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Essential telomere ‘capping’ proteins act as a safeguard

against ageing and cancer by inhibiting the DNA damage

response (DDR) and regulating telomerase recruitment,

thus distinguishing telomeres from double-strand breaks

(DSBs). Uncapped telomeres and unrepaired DSBs can

both stimulate a potent DDR, leading to cell cycle arrest

and cell death. Using the cdc13-1 mutation to conditionally

‘uncap’ telomeres in budding yeast, we show that the

telomere capping protein Cdc13 protects telomeres from

the activity of the helicase Pif1 and the exonuclease Exo1.

Our data support a two-stage model for the DDR at

uncapped telomeres; Pif1 and Exo1 resect telomeric DNA

o5 kb from the chromosome end, stimulating weak

checkpoint activation; resection is extended 45 kb by

Exo1 and full checkpoint activation occurs. Cdc13 is also

crucial for telomerase recruitment. However, cells lacking

Cdc13, Pif1 and Exo1, do not senesce and maintain their

telomeres in a manner dependent upon telomerase, Ku

and homologous recombination. Thus, attenuation of the

DDR at uncapped telomeres can circumvent the need for

otherwise-essential telomere capping proteins.
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Introduction

Telomeres consist of double-stranded DNA (dsDNA) and

single-stranded DNA (ssDNA), bound by dsDNA- and

ssDNA-binding proteins (Blackburn et al, 2006; Lydall,

2009). This nucleoprotein ‘cap’ has at least two functions:

to shield the telomeric DNA from stimulating the DNA

damage response (DDR) and to regulate elongation of

the telomere by telomerase. In human senescent cells,

dysfunctional telomeres induce a sustained DDR (d’Adda di

Fagagna et al, 2003). In both budding yeast and mice, nuclease

activities that attack dysfunctional telomeres contribute to

telomere-driven senescence (Maringele and Lydall, 2004;

Schaetzlein et al, 2007). Therefore, understanding the regula-

tion of nuclease activities at dysfunctional telomeres in yeast is

likely to be informative about similar processes occurring at

mammalian telomeres and the human ageing process.

dsDNA-binding proteins and accessory factors are required

at both human telomeres (TRF1, TRF2, TIN2, TPP1, RAP1)

and budding yeast telomeres (Rap1, Rif1, Rif2) to prevent

DDRs (Wotton and Shore, 1997; de Lange, 2005; Celli and

de Lange, 2005; Marcand et al, 2008; Bonetti et al, 2010;

Vodenicharov et al, 2010). In budding yeast, telomeric ssDNA

is bound by Cdc13 with accessory proteins Stn1 and Ten1,

whereas in human cells, it is bound by POT1 (de Lange, 2005;

Gao et al, 2007). Cdc13–Stn1–Ten1 forms an evolutionarily

conserved complex (the CST complex) that has telomeric

roles in most organisms studied so far (Miyake et al, 2009;

Surovtseva et al, 2009). POT1 binds telomeric ssDNA and is

connected to the dsDNA-binding proteins of the telomere cap

by TPP1 and TIN2 (de Lange, 2009). Inactivation of POT1 or

Cdc13 induces ‘telomere uncapping’ and has similar conse-

quences—initiation of a DDR and resection of the telomeric

DNA by nuclease activities (Garvik et al, 1995; Baumann and

Cech, 2001; Pitt and Cooper, 2010).

The response to telomere uncapping is readily studied in

budding yeast by inactivation of Cdc13 using the thermo-

sensitive allele cdc13-1 (Garvik et al, 1995). Following Cdc13

inactivation, a potent DDR is initiated; telomeric DNA is

resected by nucleases, which degrade the AC (50) strand to

generate extensive TG (30) ssDNA that stimulates activation

of the DNA damage checkpoint, in a manner analogous to

that at DNA double-strand breaks (DSBs) (Figure 1A) (Garvik

et al, 1995; Lydall and Weinert, 1995; Vodenicharov and

Wellinger, 2006). There is relatively little understanding of

the nuclease activities responsible for generating ssDNA at

uncapped telomeres (Zubko et al, 2004). In contrast, there

has been much recent progress identifying nuclease activities

that function at DSBs (Gravel et al, 2008; Mimitou and

Symington, 2008; Zhu et al, 2008).

