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Abstract: ChIP-chip data, which shows binding of transcription factors (TFs) to promoter regions in vivo, are widely used by biologists 
to identify the regulatory targets of TFs. However, the binding of a TF to a gene does not necessarily imply regulation. Thus, it is impor-
tant to develop computational methods which can extract a TF’s regulatory targets from its binding targets. We developed a method, 
called REgulatory Targets Extraction Algorithm (RETEA), which uses partial correlation analysis on gene expression data to extract a 
TF’s regulatory targets from its binding targets inferred from ChIP-chip data. We applied RETEA to yeast cell cycle microarray data 
and identified the plausible regulatory targets of eleven known cell cycle TFs. We validated our predictions by checking the enrichments 
for cell cycle-regulated genes, common cellular processes and common molecular functions. Finally, we showed that RETEA performs 
better than three published methods (MA-Network, TRIA and Garten et al’s method).
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Introduction
A cell responds to environmental and physiological 
changes through reorganization of genomic expres-
sion. This kind of regulation is realized by transcrip-
tional regulatory networks (TRNs), which are mainly 
controlled by transcription factors (TFs). Therefore, 
identifying the sophisticated architecture of TRNs 
would reveal the fundamental aspects of the mecha-
nisms involved in the maintenance of life and adapta-
tion to new environments.1–5

The first step toward reconstructing TRNs is to iden-
tify the target genes of known TFs.6–10 Genome-wide 
transcription factor binding analysis, also called ChIP-
chip analysis, was developed to fulfill this goal.11,12 
ChIP-chip analysis can be used to identify physical 
interactions between TFs and the promoter regions 
which they bind to. Simon et  al13 performed ChIP-
chip experiments to find out the binding targets of nine 
major cell cycle TFs. Lee et al14 performed ChIP-chip 
experiments to investigate how the yeast 106 TFs bind 
to promoter sequences across genome. Harbison et al15 
conducted genome-wide transcription factor binding 
assays for 203 TFs in yeast to construct an initial map 
of the yeast’s transcriptional regulatory code. All these 
three studies are experiment-based approaches. They 
provided direct evidence of TF-promoter binding 
relationships. However, TF-promoter binding rela-
tionships are not equal to TF-gene regulatory relation-
ships. A TF may bind to the promoter of a gene but has 
no regulatory effect on that gene’s expression. Hence, 
additional information is required to solve this ambi-
guity inherent in ChIP-chip data.

Gene expression data were widely used to solve 
this problem. Exploiting the additional information 
provided by gene expression data, several algorithms 
have been developed to identify a TF’s regulatory tar-
gets from its binding targets (inferred from the ChIP-
chip analysis). For instance, Garten et  al’s method6 
used co-expression analysis, MA-Network9 used mul-
tivariate regression analysis, and TRIA7 used time-
lagged correlation analysis on gene expression data 
to classify a TF’s binding targets (inferred from the 
ChIP-chip analysis) into regulatory and non-regulatory 
targets. In this paper, we develop a new method, called 
REgulatory Targets Extraction Algorithm (RETEA), 
which applies partial correlation analysis between 
a TF and all those pairs of its binding targets which 
are highly co-expressed. Partial correlation analysis 

has been widely used to determine whether the asso-
ciation between two variables is due to the effect of 
the third variable.16,17 Here partial correlation is used 
to measure the residual correlation between two co-
expressed binding targets of a TF after removing the 
TF’s regulatory effect. Low partial correlation means 
that the co-expression between the two binding tar-
gets of the TF is mainly due to that TF’s regulatory 
effect. That is, this co-expressed binding target pair 
of the TF can be regarded as the co-regulation pair of 
the TF. Therefore, RETEA assigns a pair of the TF’s 
binding targets as the TF’s regulatory targets if these 
two binding targets have high correlation but low 
partial correlation. The flowchart of RETEA could be 
seen in Figure 1.

