order to evade host
defenses and establish productive infections. In pathogens with
type III or IV secretion systems, this is largely accomplished
through the actions of secreted effectors. Thus, knowledge
about the repertoire of secreted effectors for a pathogen can
help define the interaction between the pathogen and host. A
detailed understanding of these interactions is necessary to
begin to develop systems biology models of pathogen-host in-
teractions. Additionally, these interactions may represent
novel targets for development of therapeutic intervention. Un-
like traditional antibiotics that aim to eliminate the bacteria
and thus exert a strong selective pressure on the development
of resistance, therapies based on targeting the pathogen-host
interaction could potentially avoid this problem.

Two primary applications of methods to identify secreted
effectors from protein sequence are represented in the papers
reviewed here: identification of novel effectors in well-studied
pathogens and identification of secreted effectors in relatively
uncharacterized pathogens. Both our study (65) and that of
Burstein et al. (9) used these methods to identify novel effec-
tors in existing, well-studied pathogens. Surprisingly, both
studies identified a number of high-confidence predictions for
novel secreted effectors. Burstein et al. (9) reported experi-
mental validation of 40 novel effectors in L. pneumophila, in-
creasing the number of known effectors by nearly 50%. Their
analysis also validated their performance estimates, showing a
positive predictive value [(true-positive predictions)/(true-pos-
itive predictions � false-positive predictions)] of 80%. We
have recently completed a proteomics-based experimental dis-
covery with validation in macrophage cells of several novel
type III secreted effectors from S. Typhimurium (see the report
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by Niemann et al. [50]). Below, we show that SIEVE predicts
four out of five of these novel effectors with an overall accuracy
of 88%. Arnold et al. (4) and Löwer and Schneider (41) both
applied their methods to predict secreted effectors across a
large number of genomes, many of them uncharacterized.
Both studies reported that significant portions of the encoded
proteomes investigated were predicted to be secreted. Arnold
et al. (4) examined 739 bacterial and archeal encoded pro-
teomes and found that between 2% and 7% of all proteins
were predicted to be secreted in organisms with identified type
III secretion systems. Löwer and Schneider (41) examined 705
proteobacterial encoded proteomes and found that 11.5% of
these were predicted to be secreted, though this percentage
was not dependent on the presence of a type III secretion
system. In addition, our study (65) predicted secreted effectors
in the genetically intractable C. trachomatis. Though we pre-
sented evidence that these were reasonable predictions, it re-
mains unclear if our predictions will be useful. We have since
predicted secreted effectors in the animal pathogen Mannhe-
imia hemolytica (35) and show evidence for the first time that
this pathogen may have a type III secretion system (36).

Finally, these methods can be used to further define the
nature of the secretion signal from type III and type IV effec-
tors and to characterize the evolutionary relationships between
these systems. For example, Arnold et al. (4) present an inter-
esting analysis of the evolutionary history of the secretion sig-
nal that suggests that that evolution may be an example of
convergent sequence adaptation. This model fits well with the
known properties of the secretion signal, which do not share
strong sequence similarity within or across organisms.

AVAILABILITY OF METHODS FOR SECRETED
EFFECTOR PREDICTION

As discussed above, an important application of these meth-
ods is the prediction of secreted effector repertoires in unchar-
acterized bacterial genomes. The availability and ease of use
are both important considerations for biologists interested in
using these predictive methods (Table 2). In this section, we
briefly discuss the use of the tool described by Arnold et al.,
EffectiveT3 (4), and the method described by Löwer and
Schneider (41) and for the first time describe a Web-based tool
to make predictions based on the algorithm we described pre-
viously (65), SIEVE (http://www.sysbep.org/sieve/). We then
present a side-by-side comparison of predictions from each of
the three tools on a set of experimental validations we have
recently completed for S. Typhimurium.

TYPE III SECRETED EFFECTOR PREDICTION
USING EffectiveT3

The EffectiveT3 tool is available as a Web tool or a Java-
based stand-alone program at http://www.chlamydiaedb.org,
though the Web server can be reached directly at http://www
.effectors.org (4). The Web tool requires the user to upload a
FASTA-format protein sequence file with the query se-
quences. Several classification models are available for selec-
tion, and the user can set a threshold for the confidence of the
predictions to be returned. Results are returned as a table of
sequence identifiers, a probability based on the algorithm, and
a classification label (positive, negative, or short or invalid
sequence). The maximum number of sequences that can be
uploaded and processed at one time by the Web tool is 10,000,
which is sufficient for prediction of entire bacterial genomes.

