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Abstract
It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of
excessive calcium ion (Ca2+) entry in central neurons, which may activate degradative processes
and thereby cause cell death. Therefore, NMDARs are now recognized to play a key role in the
development of many diseases associated with injuries to the central nervous system (CNS).
However, it remains a mystery how NMDAR activity is recruited in the cellular processes leading
to excitotoxicity and how NMDAR activity can be controlled at a physiological level. The sodium
ion (Na+) is the major cation in extracellular space. With its entry into the cell, Na+ can act as a
critical intracellular second messenger that regulates many cellular functions. Recent data have
shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of
NMDARs. While Ca2+ influx during the activation of NMDARs down-regulates NMDAR
activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced
inhibition and thereby potentiate both NMDAR activity and inward Ca2+ flow. Extensive
investigations have been conducted to clarify mechanisms underlying Ca2+-mediated signaling.
This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and
toxicity.

Keywords
NMDA receptors; sodium and calcium influx; sodium and calcium signaling; excitability; toxicity

I. INTRODUCTION
Cytoplasmic Ca2+ is the most common signaling factor in all types of cells. Normal
intracellular Ca2+ concentration ([Ca2+]i) is approximately 40,000-fold lower than
extracellular [Ca2+], which ranges from 1 to 2 mM 14,27. Ca2+ ions enter neurons via various
pathways including voltage-gated Ca2+ channels, ligand-gated Ca2+ channels and the Ca2+

exchangers 27,34. It is known that activated NMDAR channels are a major route of excessive
Ca2+ entry in neurons 26,41,62,69,91,96,117. While excessive intracellular Ca2+ may activate
degradative processes and thereby cause toxic effects 20,27,40,117, NMDAR channel activity
may be inhibited by intracellular Ca2+ through: (i) α-actinin/cytoskeleton dissociation from
the NR1 subunit of NMDARs 55, (ii) calmodulin activation 37,55,104,116, and (iii)
activation of phosphatases, such as calcineurin which dephosphorylates NMDARs 59,72,94.
The Ca2+-induced down-regulation of NMDARs is considered an important negative

Address correspondence to: Xian-Min Yu, 1115 West Call Street, Tallahassee, FL 32306-4300. Tel: 850-645-2718; Fax:
850-644-5781; xianmin.yu@med.fsu.edu.

NIH Public Access
Author Manuscript
Health (Irvine Calif). Author manuscript; available in PMC 2011 January 12.

Published in final edited form as:
Health (Irvine Calif). 2010 ; 2(1): 8–15. doi:10.4236/health.2010.21002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



feedback mechanism to control NMDAR activity 33,56,64,66. Based on these findings we
questioned: How do excessive amounts of Ca2+ get into neurons through NMDARs if
NMDARs are inhibited by Ca2+ influx?

Na+ is the major cation in the extracellular space, and it can enter cells through a variety of
routes including permeation through ligand- (e.g., glutamate) and voltage-gated cation
channels, uptake via membrane exchangers and gradient-driven co-transporters 73. NMDAR
channels are highly permeable to both Na+ and Ca2+. Short burst or tetanic stimulation of
afferents that induces synaptic LTP increases [Na+] up to 40 or 100 mM in spines and
adjacent dendrites 82,83. These increases can essentially be prevented by the blockade of
NMDARs, indicating that they are mainly mediated by Na+ entry through NMDARs 82,83.

Our initial studies demonstrated that intracellular Na+ is an up-regulator of NMDARs, such
that raising [Na+]i or activating Na+ permeable channels may increase NMDAR-mediated
currents 110,112,113. We then identified that an increase of 5 ± 1 mM in [Na+]i represents a
threshold required to mask the down-regulation of NMDARs induced by Ca2+ influx.
Further increases in Na+ influx not only significantly enhance Ca2+ influx induced by the
activation of NMDARs, but also overcome the Ca2+-dependent inhibition of NMDARs
107,110. This review focuses on the roles of Na+ in the development of tissue injury and in
the regulation of Ca2+-mediated NMDAR signaling and toxicity.