Methods
Datasets
Four data sources were used in this study. First, the 
ChIP-chip data of the cell cycle TFs in the rich media 
growth condition were downloaded from Harbison 
et  al’s paper.15 Second, the gene expression data of 
the yeast cell cycle process were downloaded from 
Paramila et al’s paper.18 Samples for all genes in the 
yeast genome are collected every 5  minutes for 25 
time points, which cover two cell cycles. Third, the 
mutant data of the TFs under study are downloaded 
from Hu et  al’s paper.8 They grew each of 263 TF 
knockout strains as replicates and compared mRNA 
expression of each of these strains with a wild-type 
strain using microarrays to identify the target genes 
whose expression profiles are affected when a TF has 
been knocked out. Fourth, the genome-wide distribu-
tion of the high-confidence TFBSs of many TFs in 
yeast was downloaded from MacIsaac et al’s paper.19 
The high-confidence TFBSs were derived by using 
six motif discovery methods, with the requirement 
for conservation across at least two of four related 
yeast species.

REgulatory Targets Extraction  
Algorithm (RETEA)
We first define B+ as the set of genes that are sig-
nificantly bound by a TF. Three previous papers13–15 
used a statistical error model to assign a P-value to 
the binding relationship of a TF-promoter pair. They 
found that if P-value  #0.001, the binding relation-
ship of a TF-promoter pair is of high confidence 
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and can usually be confirmed by promoter-specific 
PCR. Therefore, we include a gene in the set B+ if the 
P-value indicating that a TF would bind to the pro-
moter of the gene is #0.001. Then RETEA is used to 
classify B+ (binding targets of a TF) into B+R+ (regula-
tory targets of a TF) and B+R− (non-regulatory targets 
of a TF). Two genes in B+ are assigned into B+R+ if 
they have high expression correlation but low partial 
expression correlation (ie, low residual expression 
correlation after removing the regulatory effect of the 
TF). Those genes in B+ that are not belong to B+R+ are 
assigned into B+R-.

The details of RETEA are as follows. Let
x x xN= ( , ..., )1  and 



y y yN= ( ,..., )1 be the gene 
expression time profiles of two genes x and y 
retrieved from the cell cycle microarray data.18 Let 
z z zN= ( , ..., )1  be the protein activity time profile 
of TF z. Since the protein activity profiles of TFs are 
not available in the public domain, they need to be 
estimated by computational methods. In this study, 
we combine the mutant and gene expression data to 
do this task. The protein activity time profile of TF z 
is estimated by using the average of the gene expres-
sion time profiles of all the genes whose expressions 
are affected by the deletion of the TF z (inferred 
from the mutant data).8

Assume that the genes x and y are in the set B+ 
of TF z. Compute the Pearson correlation rxy between 
genes x and y and the partial correlation rxy|Z between 
the genes x and y given the TF z as follows
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y
i  /N, rxz (or ryz) is the Pearson 

correlation between the gene expression time profile 
of gene x (or y) and the protein activity time profile 
of TF z. Then the genes x and y are assign to B+R+ of 
TF z if rxy . Th1 & rxy|z , Th2, where Th1 and Th2 are 
the given thresholds. That is, the genes x and y are 
regarded as the regulatory targets of TF z if they have 
high expression correlation but low residual expres-
sion correlation after removing the regulatory effect 
of the TF z. Those genes in B+ that are not belong to 
B+R+ are assigned into B+R−. We claim that the genes 
in B+R+ are more likely to be the TF’s regulatory tar-
gets than are the genes in B+R−.

Results
Only a subset of a TF’s binding targets 
are identified as its regulatory targets
Since cell cycle process is one of the most well-
investigated cellular processes in yeast, we applied 
our method to identify the plausible regulatory 
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Figure 1. The flowchart of RETEA. 
Note: In the figure, g1 to g5 represent the five binding targets of Abf1. Among them, only g1, g2 and g3 are identified by RETEA as the regulatory targets 
of Abf1.
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targets of known cell cycle TFs (according to MIPS 
database).20 Eleven cell cycle TFs whose sizes of 
B+ greater than 65 are considered in this study. The 
number of genes in B+R+ and B+R− is listed in Table 1. 
On average, 60% of a TF’s binding targets are identi-
fied as its regulatory targets, which is similar to the 
results of MA-Network9 (58%) and TRIA7 (55%). 
The following two analyses were performed to vali-
date our results.