Exo1 is the only nuclease known to generate ssDNA at

uncapped telomeres in budding yeast (Maringele and Lydall,

2002). Exo1 is a 50 to 30 dsDNA exonuclease involved in DSB

resection and in mismatch repair (Tsubouchi and Ogawa,

2000; Gravel et al, 2008; Mimitou and Symington, 2008;

Zhu et al, 2008). In the absence of Exo1, ssDNA is still

generated following Cdc13 inactivation, demonstrating that
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other nuclease activities must also function at uncapped

telomeres. The determinant(s) of this Exo1-independent

ssDNA generation have not so far been identified, but at

least two hypothetical nuclease activities have been proposed

(ExoX and ExoY) (Zubko et al, 2004).

We sought to identify additional nuclease activities func-

tioning at uncapped telomeres following inactivation of

Cdc13. Bioinformatic analysis of genetic interactions found

the helicase Pif1 to be a candidate for contributing to nucle-

ase activity. Consistent with this hypothesis, we found

that Pif1 and Exo1 are required for different nuclease acti-

vities that generate ssDNA and activate the DNA damage

checkpoint following Cdc13 inactivation. Furthermore, deletion

of both PIF1 and EXO1 permits yeast cells to tolerate complete

loss of the essential telomere capping protein Cdc13.

Results

PIF1 and EXO1 define parallel pathways that inhibit

growth of cdc13-1 mutants

To identify potential nuclease(s) active in cdc13-1 mutants, we

reasoned that genes responsible for such activities would

interact with similar genes to those that EXO1 interacts with.

We used the BioGRID database to create a ranked list of genes
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Figure 1 Pif1 and Exo1 inhibit growth of cdc13-1 mutants. (A) Inactivation of Cdc13 by use of the temperature-sensitive allele cdc13-1 leads to
telomere uncapping. Exo1 and additional nuclease(s) generate ssDNA at uncapped telomeres, which is the stimulus for Mec1-dependent
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agar plates and grown at the temperatures indicated for 3 days. In this and other figures, strain numbers (DLYs) are shown adjacent.
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that had similar genetic interactions to EXO1 (Figure 1B) (Stark

et al, 2006). Of these, 9/19 affected cdc13-1 growth or telomere

length. Deletion of EXO1 suppresses cdc13-1 growth defects,

so we focussed on those genes that also suppressed cdc13-1

growth defects. By these criteria, two previously characterized

checkpoint genes (RAD9 and RAD24) and the helicase-encod-

ing PIF1 behaved similarly to EXO1 (Figure 1B). Rad9 and

Rad24 do indeed regulate nuclease activities at uncapped

telomeres and are required for checkpoint activation (Garvik

et al, 1995; Lydall and Weinert, 1995; Zubko et al, 2004).

Pif1 has been shown to inhibit growth of cdc13-1 mutants

(Downey et al, 2006), whereas overexpression of Pif1 has been

shown to enhance growth defects seen in cdc13-1 mutants, but

the contribution of Pif1 to the nuclease activity and check-

point activation in cdc13-1 mutants had not been assessed

(Vega et al, 2007; Chang et al, 2009).

Pif1 is a helicase with both mitochondrial and nuclear

functions (Van Dyck et al, 1992; Schulz and Zakian, 1994). In

the nucleus, Pif1 has been implicated in negative regulation

of telomerase, generation of long flaps during Okazaki frag-

ment processing, unwinding of G-quadruplexes and disas-

sembly of stalled replication forks (Zhou et al, 2000; Boule

et al, 2005; Budd et al, 2006; Chang et al, 2009; George et al,

2009; Makovets and Blackburn, 2009; Pike et al, 2009;

Ribeyre et al, 2009; Zhang and Durocher, 2010). To test the

hypothesis that Pif1 contributes to a nuclease activity at

uncapped telomeres in cdc13-1 mutants, we compared the

effects of Pif1 and Exo1 on cell growth after Cdc13-1 inactiva-

tion. At the permissive temperature (231C), Cdc13-1 is func-

tional and efficiently caps the telomeres, permitting growth of

cdc13-1 mutants. At the non-permissive temperature (361C),

Cdc13-1 is completely defective and cdc13-1 mutants are

unable to grow (Figure 1A and C). At semi-permissive

temperatures (25–291C), moderate Cdc13-1 inactivation oc-

curs and growth of cdc13-1 mutants is inhibited (Figure 1C).

As previously reported, cdc13-1 pif1D and cdc13-1 exo1D
mutants are able to grow at 271C, whereas cdc13-1 mutants

are not (Figure 1C) (Zubko et al, 2004; Downey et al, 2006).

These effects on growth are consistent with the hypothesis

that Pif1, like Exo1, contributes to nuclease activity at

uncapped telomeres.