II. Na+ IN THE PROCESS OF TISSUE-INJURY
A significant increase in [Na+]i is a characteristic event associated with tissue injury 6–
9,42,87,92. Application of voltage-gated Na+ channel blockers reduce both Na+ entry and
apoptotic neuronal death 7 whereas increases of Na+ entry by application of the voltage-
gated Na+ channel activator, veratridine, induce neuronal apoptosis and caspase-3 activation
7,8. There is a report showing that during anoxia Na+ entry can occur through either Gd3+-
sensitive channels or via Na+/K+/2Cl− co-transporters in cultured hippocampal neurons 88,
implying that multiple pathways for Na+ entry may be activated during tissue injury.

It is known that Na+ influx into the cell is accompanied by chloride ions (Cl−) and water,
which can lead to acute neuronal swelling and damage 25,26. Previous studies have shown
that Na+ entry may cause an increase in cytosolic Ca2+ through either Na+/Ca2+ exchangers
or activation of voltage-gated Ca2+ channels 17,53, thereby activating Ca2+-dependent
signaling mechanisms. Moreover, Na+ entry via Na+/H+ exchange may cause changes in
intracellular pH, and thereby regulate many cellular functions including enzyme activity,
neuronal growth and death 10,18,70,71,88,89. A recent study showed that Na+ influx plays an
important role in the onset of anti-Fas-induced apoptosis and that blocking Na+ influx may
rescue programmed cell death in Jurkat cells 19. Cox and colleagues reported that the
binding of agonists to opioid receptors on guinea pig cortical neuron membranes is
significantly reduced by increases in [Na+]i of 10 – 30 mM 105. Maximal inhibition of μ-, δ-
and κ-opioid receptor binding by Na+ is approximately 60%, 70% and 20%, respectively
105. Co-occurrence of Na,K-ATPase dysfunction and Na+ influx causes α-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) proteolysis and a rapid
reduction of AMPAR cell-surface expression 115. Na+-mediated K+ channels such as Slo
gene-encoded K+ channels 15,16,35,76,114, are widely distributed throughout the nervous
system and are involved in both the regulation of the after-potential following action
potentials 16,63, and the protection of neurons from hypoxic stimulation 16,35,114.

While the details of the mechanisms remain to be clarified, significant pharmacological data
have demonstrated the protective effects of blocking Na+ influx during injuries to the
nervous tissue. The blockade of voltage-gated Na+ channels can prevent neurons from
traumatic spinal cord injury 1,2,8,39,46,92,93 and the loss of white matter 1,8,30,93,
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concurrently reducing the sensitization associated with pain 4,28,32,103 and preventing
seizures during kindling development 81. The inhibition of Na+-H+ exchange attenuates
ischemia-induced cell death 68,100. As a result, a major focus of pharmaceutical research has
been the search for effective therapeutic approaches that target voltage-gated Na+ channels
8,87.

III. THE ROLES OF Na+ IN THE REGULATION OF Ca2+-MEDIATED NMDAR
SIGNALING AND TOXICITY
Calcium influx through activated NMDARs is regulated by Na+ influx

Activated NMDARs are highly permeable to both Na+ and Ca2+ 33,64,66. Prolonged
increases of intracellular Ca2+ during NMDAR activation may act as a negative feedback
mechanism controlling NMDAR activity 33,64,66. In light of our findings demonstrating
that: 1) intracellular Na+ up-regulates NMDAR channel gating and 2) multiple types of
receptor/channels such as AMPARs, voltage-gated Na+ channels, non-selective cation
channels and remote NMDARs may regulate NMDAR activity through a Na+-dependent
mechanism 110,112, we investigated how NMDARs are regulated when both Ca2+ and Na+

flow into neurons during the same time period through activated NMDARs 107,110.
Recordings were conducted in the cell-attached single-channel configuration. In this
recording model, recorded surface NMDARs are isolated by a recording electrode from the
bath environment and therefore cannot be directly stimulated by bath-applied agents. We
recorded the activity of surface NMDARs before and after activation of remote NMDARs
(outside the patch) induced by bath application of NMDA or L-aspartate 107. To prevent
toxic effects which may be induced by application of NMDA or aspartate, a standard
extracellular solution in which NaCl and KCl were replaced by Na2SO4 and Cs2SO4, was
utilized 107. Consistent with previous findings 25,54,59,111,112, no damage of neurons bathed
with this standard solution was observed following NMDA or aspartate application.
NMDAR single-channel activity was evoked with 10 µM NMDA and 3 µM glycine
included in the standard extracellular solution filling the recording electrodes.