First validation: Enrichment for cell  
cycle-regulated genes in B+R+ and B+R−

Since the function of a cell cycle TF is to regulate the 
expression of the cell cycle-regulated genes, the reg-
ulatory targets of a cell cycle TF should be enriched 
in cell cycle-regulated genes. Therefore, our predic-
tions are validated if the cell cycle-regulated genes 
are more enriched in B+R+ than in B+R−. We first 
compute the proportions of genes of B+R+ and B+R− 
that belong to the 666 cell cycle-regulated genes 
identified by Pramila et al.18 We then test whether 
the enrichment of the cell cycle-regulated genes in 
B+R+ is statistically higher than that in B+R−. The 
cumulative hypergeometric distribution is used to 
assign a P-value for determining the statistical sig-
nificance (see Appendix for details). In most cases 
(9/11), except for Rap1 and Ume6, the cell cycle-
regulated genes are more enriched in B+R+ than in 
B+R− with P-value ,0.005 (see Table 2). This result 
suggests that our criterion for distinguishing regu-
latory from non-regulatory targets of a cell cycle TF 
is reliable.

Second validation: Enrichment  
for the common cellular processes  
and common molecular functions  
in B+R+ and B+R−

Because genes in B+R+ are regulated by the same TF, 
they are likely to be involved in the same cellular 
process or even have the same molecular function. 
Therefore, our predictions are validated if B+R+ is 
more enriched than B+R− for the common cellular 
processes and common molecular functions. Using 
GO term finder in SGD21 with FDR ,0.05, we found 
that in all cases (11/11), the number of enriched 
common cellular processes in B+R+ is larger than 
that in B+R- (see Fig. 2A). Besides, using GO term 
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Figure 2. Testing for the enrichment for the common cellular processes and 
common molecular functions in B+R+ and B+R- for eleven cell cycle TFs.

Table 1. The numbers of genes in B+, B+R+ and B+R- for 
each of the eleven cell cycle TFs under study.

TF B+ B+R+ B+R-

Abf1 213 129 84
Swi4 134 84 50
Swi6 134 88 46
Cin5 127 55 72
Rap1 125 87 38
Fkh1 116 83 33
Mbp1 114 88 26
Fkh2 107 66 41
Ume6 100 39 61
Swi5 90 45 45
Mcm1 67 35 32

Table 2. The enrichment of the cell cycle-regulated genes 
in B+R+ and B+R-.

TF B+R+ B+R- P-value

Abf1 23/129 4/84 3.37E-03
Swi4 55/84 6/50 5.73E-10
Swi6 61/88 7/46 1.32E-09
Cin5 16/55 3/72 1.05E-04
Rap1 12/87 4/38 4.28E-01
Fkh1 41/83 5/33 4.63E-04
Mbp1 56/88 1/26 1.70E-08
Fkh2 49/66 6/41 1.00E-09
Ume6 8/39 9/61 3.14E-01
Swi5 22/45 8/45 1.65E-03
Mcm1 26/35 7/32 1.83E-05
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finder in SGD with FDR ,0.05, we found that in 
most cases (9/11), except for Fkh1 and Fkh2, the 
number of enriched common molecular functions in 
B+R+ is larger than that in B+R− (see Fig. 2B). This 
result suggests that our criterion for distinguishing 
a TF’s regulatory from non-regulatory targets is 
reliable because co-regulated genes should have a 
greater probability to have the common cellular pro-
cesses and common molecular functions than non-
co-regulated genes.

Taken together, the two validations mentioned 
above convincingly demonstrate that RETEA is 
capable of extracting a TF’s regulatory targets from 
its binding targets.

Discussions
Performance comparison  
with three published methods
To identify the regulatory targets of a TF, Gao et al9 
developed MA-Network that used multivariate 
regression analysis on gene expression data and Wu 
et al7 developed TRIA that identified a temporal rela-
tionship between a TF and its target genes. Besides, 
Garten et al6 developed a method to identify a TF’s 
regulatory targets by integrating the ChIP-chip, pro-
moter sequence, and gene expression data. In their 
approach, gene i is said to be regulated by TF j if 
it is a binding target of the TF j (inferred from the 
ChIP-chip data) and it also has the following four 
kinds of evidence strengthening this assignment: 
1) significant expression coherence in at least one 
condition, 2) TFBS-containment in the promoter of 
gene i, 3) significant colocalization of the TF j with 
another TF where gene i is the binding target of both 
TFs, and 4) synergy of TF j with another TF where 
gene i is the binding target of both TFs.