TYPE III SECRETED EFFECTOR PREDICTION USING
THE METHOD DESCRIBED BY LÖWER

AND SCHNEIDER

The paper by Löwer and Schneider (41) also describes a Web
interface to their prediction algorithm at http://www.modlab.de,
though the type III secreted effector prediction submission form
can be reached directly at http://gecco.org.chemie.uni-frankfurt
.de/T3SS_prediction/T3SS_prediction.html. As with EffectiveT3,
the Web server requires the input of a FASTA-format protein
sequence file and allows the selection of their SVM or ANN
model and modification of several parameters (length of se-
quence window considered and a threshold for results from the
ANN). The maximum number of sequences that can be pro-
cessed in one submission is 50, which significantly limits the utility
of the Web tool for predicting secreted effectors from complete
proteomes.

TYPE III SECRETED EFFECTOR PREDICTION
USING SIEVE

Since the publication of our paper (65), we have released a
public Web tool for prediction of type III secreted effectors,
which we describe here. The SIEVE Web server is freely avail-
able with a brief user registration at http://www.sysbep.org
/sieve. Our algorithm is slower than that used by EffectiveT3
since we use features that require a large sequence similarity
search using BLAST. To accommodate the efficient processing
of large sets of protein sequences, for example, whole genome
sequences, we use ScalaBLAST, a parallel implementation of
BLAST (54), running on a 68-processor cluster. ScalaBLAST
is used to generate the phylogenetic profile necessary for input

TABLE 2. Availability and features of secreted effector prediction methods

Method URL Maximum no.
of sequences Training data set Reported

AUC
Validation

(%)

EffectiveT3 http://www.effectors.org 10,000 Pan-genome 0.87 88
Löwer and Schneider (41) http://gecco.org.chemie.uni-frankfurt.de 50 Pan-genome 0.82 77
SIEVE http://www.sysbep.org/sieve None S. Typhimurium/P. syringae 0.95 88
Burstein et al. (9) None NA L. pneumophila 0.98 NAa

a NA, not available.
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into the SVM model. Using this framework for a submitted
FASTA file with 7,230 protein sequences (from the genome of
Burkholderia pseudomallei), SIEVE finished in 28 min, versus
6 h 51 min running on a single processor.

The SIEVE algorithm requires only the input of a protein
sequence or sequences (in FASTA format). It generates sev-
eral sets of features based on the input sequence, as described
previously (65), to classify the protein(s) using the available
SVM-based model. The amino acid composition in the N-
terminal 30 residues and the N-terminal sequence itself are
converted to vectors. A parallel BLAST search is run using the
previously described ScalaBLAST (54), and a simple phyloge-
netic profile is constructed and converted to a vector. Two
features described previously, G�C content and evolutionary
conservation, are not included in these models because their
removal has little impact on the overall performance of the
algorithm. Removing these two features entirely did not
change the performance of the approach from our previously
reported results (65).

The feature set is used for classification using an SVM
model described previously (65). This model is trained on type
III secreted substrates from S. Typhimurium and P. syringae
(STMpPSY model). The user is then alerted by e-mail that the
job has finished and is presented with a list of input sequence
identifiers with SVM discriminant scores and associated prob-
abilities for each protein sequence. Based on our previous
analysis (65), as well as more recent validation of predictions,
the probabilities returned are conservative but provide a way to
prioritize candidate effectors.

We have used the SIEVE Web server to provide predictions
of type III secreted effectors for several Gram-negative entero-
pathogens being studied by the Center for Systems Biology of
EnteroPathogens (http://www.sysbep.org). We provide the re-
sults of this analysis on the center’s website at http://www
.sysbep.org/data/SIEVE. These predictions provide a valuable
resource for the community and insight into the biology of
these important enteropathogens.