We found that bath application of NMDAR agonists may change NMDAR channel activity
recorded in cell-attached patches in a concentration-dependent manner. While a significant
increase in NMDAR channel gating occurred during L-aspartate (>100 µM) application to
neurons bathed with the standard extracellular solution, the activity of NMDARs was
inhibited in neurons when Na+ influx was blocked by replacing extracellular Na+ with Cs+

or N-methyl-D-glutamine (NMDG) 107,112.

We measured the ratio of fluorescence at 346 nm versus 380nm for the Na+-sensitive dye,
sodium-binding benzofuran isophthalate (SBFI), and the Ca2+-sensitive dye, Fura-2, in the
soma region of neurons. When the Na+ gradient across the cell membrane was decreased by
reducing extracellular Na+ concentration ([Na+]e) to 20 mM and the Na+ ionophore,
monensin (10 µM) was included in the extracellular solution, basal [Ca2+]i and [Na+]i of
neurons were approximately 84 nM and 16 mM, respectively. Under this condition bath
application of L-aspartate increased [Ca2+]i by 66 nM, decreased [Na+]i by 5.8 mM and
inhibited NMDAR activity 107. On average, the overall channel open probability and mean
open time were reduced to 64% and 77% of controls. The burst and cluster lengths were also
significantly reduced. These inhibitory effects produced by the bath application of L-
aspartate were prevented by either application of APV or removal of Ca2+ from extracellular
solution, indicating that the activation of remote NMDARs may also down-regulate
recorded NMDAR activity through Ca2+ influx 107. Thus, it is demonstrated that NMDARs
can be up- and down-regulated by influxes of Na+ and Ca2+, respectively.
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We then measured changes of [Na+]i and [Ca2+]i in neurons bathed with extracellular
solution containing a [Na+] of 10, 20 or 145 mM before and during the activation of
NMDARs induced by bath application of L-aspartate. We found that with an increase in
[Na+]e, the activation NMDARs produced increases in [Na+]i as expected, but also increased
[Ca2+]i. Excluding the effect of Ca2+ influx-induced Ca2+ release (CICR) from intracellular
stores, the increase in [Ca2+]i of neurons bathed with extracellular solution containing 145
mM Na+ was still significantly higher than that found in neurons bathed with extracellular
solution containing 10 mM Na+ 107,110. When [Na+]e was reduced to 10 mM, the activation
of NMDARs produced increases in [Na]i and [Ca2+]i by around 0.8 mM and 35 nM,
respectively. Under this condition, the activation of remote NMDARs inhibited NMDAR
activity recorded in cell-attached patches 107. When [Na+]e was increased to 20 mM,
NMDAR activation produced a 5 mM increase in [Na+]i and a 50 nM increase in [Ca2+]i,
but no change in the activity of recorded NMDARs 107. Similarly, increasing [K+]e by 30
mM in an extracellular solution containing 170 mM Na+ and 1 µM TTX produced increases
in [Na+]i and [Ca2+]i by around 7 mM and 48 nM, respectively, but again showed no change
in the activity of NMDARs recorded in cell-attached patches either 107,112. Thus, an
increase in [Na+]i of approximately 5 mM appeared to be a critical concentration for
masking the inhibitory effects induced by Ca2+ influx on NMDARs in cultured hippocampal
neurons 107. Since a modest increase of [Ca2+]i by approximately 35 nM inhibited NMDAR
activity when [Na+]e was reduced to 10 mM 107, it was possible that Na+ influx not only
enhanced Ca2+ influx but also masked the inhibitory effects of Ca2+.

To confirm this hypothesis, we recorded NMDAR single-channel activity before and during
the activation of remote NMDARs in cell-attached patches with pipettes filled with a Ca2+-
free extracellular solution containing 200 mM Na+ from neurons that had been pre-treated
with BAPTA-AM (10 µM for 4 hrs) and bathed with the same Ca2+-free extracellular
solution, or with pipettes filled with extracellular solution containing 0.3 or 1.2 mM Ca2+

from neurons bathed with the extracellular solution containing the same amount of Ca2+,
respectively. We found that the activation of remote NMDARs produced a similar up-
regulation of NMDAR channel activity when local and bath [Ca2+] was set at 0, 0.3 and 1.2
mM, implying again that the effects of Ca2+ influx in the regulation of NMDARs by remote
NMDARs are overcome by Na+ under normal condition 107. Furthermore, removal of
extracellular Ca2+ did not produce any effect on the up-regulation of NMDARs by remote
NMDARs in neurons bathed with the standard extracellular solution containing 200 mM
Na+ 107,112. Thus, we conclude that Ca2+ influx through activated NMDARs is regulated by
Na+ influx, and that the effect of Na+, which overcomes Ca2+-induced inhibition, provides
an essential positive feedback mechanism enhancing both the NMDAR activity and the
inward flow of Ca2+.