Pif1 and Exo1 inhibit growth of cdc13-1 mutants, possibly

by contributing to nuclease activity at uncapped telomeres.

To test whether the two proteins worked in the same path-

way/complex or in different pathways, we examined the

effect Pif1 on growth of cdc13-1 exo1D mutants. cdc13-1

exo1D mutants were unable to grow at 301C, whereas

cdc13-1 exo1D pif1D mutants were able to grow at 30 and

361C (Figure 1C). Remarkably, at 361C, the growth of cdc13-1

exo1D pif1D mutants was barely distinguishable from that of

CDC13þ exo1D pif1D mutants (Supplementary Figure S1A).

We confirmed that this effect was due to the pif1D and exo1D
mutations and not due to second site suppressors arising in

our strains by crossing a cdc13-1 mutant able to grow at 361C,

with a cdc13-1 strain and confirming that all cdc13-1 exo1D
pif1D progeny could all grow at 361C (Supplementary Figure

S1B). We conclude that Pif1 and Exo1 inhibit growth of

cdc13-1 mutants through different pathways, and inacti-

vation of these pathways may eliminate the requirement for

telomere capping by Cdc13.

At DSBs, parallel nuclease activities dependent upon Exo1,

the helicase Sgs1 and nuclease Dna2 generate extensive

ssDNA (Gravel et al, 2008; Mimitou and Symington, 2008;

Zhu et al, 2008). We hypothesized that, as with Exo1,

elimination of Sgs1 or Dna2 in cells lacking Pif1 might

improve the growth of cdc13-1 mutants and perhaps even

permit growth at 361C. However, we found that cdc13-1 pif1D
dna2D mutants grew less well than cdc13-1 pif1D mutants

(Supplementary Figure S2A). We were unable to examine the

effect of dna2D on the growth of cdc13-1 PIF1þ mutants, as

DNA2 is an essential gene unless PIF1 is deleted (Budd et al,

2006). We also found that cdc13-1 pif1D sgs1D mutants grew

slightly less well than cdc13-1 pif1D mutants and that cdc13-1

sgs1D mutants grew slightly less well than cdc13-1 mutants

(Supplementary Figure S2B), consistent with other work

from our laboratory (Ngo and Lydall, 2010). We conclude

that Exo1 inhibits the growth of cdc13-1 mutants with un-

capped telomeres, whereas Sgs1 and Dna2 contribute to the

vitality of such cells. Therefore, we chose to focus on the

roles of Pif1 and Exo1 at uncapped telomeres.

Elimination of Pif1 and Exo1 permits telomere

maintenance following inactivation of Cdc13

Yeast cells can overcome the requirement for Cdc13 by

altering telomere structure, as observed in rare variants,

which can be selected for after inactivation of telomerase or

after attenuation of nuclease/checkpoint activities at un-

capped telomeres (Larrivee and Wellinger, 2006; Zubko and

Lydall, 2006). To test whether elimination of Pif1 and Exo1

caused alterations in telomere structure that could explain the

growth of cdc13-1 cells at 361C, we performed Southern blots

to examine telomere structure, probing for Y0 sequences

(Figure 2B), which are components of the majority of yeast

telomeres (Supplementary Figure S3A and B). The Y0 probe

contained G-rich sequences and weakly cross-hybridized to

telomeres that did not contain Y0 sequences, so we also

probed for TG repeat sequences to detect telomeres that

lacked Y0 elements (Supplementary Figure S4).

pif1D mutants have long telomeres (Schulz and Zakian,

1994) and consistent with this, CDC13þexo1D pif1D mutants

have longer telomeres than CDC13þEXO1þPIF1þ strains

(compare lanes 1–2, 3–4 and 7–8; Figure 2B). The telomeres

of cdc13-1 exo1D pif1D mutants grown at 361C were longer

than those of CDC13þexo1D pif1D mutants grown at 231C

(compare lanes 9–10 with lanes 7–8, Figure 2B) but indis-

tinguishable from those of cdc13-1 exo1D pif1D mutants

grown at 231C (compare lanes 9–10 with lanes 17–18,

Figure 2B). This demonstrates that no gross alterations in

telomere structure occur when cdc13-1 exo1D pif1D mutants

are grown at 361C. Furthermore, cdc13-1 exo1D pif1D mutants

are able to grow at 361C, whereas cdc13-1 pif1D mutants are

not, but are indistinguishable in telomere structure (compare

lanes 13–14 with lanes 17–18, Figure 2B). We conclude that

alterations in telomere structure most likely do not account

for the growth of cdc13-1 exo1D pif1D mutants at 361C.