COMPARISON OF PREDICTIONS
BETWEEN ALGORITHMS

We were interested in seeing how each of these three algo-
rithms would perform on the same set of proteins, so we tested
a set of proteins from S. Typhimurium that we recently discov-
ered and experimentally validated (50). This set has a range of
SIEVE confidence values and includes 5 secreted proteins and
12 nonsecreted proteins, as validated by a CyaA fusion assay
(22). The sequences corresponding to these examples were
submitted to each of the three servers discussed, and the re-
sults were ranked according to the scores returned by the
server. We then examined the accuracy (percentage of true-
positive predictions plus true-negative predictions out of all
predictions made) of each method by considering the top 4
predictions positive for each method. The results are quite
consistent: SIEVE (65) made 15/17 correct predictions (accu-
racy, 88%), and EffectiveT3 (4) and the method described by
Löwer and Schneider (41) both made 11/17 correct predictions
(accuracy, 65%). Given the small size of the test set, these
results can be considered equivalent, and further testing on
larger, independent data sets will provide better estimates of

performance. Though their performances were similar, the
methods differed in the specific proteins that were correctly or
incorrectly classified (Table 3). SIEVE predicted 4/5 secreted
proteins correctly, whereas EffectiveT3 and the Löwer and
Schneider (41) method both predicted 2/5 secreted proteins
correctly. Interestingly, all methods predict that SrfN should
not be secreted by the type III secretion system, but our CyaA
fusion assay results show that it is secreted. In this case, we
have evidence that SrfN is secreted via an alternative mecha-
nism (Yoon et al., submitted for publication). Also, all three
methods predict that PipA is secreted, but our results, using
cya� fusions to test secretion to animal cells, show that it is not
secreted. This raises the possibility that PipA may be alterna-
tively regulated and that it may be secreted under the right
conditions or to different cell types than we tested. These
results show that all methods are comparable in terms of ac-
curacy and further suggest that combining the three ap-
proaches, possibly in a voting scheme (like the one used by
Burstein et al. [9]) could provide a better predictive method.

CONCLUSIONS AND FUTURE PROSPECTS

Correct identification of novel secreted effectors using pro-
tein sequence is merely a first step toward more complete
characterization of the complex pathogen-host interaction.
The studies reviewed here (4, 41, 65) suggest that type III
secretion signals are similar across many different bacteria.
These similarities include amino acid composition biases that
are located in the N-terminal 30 residues of the type III se-
creted effectors. Our comparison of the three methods re-
viewed indicate that they can predict secreted effectors with
comparable accuracies. The results provide only a little insight
into what the potential mechanisms of secretion signal recog-
nition might be. An existing hypothesis based on structural
studies is that this region may be disordered, and this idea is
supported by secondary-structure predictions made by Arnold
et al. (4), our structural characterization of several secretion

TABLE 3. Validation resultsa

Open
reading
frame

Gene

Validation result (rank of prediction) by:

SIEVE EffectiveT3
Löwer and
Schneider

41

CyaA fusion
assay

STM2585A 2 11 13 1
STM2585 3 11 14 2
STM2139 5 1 2 3
PSLT037 spvD 1 1 1 4
STM0082 srfN 14 11 12 5
STM3762 cigR 7 6 11 6
STM1087 pipA 4 3 3 7
STM1599 pdgL 6 4 10 8
STM1809 8 11 17 9
STM1513 9 11 7 10
STM1633 10 9 9 11
STM0211 yaeH 11 7 5 12
STM1121 ymdF 12 8 4 13
STM3392 yhdV 13 11 16 14
STM4082 yiiQ 15 10 6 15
STM3595 16 11 15 16
STM1548 17 5 8 17

a Bold values indicate the top five predictions.
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signal peptides (8), and our computational analysis discussed
here. A better understanding of the secretion signal could lead
to novel therapeutic agents that specifically target virulence
effectors and to methods of delivering proteins with therapeu-
tic (32) or other (83) uses.

Another aspect of effectors important to the understanding
of pathogen-host interactions is their function both in terms of
their host binding partners/targets and their mode of action.
The studies reviewed do not provide insight into these aspects,
but similar approaches based on machine learning may be a
way to begin to make predictions. A considerable problem in
this area is that bacterial pathogens have evolved many molec-
ular mimics to interact with host pathways. These proteins
share little sequence similarity with their host counterpart
(e.g., GTPase interacting proteins) but are structurally and
functionally similar (72, 73) and are therefore difficult to char-
acterize by examining primary protein sequence. Because of
this, they are good candidates for machine learning classifica-
tion methods that can consider more general features of pro-
tein sequences that might correlate with their function and can
learn similarities from known examples. However, there are
relatively few effectors in any particular class that have been
characterized, making this a difficult prospect at present.
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