Depletion of extracellular Ca2+ enhances Na+ influx and thereby causes NMDAR-mediated
toxicity

Based on findings that glutamate concentration may increase in both humans 5,80 and
animals after nervous system injury 11, and that application of NMDAR antagonists may
protect neurons from excitotoxic injuries in both humans 24,61 and animal 24,25,60, it has
been believed that NMDAR-mediated excitoxicity plays a key role in the development of
neuronal death associated with stroke/traumatic CNS injury. However, it remained unclear
how NMDARs are recruited to cause neurotoxicity.

We examined the effects of extracellular Ca2+ depletion and reperfusion, which may occur
in stroke patients, on cultured hippocampal neurons 108,110. Neurons were bathed initially
with an extracellular solution containing: 140 mM NaCl, 5 mM CsCl, 1.8 mM CaCl2, 33
mM glucose, 25 mM HEPES; pH: 7.35; osmolarity: 310–320 mOsm. The reduction of
[Ca2+]e from 1.8 mM to 0.5 or 0 mM caused a significant increase in Caspase-3 activity and
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morphological changes in neurons such as swelling, beading, and/or process disintegration.
Significantly less formazan was observed in 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-
tetrazolium bromide (MTT) assays in which neurons were treated with the extracellular
solution containing 0.5 or 0 mM Ca2+, indicating a change in mitochondrial function
associated with neuronal injury 43,78,86,101. Unexpectedly, application of NMDAR
antagonists APV (100 µM) and MK801 (2 µM) significantly prevented the above mentioned
changes in neurons only when the drugs were applied concomitant to the reduction of
[Ca2+]e from 1.8 to 0 mM. No protective effects of the drugs could be found when they were
applied during Ca2+ reperfusion or when [Ca2+]e was reduced from 1.8 to 0.5 mM 108.
These findings suggest that the depletion of extracellular Ca2+ may evoke NMDAR-
mediated neurotoxicity 108, and also raised the questions of how and when NMDAR activity
is recruited to induce neuronal injury following the removal of extracellular Ca2+.

To address this question, we recorded NMDAR single-channel activity before and during a
depletion of extracellular Ca2+ from 1.8 to 1.3, 0.5 or 0 mM in cell-attached patches from
cultured hippocampal neurons. To prevent cell damage during the reduction of extracellular
Ca2+, the Cl− in the standard extracellular solution was replaced by SO4

2–25,107,108,112.
Bath application of a low [Ca2+] solution to neurons caused a parallel shift of the current-
voltage (I/V) relationship in NMDAR single-channels recorded in cell-attached patches,
which indicates that there is a cell-depolarization, but no change in single-channel
conductance 107,108. In order to account for this, the holding potential was re-adjusted to
maintain a 70 mV patch-potential from the reversal potential of recorded channels. We
found that a depletion of extracellular Ca2+ from 1.8 to 1.3 or 0.5 did not induce any
significant change in the activity of recorded channels until [Ca2+]e was reduced from 1.8 to
0 mM 107,108,112. The channel activity could be subsequently abolished with application of
the NMDAR antagonist, MK801, confirming that a [Ca2+]e reduction from 1.8 to 0 mM
produces increases in NMDAR activity 107,108,112. Since the concomitant blockade of
NMDARs to the reduction of [Ca2+]e from 1.8 to 0.5 mM may actually increase the number
of injured neurons 108, the up-regulation of NMDARs appears to be essential in the
triggering of toxicity mediated by NMDARs and the application of NMDAR antagonists in
the Ca2+ reperfusion model may be protective only when NMDARs are recruited.

