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Abstract
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion
(AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall
adequacy of linear regression models. In addition, visually assessing adequacy in models has
become an essential part of any regression analysis. In this paper, we focus on a spatial
consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use
a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model
fit and influence for both individual observations and groups of observations in a Bayesian
framework. We use visualization of the local DIC and differences in local DIC between models to
assist in model selection and to visualize the global and local impacts of adding covariates or
model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using
HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993
using a range of linear model specifications, from global effects only to spatially varying
coefficient models, and a set of covariates related to sexual behavior. Results of applying the
diagnostic visualization approach include more refined model selection and greater understanding
of the models as applied to the data.
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Introduction
Many diagnostic tools are available to evaluate the adequacy of a linear model. Model
residuals are used to assess model fit, while diagnostics such as leverage values, Cook's
distances, DFFITS, and DFBETAS are used to identify outlying and influential
observations. Residuals provide a well-known tool for identifying outlying data points and
summarizing the contribution of each individual observation to the overall fit of a model,
thus providing valuable elements for constructing model diagnostics. To aid in the
evaluation of a model, diagnostic values are frequently presented in scatter plots with fitted
values or covariates to identify observations that may be suspect according to one or more
model characteristic (Neter et al., 1996). In fact, visually assessing lack of fit in models has
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become an essential part of any regression analysis. This is evident in many diagnostic
works in statistics, including that of Cook and Weisberg (1999), who use model checking
plots to evaluate the appropriateness of the linear model. The model checking plot is a
scatter plot of the fitted outcome and a function of the predictors, along with the ordinary
least squares fit and a lowess fit. Cook and Weisberg (1994) also use added-variable plots,
scatter plots for visually assessing whether a variable has explanatory power when added to
the regression model of the outcome on another variable. These added-variable plots, along
with ARES (Adding REgressors Smoothly) plots (Cook and Weisberg, 1994), are useful
diagnostic plots for model selection. For visually identifying influential observations, Cook's
distances are plotted against predictor values or are used to highlight certain observations in
a plot of residuals versus predictors in generalized additive models (Hastie and Tibshirani
1990). In spatial analyses, residuals themselves are also often mapped over the study unit to
inspect for significant spatial autocorrelation of errors, a violation of the independence
assumption of residuals in a linear model.

In addition to model diagnostic tools assessing the impact of individual observations,
methods of assessing overall goodness of fit and model complexity also have been
developed for linear models, such as Akaike information criterion (Akaike, 1973). The AIC
is defined as AIC = D(θ ̂)+2k, the combination of the deviance evaluated at the maximum
likelihood estimate of the parameters θ and a penalty defined as twice the number of model
parameters. The deviance D(θ ̂) is a general measure of fit defined as D(θ ̂) = −2log p(y|θ ̂),
with log p(y|θ ̂) denoted as the maximized log likelihood. The AIC fits into the broad
literature of classical covariate selection and model choice (Burnham and Anderson, 2002).
There are also a variety of statistical assessments of overall model fit in the Bayesian
paradigm, including Bayes factors (Kass and Raftery, 1995), Bayesian information criterion
(BIC: Schwarz, 1978), deviance information criterion (DIC: Spiegelhalter et al., 2002),
among others (Gelman and Pardoe, 2006). As a generalization of the AIC, the DIC is
appropriate for model comparison in complex hierarchical models where the number of
parameters is unknown, such as the models used in spatial analysis, with disease mapping
examples found in Zhu and Carlin (2000) and Best et al. (1999). As with the AIC, the DIC is
a measure of model fit or adequacy with a penalty for model complexity. An advantage of
the DIC is that one can easily calculate it from the Markov chain Monte Carlo (MCMC)
simulation samples generated when drawing samples from the posterior distribution of a
parameter in a Bayesian model. Another key advantage of the DIC is that it can be
partitioned into individual contributions from observations in the data, as few diagnostic
tools currently exist in the statistical literature to assess the local importance of additional
model covariates within groups or subsets of data. The partitioning of the DIC into
individual data contributions is outlined in Spiegelhalter et al. (2002). While the work of
Spiegelhalter et al. (2002) provides the components necessary for an approach to local
diagnosis of Bayesian model fit, an approach for visually diagnosing local spatial model fit
has not been previously explored.