Since our method and the three published methods 
mentioned above are developed to do the same task, a 
performance comparison of these methods should be 
done. Since a TF has to bind to its regulatory targets 
in order to regulate their expressions, enrichment of 
the high-confidence TFBS among the identified regu-
latory targets of that TF can be used as a criterion for 
performance comparison. The high-confidence TFBS 
were downloaded from the MacIsaac et al’s paper,19 
which were derived using six binding motif discov-
ery methods, also including the requirement for con-
servation across at least two of the four related yeast 
species.

The details of the performance comparison are as 
follows. Let S1 (S2, S3) be the set of regulatory tar-
gets of a TF that are identified by RETEA but not 
by MA-Network (TRIA, Garten et al’s method) and 
T1 (T2, T3) be the set of regulatory targets of a TF 
that are identified by MA-Network (TRIA, Garten 
et al’s method) but not by RETEA. We tested over-
representation of the high-confidence TFBS in Sj 
and Tj for j = 1,2,3. The cumulative hypergeometric 
distribution is used to assign a P-value to the TFBS 
enrichment (see Appendix for details). Since only 
five TFs (Abf1, Fkh2, Mbp1, Mcm1 and Swi4) were 
investigated in both RETEA and MA-Network, we 
used these five TFs for performance comparison. We 
found that in all of the five (5/5) cases the high-confi-
dence TFBS are enriched in S1 with P-value ,0.001 
but only three of the five (3/5) cases are enriched in 
T1 (see Table 3). This result shows that RETEA has a 
much better ability to identify the regulatory targets 
of a TF than does MA-Network. Similarly, as shown 
in Tables 4 and 5, RETEA is demonstrated to be bet-
ter than TRIA (5/8 vs. 4/8) and Garten et al’s method 
(7/8 vs. 6/8) in extracting regulatory targets from the 
binding targets of a TF.

Table 3. Performance comparison of RETEA with MA-Networker using TFBS data.

TF Expected Observed 
S1

P-value Observed 
T1

P-value

Abf1 870/6229 42/53 ,1.00E-12 56/62 ,1.00E-12
Fkh2 916/6229 13/24 7.13E-06 13/19 1.59E-07
Mbp1 792/6229 16/40 1.29E-05 7/17 3.20E-03
Mcm1 148/6229 6/15 6.82E-07 13/22 1.71E-11
Swi4 1731/6229 27/33 1.51E-10 11/24 4.46E-02
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Determination of the thresholds  
used in correlation and partial  
correlation analysis
The threshold Th1 is determined as follows. We 
compute the Pearson correlations of all possible 
gene pairs in the yeast genome to form a distribution 
of the expression correlation between two genes. 
Then the threshold Th1 is chosen as the correla-
tion value that is at the top 1% of the distribution. 
Similarly, the threshold Th2 is determined as 
follows. We choose all the gene pairs whose cor-
relations are larger than Th1. For each of these gene 
pair, we compute the partial correlation between the 
gene pair and each of the 203 TFs in yeast. Then we 
collect all the computed partial correlations to form 
a distribution. The threshold Th2 is chosen as the 
partial correlation value that is at the top 10% of 
the distribution.

The threshold values are determined by the fol-
lowing procedure. We ran RETEA using 12 differ-
ent settings of the correlation threshold (Th1) and 
partial correlation threshold (Th2) values. The result 
is summarized in Table 6. In the table, 9/11 means 

that for nine of the eleven cell cycle TFs the B+R+ 
is more enriched in the cell cycle-regulated genes 
(with P-value ,0.005) than that of B+R−. It could 
be seen that RETEA performs well when Th1 is 
chosen at the top 1% of the correlation distribution 
no matter which Th2 is used. However, when Th1 
is chosen at the top 3% or 5%, the performance of 
RETEA is bad. Therefore, we used Th1 (top 1%) 
and Th2 (top 10%) as the default parameter setting 
for RETEA.