To identify the mechanisms by which the removal of extracellular Ca2+ results in the up-
regulation of NMDARs, we measured [Ca2+]i and [Na+]i in cultured hippocampal neurons
before and during reductions of extracellular Ca2+. A [Ca2+]e reduction-dependent decrease
in [Ca2+]i and increase in [Na+]i were observed 108. A depletion of extracellular Ca2+ from
1.8 to 0 mM produced sufficient increases in [Na+]i capable of enhancing NMDAR activity
107,108,112. Furthermore, we found that the up-regulation of NMDAR activity induced by
extracellular Ca2+ depletion was prevented by the blockade of Na+ influx 108.

Previous studies showed that the removal of extracellular Ca2+ to 0 mM may increase
NMDAR single-channel conductance 33,66,106, and that reducing intracellular Ca2+ may
reduce the Ca2+-dependent inhibition of NMDARs and thereby enhance NMDAR channel
activity 33,37,55,59,66,72,94,104,116. Therefore, it is possible that NMDAR gating may be
enhanced by the removal of extracellular Ca2+ through Na+ and/or Ca2+-dependent
mechanisms.

The ensemble currents produced by the summation of consecutive super-clusters were
compared before (1.8 mM) and after reducing [Ca2+]e to 0 mM. We found that the removal
of extracellular Ca2+ may significantly increase the decay time of ensemble currents and that
this effect can be abolished by blocking Na+ influx. This suggests that the removal of
extracellular Ca2+ may affect NMDAR-mediated whole-cell responses through the action of
Na+ 108.
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Large reductions in [Ca2+]e have been found during instances of high neuronal activity
48,84,97, the development of seizures 50, hypoglycemic coma 38, and periods of hypoxia and
ischemia 49,74. Ca2+-depletion has also been reported to induce cell injury and death 90.
Thus, the Na+-dependent enhancement of NMDAR activity induced by depletion of
extracellular Ca2+ may be an important mechanism underlying the development of
neurotoxicity in the CNS.

Na+ regulation of Ca2+ homeostasis
Under resting conditions [Ca2+]i in neurons is normally maintained at 10 – 100 nM, and is
tightly regulated by both Ca2+ influx and efflux across the membrane. [Ca2+]i can be
increased by Ca2+ entry through Ca2+ channels (including ligand- and voltage-gated Ca2+

channels and non-selective cation channels) located on the plasma membrane and by CICR
from the endoplasmic reticulum (ER) upon binding of inositol trisphosphate (IP3) to the
inositol trisphosphate receptor (IP3R). Ca2+-mediated injury is usually acute and rapid 95.
Disturbances of Ca2+ homeostasis in the cytoplasm, ER, or mitochondria can be harmful to
cells 34. Since Ca2+ stores are closely connected within the cells and interact with each
other, dysregulation of one compartment is usually followed by responses from the others.
Together, they may overwhelm the cell’s capacity to maintain overall homeostasis and kill
the cell 34.

In the plasma membrane Ca2+-ATPase and the Na+/Ca2+ exchanger act to transport
cytosolic Ca2+ to the extracellular space. The Na+/Ca2+ exchanger has a low affinity for
Ca2+ but a high velocity; as such, it removes Ca2+ only when cytosolic concentrations are
high. The Ca2+- ATPase, has a high affinity for Ca2+ and pumps out Ca2+ even at low
cytosolic concentrations 13,22,34. In resting cells, [Ca2+] in the mitochondrial matrix is
around 100 nM. When cytosolic [Ca2+] rises, Ca2+ can enter the mitochondria through a
uniporter and thereby regulate Ca2+ signals 36. In mitochondria the Na+/Ca2+ exchanger
extrudes Ca2+ 34,36,45. However, the activity of the Na+/Ca2+ exchanger may be reversed on
the influx of Na+ 51. This reversal in Na+/Ca2 exchange is observed under pathological
conditions 34. If the mitochondrial Na+/Ca2+ exchanger is overwhelmed by Ca2+ entry, the
Ca2+ levels in the mitochondrial matrix may increase enough to trigger a mitochondrial
permeability transition. The sustained transitions may cause mitochondrial depolarization,
inhibition of ATP production, and cell death 12,29,57. In the nucleus Ca2+ is involved in the
gene transcription and DNA metabolism 47,67,79. Unlike in the mitochondria, nuclear Ca2+

is found to be rapidly equilibrated with cytosolic Ca2+. This may occur by diffusion across
nuclear pores 3 and/or Ca2+ channels in the nuclear envelope 65.