A local partitioning of the DIC is especially relevant in spatial model applications, such as in
disease mapping, where relatively strong priors concerning spatial correlation among study
units are often used. In the applied spatial statistical literature, there has been a recent
emphasis on methodology that models local covariate effects, often spatially correlated,
instead of the more traditional models that represent relationships with fixed effects across a
study area. In reality, the association between a covariate and the occurrence of an outcome
may vary between geographic and demographic subsets of individuals. Examples of
reported differences in covariate and health outcome associations within a study population
include: 1) prevalence of Hepatitis C virus among drug users across two geographic regions
in Belgium (Mathei et al., 2004), 2) engagement in high risk sexual behavior among men
who have sex with men within different subgroups and geographic locations throughout the
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United States (McFarland et al., 2001; Leone et al., 2004; Guenther-Grey et al., 2005), and
3) prevalence of human immunodeficiency virus (HIV) among injecting drug users in urban
and rural Scotland (Haw and Higgins, 1998). Such studies suggest that the impact of a
determinant within a subset of individuals or a subset of the study area may drive an overall
significant association and falsely suggest an association for the entire population.
Conversely, parameter estimates based on the entire population may mask an influential
impact limited to a subset of the population. Some methodology in spatial statistics
recognizing the potential for these situations and allowing for regression relationships that
vary over space are Bayesian spatially varying coefficient (SVC) models (Gelfand et al.,
2003; Banerjee et al., 2004) and geographically weighted regression (Fotheringham et al.,
2002). In practice, spatially varying coefficient models can be computationally demanding
to fit, and local diagnostic tools that justify the additional computational effort in terms of
improved local fit and more accurate representation of relationships are needed. In addition,
local diagnostic methods to identify situations of differential fit and influence among spatial
subgroups are currently not well developed. Related to this is subset analysis, which
examines the effects of two or more treatments within each of several subsets, or subgroups,
of data along with an overall assessment (Shafer and Olkin, 1983). An issue in subgroup
analysis is that a large number of subgroups may be identified within a typical data set,
which raises concern about multiplicity effects (Dixon and Simon, 1991). Partitioning of the
DIC may be helpful in identifying areas or data subgroups where a specified spatial model is
ill-fitting or not particularly appropriate, i.e. where data are not in agreement with the prior.

In this paper, we focus on a spatial consideration of local DIC statistics for model selection
and goodness-of-fit evaluation. We expand on the DIC partitioning approach of
Spiegelhalter et al. (2002) to explore its applicability to visually assessing and quantifying
local model fit with individual and groups of spatial data. We use a partitioning of the DIC
to assess local model fit and data influence in a Bayesian framework for both individual
observations and groups of observations, with groups corresponding to predefined spatial
units. The interest in a partitioned DIC is to identify whether some models fit differently in
certain areas and highlight any local, rather than global, impacts of covariate effects. In our
approach to local model diagnosis, we introduce mapping of the partitioned, or local, DIC to
explore spatial patterns of model fit over different spatial areas. We also map differences in
local DIC values between models to examine the impact of adding additional covariates or
model parameters. In addition, we plot the local DIC components of deviance residuals and
leverage values and link plots of DIC components to maps of local DIC values. The novelty
of this work involves building diagnostic tools out of available components in a typical
Bayesian analysis to strengthen data analysis, an area of rich results from linear models
(Cook and Weisberg, 1994; 1999). We demonstrate the utility of the local diagnostics with
an example analyzing HIV type-1 (HIV-1) prevalence among pregnant women in the Butare
province of Rwanda during 1989-1993. We fit several models to the Butare HIV data and
visualize local DIC values to assist in model selection, moving from a regression model with
a global intercept to a spatially varying coefficient regression model in one analysis, and
then adding covariates in another analysis. In addition, we explore relationships between
local DIC, local leverage, and deviance residuals in the dataset.

Methods
Partitioning the DIC

Heretofore, the DIC has been primarily used for overall model comparisons in a Bayesian
setting, for example with public health data (Congdon, 2005; 2007). As a model comparison
criterion, it combines model fit and complexity, where model fit describes how well model
predictions match the data, and complexity, in a Bayesian sense, is a term coined to describe
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the relative structure of and associated difficulty of fitting a given model. The DIC is a
Bayesian measure of fit, D ̄(θ), penalized by the effective number of parameters, pD:

(1)

where the Bayesian deviance is

(2)

for observed data y, likelihood p(y | θ), parameter vector θ, and the sampling distribution
evaluated at the observed data, f(y). The effective number of parameters may be expressed
as

(3)

where D ̄(θ) denotes the mean deviance and D(θ ̄) denotes the deviance of the means of the
model parameters calculated from the posterior parameter distribution.

While the DIC has been primarily used as an overall, or global, measure of model fit, the
DIC can be partitioned into contributions from individual observations to provide a finer
level of detail of model inadequacy. Following Spiegelhalter et al. (2002), the partitioning of
the DIC according to individual observations is

(4)

where D ̄i(θ) is the mean deviance for observation i and pDi is considered the amount of

information observation i contributes to its own fitted value. The  with n
individual observations. The term pDi is also known as the leverage. In classical linear
regression, leverage values identify points that may change conclusions about the linear
model if removed, i.e. points that disproportionably influence for the model conclusions.