Factors that affect the performance  
of RETEA
Two kinds of factors can affect the performance 
of RETEA. The first kind is the threshold values 
used in RETEA. We tried 12 different settings of 
the correlation threshold (Th1) and partial correla-
tion threshold (Th2) values and found a good one 
(Th1 at the top 1% and Th2 at the top 10%) that can 
make RETEA capable of extracting the plausible 
regulatory targets from the binding targets of 11 
cell cycle TFs. The other kind of factors that affects 
RETEA is the protein activity profiles of TFs. Since 

Table 4. Performance comparison of RETEA with TRIA using TFBS data.

TF Expected Observed 
S2

P-value Observed 
T2

P-value

Abf1 870/6229 42/51 3.36E-12 56/66 8.56E-12
Cin5 986/6229 10/23 1.50E-03 14/37 9.59E-04
Fkh1 1431/6229 17/23 3.04E-07 25/36 3.69E-09
Fkh2 916/6229 6/11 2.37E-03 12/35 3.02E-03
Rap1 515/6229 20/41 1.20E-11 23/36 3.54E-12
Swi4 1731/6229 13/20 5.62E-04 12/20 2.51E-03
Swi5 2918/6229 13/26 4.48E-01 16/23 2.35E-02
Swi6 2206/6229 33/48 2.47E-06 6/9 5.65E-02

Table 5. Performance comparison of RETEA with Garten et al’s method using TFBS data.

TF Expected Observed 
S3

P-value Observed 
T3

P-value

Cin5 986/6229 15/34 8.35E-05 21/47 2.52E-06
Fkh2 916/6229 20/34 3.30E-09 9/16 1.33E-04
Mbp1 792/6229 46/77 2.74E-12 2/13 5.06E-01
Mcm1 148/6229 6/13 2.43E-07 15/24 1.29E-11
Rap1 515/6229 19/30 8.06E-12 43/66 9.36E-12
Swi4 1731/6229 28/34 5.93E-11 21/34 3.44E-05
Swi5 2918/6229 16/27 1.35E-01 21/41 3.42E-01
Swi6 2206/6229 43/57 7.14E-10 24/29 2.12E-07
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the protein activity profiles of TFs are not available 
in the public domain, they need to be estimated by 
computational methods. In this study, the protein 
activity time profile of a TF is estimated by using 
the average of the gene expression time profiles of 
all the genes whose expressions are affected by the 
deletion of that TF (inferred from the mutant data). 
Our way to estimate the protein activity profiles of 
TFs may not be optimal and there is still much room 
for improvement. However, this issue will become 
minor when the experimental technology for mea-
suring the protein activity profiles is developed in 
the future.

Applying RETEA to identify plausible  
regulatory targets of oxidative  
stress-response TFs
In this paper, RETEA is applied to identify regulatory 
targets of eleven cell cycle TFs. For showing the gen-
erality of RETEA, we demonstrated that RETEA also 
performs well for cell-cycle irrelevant regulators. In 
this regard, we applied RETEA to identify regula-
tory targets of TFs that are involved in the oxidative 
stress response. The genome-wide gene expression 
and ChIP-chip data under the oxidative stress were 
downloaded from Gasch et al’s paper22 and Harbison 
et al’s,15 respectively.

Using GO term finder in SGD21 with FDR ,0.05, 
we found that in most cases (8/11), the number of 
enriched common cellular processes in B+R- is larger 
than that in B+R− (see Fig.  3A). Besides, using GO 
term finder in SGD with FDR ,0.05, we found that 
in most cases (9/11), the number of enriched com-
mon molecular functions in B+R- is larger than that in 
B+R− (see Fig. 3B). This result suggests that RETEA 
performed well not only for cell cycle TFs but also 
for cell cycle-irrelevant TFs.

Conclusions
In this study, an algorithm called RETEA is developed 
to identify the plausible regulatory targets of a TF 
from its binding targets. Since the binding of a TF to a 
gene does not necessarily imply regulation, algorithms 
like RETEA are needed in solving this ambiguity. We 
validated the effectiveness of RETEA by checking the 
enrichments for cell cycle-regulated genes, the com-
mon cellular processes and common molecular func-
tions. Besides, the performance of RETEA was shown 
to be better than three published methods (MA-Net-
work, TRIA, and Garten et al’s method). In addition, 
we showed that RETEA performed well not only for 
cell cycle TFs but also for cell cycle-irrelevant TFs. 
Taken together, we are confident that RETEA has the 
ability to find biologically relevant results and can be 
useful in systems biology study.