CICR during NMDAR activation has been reported 33,85,98. We observed that when
extracellular solution contained more Na+, NMDAR activation produced greater increases in
both [Na+]i and [Ca2+]i 107. Furthermore, in neurons bathed with extracellular solution
containing 145 mM Na+, NMDAR activation-induced increases in [Ca2+]i were significantly
reduced from 100 ± 30 nM (n = 5) to 62 ± 8 nM (n = 8) with thapsigargin (0.1 µM)
treatment 107, which depletes intracellular stores of Ca2+ by blocking Ca2+ re-uptake. In the
absence of thapsigargin, NMDAR activation only produced a 35 ± 8 nM (n = 8) increase in
[Ca2+]i in neurons bathed with extracellular solution containing 10 mM Na+ 107. The
blockade of Ca2+ influx by removal of extracellular Ca2+ abolished the NMDAR activation-
induced increase in [Ca2+]i, (data not shown) 27,99. The increase in [Ca2+]i induced by Ca2+

release from intracellular stores during NMDAR activation in neurons bathed with
extracellular solution containing 10 mM Na+ was significantly reduced when compared with
that in neurons bathed with extracellular solution containing 145 mM Na+ 107. These data
suggest that CICR from intracellular stores during NMDAR activation may be regulated by
intracellular Na+. Stys and colleagues provided direct evidence showing that intra-axonal
Ca2+ release during ischemia in rat optic nerves is mainly dependent on Na+ influx. This
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Na+ accumulation stimulates three distinct intra-axonal sources of Ca2+: (1) the
mitochondrial Na+/Ca2+ exchanger driven in the Na+ import/Ca2+ export mode, (2) positive
modulation of ryanodine receptors, and (3) promotion of IP3 generation by phospholipase C
75.

IV. QUESTIONS AND FUTURE STUDIES
Na+ entry is a key factor that initiates fast action potentials and shapes sub-threshold
electrical properties to thereby regulate neuronal excitability and neuronal discharge activity
21,23,44,52,102. Present data have shown that: 1) intracellular Na+ up-regulates NMDARs;
2) via increasing intracellular Na+, multiple types of receptor/channels such as AMPA
receptors, voltage-gated Na+ channels and non-selective cation channels, may regulate
NMDAR activity; 3) Na+ influx may enhance Ca2+ influx, mask the Ca2+-dependent
inhibition of NMDARs and significantly alter Ca2+ homeostasis.

Based on combined investigations of protein crystal structures in-vitro and functions in cells,
Na+ binding motifs have been characterized in a number of proteins such as thrombin, Na+/
K+-ATPase and various neurotransmitter transporters. Thrombin is a serine protease, the
activity of which is regulated by Na+ binding. The sequence, CDRDGKYG, in the Na+

binding loop is highly conserved in thrombin from 11 different species 31. Investigations
into the crystal structure of a bacterial homologue of the Na+/Cl− dependent transporters
from Aquifex aeolicus revealed that there are two Na+ binding sites, named Na1 and Na2
109. Na+/K+-ATPase is found to have three Na+ biding sites. Na1 is formed entirely by the
side chain oxygen atoms of residues on three helices in the transmembrane regions (TM) 5,
6 and 8. Na2 is formed almost “on” the TM4 helix with three main chain carbonyls plus four
side chain oxygen atoms (Asp 811 and Asp 815 on TM6 and Glu 334 on TM4). The Na3
binding site is contiguous to Na1. The carbonyls of Gly 813 and Thr 814 (TM6), the
hydroxyl of Tyr 778 (TM5), and the carboxyl of Glu 961 (TM9) contribute to the Na3
binding site 58,77.

To date there is no evidence of a similar amino acid sequence corresponding to a Na+

binding site, as seen in these Na+ binding proteins, present in NMDAR subunit proteins (Yu,
unpublished data). Molecular mechanisms underlying the regulation of NMDARs and Ca2+

signaling by intracellular Na+ remain unclear. Investigations aiming to identify critical Na+

targeting site(s) in the regulation of NMDARs and Ca2+ homeostasis are essentially needed
for understanding activity-dependent neuroplasticity in the CNS.
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