In linear model diagnostics, leverage values are the diagonal values of the hat matrix H, the
matrix that projects the data onto the fitted values. Leverages also have been used to
estimate the effective number of parameters as the trace of the hat matrix in smoothing
spline applications (Wahba 1990) and in generalized additive models (Hastie and Tibshirani,
1990). In smoothing, outliers in covariate space are referred to as leverage points and in
resistant smoothing the influence of these outlying points is minimized (Hastie and
Tibshirani, 1990). In the DIC, we estimate individual leverage values from the individual
mean deviance and deviance of the mean parameters,

(5)
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The DIC may also be partitioned at other levels of the data when there is a clear hierarchy in
the data to get another view of model inadequacy. As an example of partitioning the DIC at
multiple levels of the data, we briefly turn to our application of HIV status in Rwanda. For n
observations with a Bernoulli random variable, HIV status, with parameter pi, for each
observation, the deviance is

(6)

To partition the DIC by administrative unit, or sector, in Butare, Rwanda, one can calculate
the local DIC for each sector by aggregating over observations in each sector,

(7)

where nj is the number of observations in sector j and the observations are sorted by sector.
To calculate the effective number of parameters or leverage for each sector one can partition
the overall model complexity,

(8)

Given these equations, one can assess DIC, deviance, and leverage at the individual level or
the sector level. By grouping observations into areas or sectors, we can identify outlying
areas that have a large influence on the overall DIC. Often in small area public health
applications, disease or case counts are aggregated to the area level; hence, a typical analysis
would use partitioned DIC and leverage values at the area level. While one can observe the
partitioned Bayesian deviance for a model, it may be more informative to inspect the
deviance residuals, the individual contributions to the overall mean deviance. The deviance

residual , with the sign depending on the sign of yi − E[yi|θ ̄] (Spiegelhalter et al.,
2002). Deviance residuals may be used in general to identify where a particular model may
be lacking in fit and maps of deviance residuals can highlight spatial units for which the
model fit is poor. The deviance can be expressed as the sum of squared individual Bayesian
deviance residuals dr,

(9)

Visualizing the Partitioned DIC Components
As demonstrated repeatedly in the linear model diagnostics literature, visualization of model
diagnostics is beneficial for evaluating model adequacy in a variety of ways. In addition,
visualization of model output and diagnostics is particularly useful in the spatial analysis
literature. Visualization is especially important when spatial data are modeled and there are
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multiple spatial scales in the data in order to explore the local variation in model adequacy.
The approach of visualization of diagnostics described here is in accord with the philosophy
of exploratory data analysis expressed by Tukey (1977) and Chambers et al. (1983).

Having previously defined the partitioned DIC at multiple levels of data, we next outline
approaches for visualizing partitioned components of the DIC in several interesting ways to
gain insight into the local fit characteristics of the models considered in an analysis. The
approach suggested here includes using a combination of linked maps and graphs of
diagnostics to assess individual model fit and to compare the fits of multiple models. The
role of linked plots, or dynamic plots, in exploratory data analysis is described by Tierney
(1990) and Cleveland and McGill (1988). Briefly, linked plots enable one to interactively
select observations of interest in one graph and simultaneously highlight these observations
in all other linked graphs to better visualize the relationships between certain diagnostic
components. This technique of data brushing is innate in geographic information system
(GIS) software packages such as ArcGIS (ESRI 2005) and GeoDa (Anselin 2003).

An obvious first step in visualizing the partitioned DIC with spatial data is to map the local
DIC at an available spatial scale for any model of interest and look for relatively large
values. With individual level data matched to census units, the local DIC values could be
mapped for census block groups or census tracts, for example. The areas with the largest
local DIC values contribute the most to the overall model lack-of-fit. These local DIC maps
may be compared for several different models. Also when comparing models, scatter plots
of local DIC values for pairs of models may be instructive in showing specific areas where
one model improves on the fit of another model. Of course, the points in the plot must be
labeled with an area identifier. The information provided by this type of scatter plot would
not be available with a simple difference in overall DIC for two models. Another useful
graph when comparing models is a map of differences in local DIC values by area between
pairs of models. Graduated color maps of these local DIC differences not only highlight
areas with large differences in adequacy for two models but also indicate the magnitude of
the differences. When comparing models with the DIC and AIC measures, Spiegelhalter et
al. (2002) and Burnham and Anderson (2002), respectively, consider a difference in DIC of
2-3 and above as meaningful. One could conservatively use this guideline to suggest
meaningful differences in local DIC values when comparing models.

In addition to maps and plots of local DIC values, one can construct several graphs with
local DIC components. One possible plot is a scatter plot of leverages versus local DIC
values to highlight the most influential and ill-fitting observations or areas. This plot could
be linked to an area map of local DIC values to inspect for any clear spatial patterns in the
areas that appear to be outliers. When using a spatial model that considers spatial
dependence, areas with high leverage could be areas that are quite distinct from their
adjacent, or neighboring, areas. Another useful plot of local DIC components is a scatter plot
of leverages against deviance residuals with contours for reference DIC values, such as 2, 3,
or more (Spiegelhalter et al. 2002). Points outside of the meaningful DIC contour lines
would be identifiable as potential outliers and the composition of the outlier, in terms of
leverage and lack of fit, would be apparent. If this scatter plot is constructed at the area level
from aggregated sample points within areas, the local DIC could be driven largely by the
number of points inside each area. In this case, it will be useful to include another scatter
plot of leverages versus deviance residuals with symbols proportional to the number of
individual observations within each area.