Appendix
Statistical test used in Table 2
A model based on hypergeometric distribution7 
is used to test whether the enrichment of the cell 
cycle-regulated genes in B+R- is statistically higher 
than that in B+R−. The formula is as follow:
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Table 6. Performance comparison of RETEA using 
different correlation threshold (Th1) and partial correlation 
threshold (Th2) values.
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Th1  
(top 5%)

Th2 (top 5%) 9/11 4/11 0/11
Th2 (top 10%) 9/11 4/11 0/11
Th2 (top 15%) 9/11 4/11 0/11
Th2 (top 20%) 8/11 2/11 0/11
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Figure 3. Testing for the enrichment for the common cellular processes 
and common molecular functions in B+R+ and B+R- for eleven oxidative 
stress-response TFs.
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where N = na + nb, M = ma + mb, na (nb) is the num-
ber of genes in B+R+ (B+R-), ma  (mb) is the number 
of the cell cycle-regulated genes in B+R- (B+R−), and 
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combinations of xa, xb such that Σ
i={a,b}

x
i = Σ

i={a,b} mi = M 
and sum all probabilities calculated as above where 
xa $ ma, which is taken as the P-value for rejecting 
the null hypothesis that enrichment of the cell cycle-
regulated genes in B+R+ is not statistically higher than 
that in B+R−.
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Statistical test used in Tables 3, 4, and 5
The proportions of genes whose promoter regions con-
tain the high-confidence binding site of the TF under 
study are calculated for S1 (S2,S3) and T1 (T2,T3), where 
S1 (S2,S3) is the set of regulatory targets of the TF under 
study that are identified by RETEA but not by MA-Net-
work (TRIA, Garten et al’s method) and T1 (T2,T3) be 
the set of regulatory targets of the TF under study that 
are identified by MA-Network (TRIA, Garten et al’s 
method) but not by RETEA. Note that only those TFs 
that are studied by both RETEA and previous methods 
can be used to do the performance comparison.

The high-confidence TFBSs were downloaded 
from MacIsaac et  al’s paper.19 These TFBSs were 
derived by using six motif discovery methods, under 
the requirement for conservation across at least two 
of the four related yeast species. The yeast genome 
has 6229 ORFs. Only 870 genes contain Abf1 binding 
site, 986 genes contains Cin5 binding site, 1431 genes 
contain Fkh1 binding site, 916  genes contain Fkh2 
binding site, 792  genes contain Mbp1 binding site, 
515 genes contain Rap1 binding site, 1731 genes con-
tain Swi4 binding site, 2918 genes contain Swi5 bind-
ing site, and 2206 genes contain Swi6 binding site.19

We tested over-representation of the high-confidence 
TFBS in S1  (S2, S3) and T1  (T2,  T3). The cumula-
tive hypergeometric distribution is used to determine 
the statistical significance. The P-value is defined as 
in Equation (1), where N  =  6229 is the number of 
genes in the yeast genome, M is the number of genes 
in G, where G = S1 (S2, S3) or T1(T2, T3), (eg, M = 24 
for Fkh2 if G = S1 and M = 19 for Fkh2 if G = T1; 
M = 11 for Fkh2 if G = S2 and M = 35 for Fkh2 if 
G = T2; M = 34 for Fkh2 if G = S3 and M = 16 for 
Fkh2 if G = T3), na is the number of genes in the yeast 
genome that contain the TFBS of the TF under study 
(eg, na = 916 for Fkh2) and ma is the number of genes 
in G that contain the binding site of the TF under 
study (eg, ma = 13 for Fkh2 if G = S1 and ma = 13 for 
Fkh2 if G = T1; ma = 6 for Fkh2 if G = S2 and ma = 12 
for Fkh2 if G = T2; ma = 20 for Fkh2 if G = S3 and 
ma = 9 for Fkh2 if G = T3).
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