Taken together, these dynamic scatter plots and maps can be combined effectively to
evaluate and compare model adequacy with respect to a number of difference criteria. These
graphs can all be created easily in a GIS software package after importing the local DIC
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component values derived from the MCMC samples. This approach is novel in the context
of Bayesian spatial data analysis in that it combines (spatially) local statistical diagnostic
tools with exploratory data analysis tools for model assessment. In the next section, we
provide an example of modeling HIV status in Rwanda using several models and plot the
partitioned DIC, deviance residuals, and leverage values for individual observations and
sectors to visually assess outliers in model adequacy.

Analysis of HIV in Rwanda
Rwanda HIV Data

Human immunodeficiency virus type-1 infection in sub-Saharan Africa has been identified
as a significant public health issue for more than two decades and continues to be of extreme
importance today. According to the Joint United Nations Programme on HIV/AIDS
(UNAIDS), Rwanda is one of nine African countries most severely affected by the HIV/
AIDS epidemic. In the mid-1980s, HIV infection was estimated to be 88% among sex
workers (Van de Perre et al., 1985) and 29 - 33% among women of childbearing age in the
capital city of Kigali (Allen et al., 1991; Bucyendore et al., 1993). While reports regarding
HIV-1 infection among subpopulations in Africa appear in the literature, few focus on
HIV-1 infection and associated regional and local risk factors among pregnant women of
childbearing age from a geographical perspective (Boerma et al., 1999; Hickson, 2005).

Between 1989 and 1993, the Department of Epidemiology at Johns Hopkins University
School of Hygiene and Public Health and the National University of Rwanda School of
Medicine conducted an epidemiologic study among pregnant women attending five ante-
natal clinics and residing in the Butare province of Rwanda to estimate HIV incidence and
prevalence and to identify socio-demographic and sexual history factors associated with
HIV infection. In the present study, 7,444 women living in 54 sectors within a 25 kilometer
radius of the town of Butare, Rwanda were included in the analysis. Variables collected
included HIV infection status, residential location, marital status, history of sexually
transmitted disease (STD), history of sexual intercourse as a source of income, sexual
partner's circumcision status, current syphilis infection status, and whether the woman had
sexual partners other than her husband/regular partner within five years. Residency
information was of particular interest because it allowed the investigator to map estimates of
HIV infection. Here, residency information allows us to identify sub-groups within the data
and to assess model fit within these data groupings to explore local impacts of covariates
effects. The study area is displayed in Figure 1, with the 54 sectors shaded corresponding to
the percent of surveyed women who were HIV positive.

Study results have been presented previously and reveal geographical differences in the
prevalence of HIV infection and several high risk sexual behaviors among this sample of
pregnant women (Chao et al., 1994; Bulterys et al., 1994; Hickson, 2005). Hickson (2005)
reports an increased risk of HIV-1 infection for women who have ever engaged in sexual
intercourse to support themselves. A relatively large percentage of women who reside in
several of the urban sectors reported engaging in this high risk sexual behavior. However,
there is no particular geographical pattern in the percentage of women who engage in this
high risk sexual behavior by spatial sector and possible spatial variation in the association
between HIV serostatus and this risky behavior, as well as others, helps motivate our
research.

There were several explanatory variables in the dataset with missing values due to non-
response. To address the missingness in the data, we performed Bayesian multiple
imputation. To do so, we simulated covariate values for observations missing data by
treating the missing covariate values as unknown parameters with a prior mean for each
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covariate centered on the observed data mean. After simulating an adequate number of
samples from the posterior distribution, we took a random draw from the posterior and used
the selected values for missing observations. In the modeling analysis that follows, we use a
complete dataset, comprised of mostly observed values and some imputed values for
missing covariate values.

Models for HIV Status
In this analysis of HIV prevalence, we evaluate the partitioned DIC for several Bayesian
hierarchical models fitted to HIV status. We start the analysis with one covariate, earned
money for sex, and fit models increasing in complexity from a global intercept to spatially
varying coefficients with spatial correlation. An objective here is to not just compare the
overall DIC among models as is typically done, but to compare the spatial patterns of local
DIC estimates among models to determine the local impacts of differences in specific model
specifications. We assume that HIV status is a Bernoulli random variable with probability pij
for each sampled individual i, Yij ∼ Bernoulli(pij). The subscript j in the following models
indicates the sector in which each individual woman resides. We use a logit link function to
model the probability of HIV status as a linear function of data and parameters, defined by
θij in logit(pij) =θij. The initial candidate models are

Model 1: θij = α0,

Model 2: θij = α0 + β1xi1,

Model 3: θij = α0 + β1xi1 + γj,

Model 4: θij = α0 + β1xi1 + φj,

Model 5: θij = α0 + βj1xi1,

Model 6: θij = αj + βj1xi1.

Model 1 has an intercept only (α0), while Model 2 includes a covariate, x1= ever engaged in
sexual intercourse to support oneself, and an overall effect. Model 3 has exchangeable
random effects for sectors, γ ∼ N(0, τ), where τ is the precision. Model 4 has spatially
correlated random effects, with spatial correlation specified through an intrinsic conditional
autoregressive (CAR) prior, φ ∼ CAR(τ1), where τ1 is the precision. The CAR distribution
may be expressed as

(10)

where mj is the number of adjacent areas for area j. The conditional mean of the distribution
is φ ̄j = Σlinδjφl, where δj is the set of neighbors adjacent to area j. In Model 5, the covariate
effect is allowed to vary over sectors, where the spatially varying covariate effects have a
CAR prior, β1 ∼ CAR(τ2), where τ2 is the precision. In Model 6, the intercept may also vary
by sector, and the intercept and covariate effects are specified together with an intrinsic
multivariate CAR, or MCAR prior, that models spatial correlation as well as correlation
between regression terms. Rewriting the varying intercept to be βj1 and the single covariate
to be βj2, the MCAR prior for the vector of two spatially dependent random effects in each
area j, βj = (βj1,βj2)′, has a multivariate conditional distribution

(11)

Wheeler et al. Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2011 January 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where β̄j = (β ̄j1, β ̄j2)′, β ̄jk = Σl∈κj βlk/mj, κj is the set of neighboring areas for area j, and mj is
the number of neighbors for area j. The diagonal elements of Σβ are the conditional
variances of the βk's and the off-diagonal elements are the conditional covariances between
pairs of βk's. See Besag et al. (1991) for additional details about the intrinsic CAR model and
Mardia (1988), Gelfand and Vounatsou (2003), and Banerjee et al. (2004) for details on the
MCAR model. In a secondary analysis, we will later add additional covariates to some of the
models described above and inspect the local differences in DIC that result from adding one
covariate to the model.

Prior distributions are required to complete the Bayesian models and allow for posterior
parameter estimation. The prior distributions for the non-varying regression terms are
normal and vague, for example, the prior for the intercept is α0 ∼ N(0, τ0). The priors for the
precisions of the regression terms are gamma, for example, τ0 ∼ G(1,1). The priors for the
precisions of the CAR priors are also gamma, τ1 ∼ G(1,1) and τ2 ∼ G(1,1). The G(1,1) prior
is a popular, conjugate hyperprior for CAR precisions (Banerjee et al. 2004). The prior for
the within-area, between-coefficient variance-covariance matrix Σβ in the MCAR prior is
assigned a vague inverse Wishart distribution with hyperparameter scale matrix set to
0.02·I2×2, where I is the identity matrix, and degrees of freedom ν = 2, Ω ∼ IW(ν, 0.02·I).
While the results and inferences may be sensitive to the choice of hyperparameters, the
choice of hyperparameters will not change our relative conclusions in the comparisons of
model results, i.e. our focus is on relative fit of the models and we do not change
hyperparameter values between models. We fit the Bayesian hierarchical models using
WinBUGS (Spiegelhalter et al., 2003) software with MCMC simulation to provide samples
of model parameter values from their joint posterior distribution. We use a “burn-in” period
of 1,000 iterations and 5,000 subsequent samples from the joint posterior distribution to
calculate posterior median estimates of the parameters for each model. We generate the
sector adjacency list required in the CAR and MCAR priors in GeoBUGS (Thomas et al.,
2004).

Rwanda HIV Model Results
Overall DIC

The overall DIC for each of the six initial models described above is listed in Table 1. In this
table itself there are several interesting results. In comparing models, we follow the
guidelines in Spiegelhalter et al. (2002) and Burnham and Anderson (2002) and use a
meaningful difference in DIC of 3 and above. As expected, the intercept-only model has the
highest DIC. The relatively large difference in DIC between models 1 and 2 indicates that
ever having sex to support oneself is a significant factor in explaining HIV status for women
studied in this region of Rwanda. The substantial difference (26.3) in DIC between Model 2
and Model 5 suggests that the ever having sex to support oneself effect varies significantly
over sectors and that it is worthwhile to include a spatially varying coefficient for this
variable. Model 3 and Model 4 have much lower DIC values than Model 2, which suggests
that it is beneficial to include a random effect for each sector. That Model 3, in turn, has an
appreciably lower DIC than Model 4 reveals that introducing spatial correlation in the
random effects through the popular CAR prior is not beneficial in fitting HIV status, given
that the effective number of parameters are almost the same (38.6 for Model 3 versus 39.5
for Model 4), i.e. the mean deviances explain the difference in DIC values. There are of
course other available spatial models and our conclusion about spatial correlation applies
only to the CAR-based models considered. The result that Model 3 and Model 4 have lower
DIC values than Model 5 indicates that the random intercept by sector assists more in fitting
HIV infection status than does a spatially varying effect for money for sex with no random
intercept. This suggests that important covariates are left out of the model, as the sector-
specific random effects represent some local unmeasured risk factors. Model 6, the spatially
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varying coefficient model, has the lowest DIC. This supports earlier conclusions that the
effect of ever having sex to support oneself varies spatially and that potentially important
risk factors have not been included in the model.

Local DIC
While comparing the overall DIC values provides interesting interpretations and provides
evidence to rule out some models, our primary interest is in the patterns of local DIC values
by sector. The local DIC for each sector for Models 1-6 is mapped in Figure 2. The sectors
are labeled with identification numbers in the local DIC map for Model 1 and are shaded by
local DIC value using a natural break classification scheme based on the values for Model 2.
The overall pattern in local DIC values for Model 1 shows clear spatial variation in DIC,
with higher DIC values tending to be found in the urban center areas and lower DIC values
located in the peripheral urban areas. For this study, the overall pattern in DIC by sector can
be at least partly explained by the number of women sampled residing in each sector, as the
aggregated observations in more populous areas, where more women were sampled, tend to
result in larger DIC values. In general, however, plotting local DIC values should be
illuminating to any pattern in model adequacy.

Perhaps more interesting in this analysis, is the relative comparison of patterns of local DIC
among models. According to the overall DIC values, Model 2 improves on Model 1 overall,
however, in comparing the local DIC maps for models 1 and 2, it is clear that adding the sex
for money covariate in Model 2 has reduced the DIC from Model 1 in certain areas, such as
sectors 4, 51, 48, and 53. Sector 4, coincidently, has one of the highest counts of women
who have ever exchanged sex for money in order to support themselves. In a similar
comparison, Model 3 reduced the DIC in sectors 2 and 45. These visual comparisons are
revealing, although they do not show precisely how much local DIC values change between
models. We later address this with maps of local DIC differences between models. There
appear to be no differences in local DIC values between models 3 and 4 using the current
choropleth classification. The difference in overall DIC between these models is
approximately 6, coming from an aggregation over 54 sectors, so it is not surprising that the
patterns in local DIC are similar. In addition, the pattern in local DIC values for Model 6 is
similar to models 3 and 4. Again, there is a relatively little difference in overall DIC
between these models. To closer look at differences in local DIC between pairs of models,
the local DIC values for Model 3 versus Model 2 and Model 4 versus Model 3 are plotted in
Figure 3. These scatter plots show that the main decrease in local DIC from Model 2 to
Model 3 comes in sector 2, and that there is no noticeable change in DIC for any sector
when going from Model 3 to Model 4. This latter result again illustrates that it is not
necessary to induce correlation in the random effects with these data. While in practice,
based on the overall DIC values, one would select Model 3 over Model 4, partitioning the
DIC by sector reveals that the decrease in DIC from using Model 3 is not derived from one
sector or a group of sectors in particular, but rather from small decreases across the entire
study area.

As mentioned, the relatively large difference in overall DIC values for models 2 and 5
suggests that the sex for money covariate effect varies over sectors. We investigate this
variation further through looking at the local DIC differences in the models. The pattern of
local DIC differences between two nested models with different types of effects (global or
local) on a common covariate may indicate that the particular predictor variable is important
in some sectors and not in others. It may, however, result more from substantial differences
in observed covariate and response values in sectors. To visualize the patterns in local DIC
differences and estimated coefficients, the differences in DIC for models 5 and 2 and the
estimated regression coefficients β ̂j1 from Model 5 are plotted in Figure 4. The top map
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shows  with positive differences in DIC greater than 3 plotted in white,
negative differences greater than 3 in magnitude plotted in black (meaningful improvement
in the DIC with Model 5), and insignificant differences shaded gray. The bottom map shows
the posterior median estimates of the sex for money effect, with coefficients that are not
significant based on the 95% credible intervals shaded with a crosshatch pattern. There are
four sectors that have meaningfully lowered DIC with Model 5; these are sectors 2, 14, 26,
and 44. However, the major improvement in DIC is with sector 2, which has a reduction of
29.0 in DIC with Model 5. Sector 2 is an outlier in that it has by far the highest response
variable value, with 43 percent of sampled women in that sector having a positive HIV
status. Furthermore, this sector has a high concentration of commercial sex workers, a
university with a population of over 4,000 male students (at the time of the original study)
and a military base (Chao et al. 1994). This sector also has the largest estimated coefficient
for the sex for money variable, with β ̂2,1 = 3.08. Clearly, allowing the coefficient for the sex
for money variable to increase for this sector relative to other sectors improves model fit
meaningfully. There are seven sectors that have significant coefficients for the sex for
money covariate based on the 95% credible intervals and they are all located in the center of
Butare and all have a positive estimated coefficient for the sex for money variable.
Inspecting these two maps together is beneficial for conveying the nature of the relationship
between the response variable and the covariate of interest and also emphasizing the areas of
greatest improvement in model fit with a spatially varying effect.

Local DIC Components
In addition to mapping the local DIC values, it is worthwhile to visualize the local DIC
components and look for any patterns. Figure 5 contains a scatter plot of the leverage versus
the local DIC by sector from Model 3 linked to a map of local DIC values. There is a
curvilinear relationship between leverage and local DIC. The plots have highlighted the
sectors with the largest DIC and leverage. These sectors contribute most to the overall DIC
and are relatively more influential in the linear expression used to estimate HIV status. The
selected sectors are somewhat clustered in the central and south central sections of Butare.
Given the hierarchy in the Rwanda HIV data, we also plot the relationship between leverage
and the deviance residuals for individual observations from Model 5 in Figure 6 with
parabolas for DICi = 1, 2, or 3 where points on a parabola contribute an equal amount (1, 2,

or 3) to the overall DIC, given that . Points located outside the outer
parabola contribute more than 3 to the overall DIC. In the left plot in Figure 6, the individual
observations are labeled by their sector identifier. There can be several occurrences of a
sector ID in the plot due to using individual observations instead of sectors, for which
deviance residuals are not available. For example, there is an observation from sector 50
with a negative deviance residual just outside the parabola corresponding to DICi = 1 and
another observation from that sector with a positive deviance residual outside the parabola
for DICi = 2. While not apparent, there are several overlapping observations from the same
sector at various locations in the plot. To address this, the right plot in Figure 6 contains
graduated symbols that indicate the number of observations for each sector with the same
coordinates of the deviance residuals and leverages in the left plot. In the right plot, it is
clear sector 2 is contributing a relatively large number of observations with DICi > 3 and dri
> 2. Sector 6 also has a relatively large number of observations with DICi > 2.

Local DIC and Variable Selection
In addition to using the local DIC components for comparing models with different effects,
it is potentially worthwhile to use the pattern of local DIC to select other covariates to
include in the model. Given that local DIC values are higher in the urban areas, it seems
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sensible to add covariates displaying a concentration, in either high or low values, in these
areas. To this end, we plot the sector-level covariate values in Figure 7 for percent married,
percent with an STD, percent testing positive for syphilis, percent with circumcised partners,
and percent having had a sexual partner other than their husband/regular partner within five
years. In looking at the patterns of the covariates, it appears there is some co-patterning with
the local DIC values from the models with percent married, percent STD, and percent
having other sexual partners. Percent married appears low where local DIC values are high
in urban areas. Conversely, percent with an STD and percent with other sexual partners
appear high in these more urbanized areas. To determine if these variables will lower the
DIC, we add each of the five covariates plotted in Figure 7 to Model 3 separately to create
five new models. We use Model 3 as the base model to focus on the impact of a adding a
new overall covariate effect. The new models include the following new variable, Model 7:
marriage status, Model 8: STD status, Model 9: syphilis status, Model 10: circumcised
partner, Model 11: other sexual partner. These models are defined generally as

(12)

where Xi is the row vector of covariates for subject i and β is the column vector of
corresponding regression coefficients.

The overall DIC, effective number of parameters, and mean deviance for each of the five
models are listed in Table 2. According to the DIC and mean deviance values, the model
with STD (Model 8) fits HIV status the best, followed by the model with other sex partner
(Model 11), and then the model with marriage status (Model 7), and there are meaningful
differences in fit among the models. The effective number of parameters is essentially the
same with rounding (39) for the models, as expected. More interesting than the overall DIC
values, however, are the differences in local DIC estimates in each sector for the new
models and Model 3. These differences effectively show where an additional covariate has
utility for improving model fit within a given sector. The differences in DICj for models 7
through 11 and Model 3 are mapped in Figure 8. The first of the maps in Figure 8 shows

; the others are of similar form. The model with the greatest overall decrease in
DIC, Model 8, decreases the local DIC in the sector with the largest DIC in Model 3, sector
6. This model also has the largest decrease in local DIC for any sector (18.6). Adding the
STD variable also decreases the DIC in several of the other high-DIC sectors from Model 3,
including 2, 3, 5, and 36. Model 11 significantly decreases the local DIC in the high-DIC
sectors 3, 6, 7, 26, and 36. Adding the married covariate decreases the local DIC in several
sectors with high DIC in Model 3, such as sectors 3, 7, 8, 20, 26, 36. Adding the syphilis
variable (Model 9) also decreases the DIC in the sector with the largest DIC in Model 3
(sector 6). It is worth mentioning that the DIC with all six covariates included in an
exchangeable model (Model 3 type) is 4056. All global covariate effects are significant in
the model with intuitive signs, in that only the married covariate effect is negative, the rest
are positive. For a SVC model (Model 6 type) with all six covariates included, the overall
DIC for is 4027. Therefore, there is substantial evidence for spatially varying effects for at
least some of the variables.

Discussion
The DIC is a summary of global fit and complexity for models with complex hierarchical
structures. We present a partitioning of the DIC into local deviance and leverage
components to be used as diagnostic tools for local model adequacy. We propose
visualization tools in the form of linked plots and maps of diagnostics to aid in the
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assessment of local model fit and influence for both individual observations and aggregated
observations in Bayesian hierarchical models. Plotting local DIC values or the deviance
residuals shows any observations or areas that are especially poorly fitted and plotting
leverages is beneficial in identifying observations with disproportionally strong impact on
particular covariate values. Through visualizing the local DIC for each model and
comparing it across several models, we can assess comparative local model fit and identify
local impacts of model parameters. This is the case in our illustrative application of
modeling HIV infection status in Butare, Rwanda, where the partitioned DIC identifies local
impacts of a covariate effect. The sector-specific DIC estimates suggest evidence in favor of
a spatially varying effect for the variable of women who engage in sexual intercourse to
support themselves. The local DIC differences also show the value in selecting several
covariates to add to a model, including syphilis status, marriage status, and women who
have had sex with someone other than their husband or primary partner. When working with
large datasets or complex models, this visual approach to model selection may prove useful,
and at least should offer focused insights to model behavior in the same spatial context as
the analysis.

Our approach for diagnosing spatial hierarchical models uses a combination of Bayesian
statistical modeling and geographic information systems. Geographic information system
technology is increasingly being utilized in public health research for exploring spatial
relationships in disease. Bayesian statistical modeling is useful for quantifying trends and
explaining spatial variation in disease rates. Taken together, we obtain a powerful set of
tools for the statistical analysis of spatially-referenced data. In order to take full advantage of
these tools, our model diagnostics should utilize the richness of the Bayesian output as well
as the visualization capabilities of GIS in order to bring the same level of spatial
visualization to model diagnostics as is often applied to display model output. As we have
described, in the Bayesian framework the partitioned DIC components for individual
observations or areas are easily attained from the MCMC simulation routine and can then be
mapped to evaluate patterns in local DIC. Some mapping of diagnostics is possible directly
in the Bayesian analysis software WinBUGS through GeoBUGS, although more flexibility
is found in GIS software, such as ArcGIS. Our analysis of HIV infection data from Butare,
Rwanda demonstrates that using Bayesian hierarchical models in combination with GIS
technology can reveal spatial patterns in local model fit and highlight areas of high influence
and poor fit in both individual observations and aggregations of observations in areas.

While use of the partitioned DIC for assessing model adequacy looks promising, several
concerns have been expressed regarding the DIC as a measure of model fit and complexity
(Spiegelhalter et al. 2002). One apprehension with pD for some is that it is not invariant to
the selected parameterization, as the model deviances may change with using posterior
medians for example instead of posterior means. Spiegelhalter et al. (2002) suggest
calculating the DIC with several different estimators to address this issue. Another concern
with the DIC is the fact that pD can be negative for some models, which does not have a
clear interpretation when considering it as a measure of model complexity. Typically, this
anomaly occurs in models with very asymmetric posterior distributions where the posterior
mean is a poor summary statistic (Carlin and Louis, 2009, p. 214). Others have also
expressed unease that the DIC is not asymptotically consistent; it will not always select the
true model from a set as sample size increases. While negative pD was not an issue in the
models fitted to the Rwanda HIV data, issues with the DIC will be present with the
partitioned DIC and modelers should not use this tool uncritically.

This work proposes a step forward in the development and utilization of a suite of local
diagnostics for hierarchical linear models, and for spatial hierarchical models in particular.
Similar partitions of model fit criteria, such as Bayes Factors, could possibly be utilized to
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assess local model fit. While a partitioning of the DIC by geographic areas is the most
natural in our study, one could imagine other underlying structural features, such as
socioeconomic status, ethnicity, environmental exposure, and health clinic type. The
approach is flexible to different types of partitions of the data. Given our experience, the
development and application of additional local diagnostics and creative methods of
visualization merits attention in future research.
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Figure 1. Percent women sampled with HIV infection in each of 54 sectors in Butare, Rwanda
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Figure 2. Local DIC for models 1 through 6 with sectors labeled by identifiers in the Model 1
map
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Figure 3. Local DIC for Model 3 versus Model 2 (left) and Model 4 versus Model 3 (right)
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Figure 4. Local DIC difference in models 5 and 2 (top) and posterior median estimates of the sex
for money covariate with insignificant effects shaded with crosshatching (bottom)
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Figure 5. Local DIC for Model 3 with a scatter plot of local leverage versus local DIC. Sectors
with high leverage and DIC are highlighted
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Figure 6. Leverages versus deviance residuals for individual observations labeled with sector
identifiers in the left plot and graduated symbols for the number of observations per sector with
the same leverage and deviance residual where the parabolas indicate contributions of 1, 2, or 3
to the overall DIC
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Figure 7. Percentages by sector for five covariates used in models 7 through 11
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Figure 8. Local DIC differences between models 7 through 11 and Model 3
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Table 1
Local DIC, mean deviance, and effective number of parameters for models 1 through 6

Model DIC D ̄(θ) pD

1 4659.6 4658.6 1.0

2 4533.7 4531.7 1.9

3 4297.6 4259.0 38.6

4 4303.7 4264.2 39.5

5 4507.4 4483.6 23.7

6 4290.9 4257.5 33.4
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Table 2
Local DIC, mean deviance, and effective number of parameters for models 7 through 11

Model DIC D ̄(θ) pD

7 4218.7 4179.4 39.2

8 4201.3 4162.9 38.5

9 4269.5 4230.2 39.3

10 4272.0 4233.4 38.7

11 4208.4 4169.7 38.8
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