Pif1 exists as both nuclear and mitochondrial isoforms

(Schulz and Zakian, 1994). Therefore, we wanted to know

whether the nuclear or mitochondrial function of Pif1 inhibited

growth of cdc13-1 exo1D mutants at 361C. The pif1-m2 allele,

lacking nuclear Pif1, permitted growth of cdc13-1 exo1D
mutants at 361C, whereas the pif1-m1 allele, lacking mitochon-

drial Pif1, did not (Figure 2C). We note that the growth of

cdc13-1 exo1D pif1-m2 mutants at 361C is less than cdc13-1

exo1D pif1D mutants (Figure 2C). This is consistent with other
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reports that low levels of nuclear Pif1 activity persist in pif1-m2

mutants (Schulz and Zakian, 1994; Ribeyre et al, 2009). We

also confirmed that helicase activity of Pif1 inhibited growth of

cdc13-1 exo1D mutants because the pif1-hd allele, deficient

in helicase activity, also permitted growth at 361C (Figure 2C)

(Zhou et al, 2000; Ribeyre et al, 2009). We conclude that

nuclear, helicase-dependent activity of Pif1 inhibits growth of

telomere capping-defective cdc13-1 mutants.

Pif1- and Exo1-dependent nucleases initiate the DDR

following Cdc13 inactivation

Upon Cdc13 inactivation, nuclease activities generate ssDNA,

which stimulates checkpoint kinase cascades and induces

metaphase arrest (Figure 1A) (Garvik et al, 1995). To test the

role of Pif1 in cell cycle arrest, cdc13-1 mutants were syn-

chronized in G1 using a factor at 231C, then released to 361C

to assess metaphase arrest (Figure 3A). All strains also

harboured the cdc15-2 mutation so that any cells that over-

came cdc13-1-induced metaphase arrest would arrest in late

anaphase due to cdc15-2 and be unable to enter another cell

cycle (Figure 3A) (Lydall and Weinert, 1995; Zubko et al,

2004). As expected, cdc13-1 mutants accumulated at meta-

phase and did not pass through to anaphase (Figure 3B and C).

cdc13-1 exo1D mutants accumulated at metaphase with simi-

lar kinetics to cdc13-1 mutants but, as previously reported,

a subpopulation of cdc13-1 exo1D cells escaped metaphase
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arrest and accumulated in late anaphase due to the cdc15-2

mutation (Figure 3B and C) (Zubko et al, 2004). cdc13-1 pif1D
mutants behaved like cdc13-1 mutants and did not pass

through to anaphase (Figure 3B and C). Interestingly, cdc13-

1 exo1D pif1D mutants did not accumulate in metaphase at all

and passed readily through to anaphase (Figure 3B and C).

Taken together, these results show that Pif1 has no effect on

metaphase arrest of cdc13-1 mutants at 361C when Exo1 is

present, but it is responsible for the arrest of a subpopulation

of cells when Exo1 is absent.

Following inactivation of Cdc13, Mec1-dependent check-

point activation occurs, leading to activation and hyperphos-

phorylaiton of the kinase Rad53 (Figure 1A) (Sweeney

et al, 2005; Morin et al, 2008). We used the synchronous

cultures to examine Rad53 phosphorylation by western blot

(Figure 3A). cdc13-1 and cdc13-1 pif1D mutants exhibited

strong Rad53 phosphorylation, indicated by a marked

upward mobility shift of Rad53 (upper panels, Figure 3D).

A reduction in Rad53 phosphorylation was seen in cdc13-1

exo1D mutants, correlating with the recovery from metaphase

arrest displayed by cdc13-1 exo1D mutants following telomere

uncapping (Figure 3C and D). Interestingly, no discernable

change in the mobility of Rad53 could be seen in cdc13-1

exo1D pif1D mutants, consistent with their complete

failure to arrest cell division at 361C (Figure 3C and D). We

conclude that in the absence of Pif1 and Exo1, the checkpoint

kinase Rad53 is not activated after telomere uncapping in

cdc13-1 mutants.

To see whether cdc13-1 exo1D pif1D strains were defective

in the DDR after other types of DNA damage as well as after

telomere uncapping, we treated cells with bleomycin to

induce DSBs. At both DSBs and uncapped telomeres,

ssDNA is an important stimulus for the Mec1-dependent

checkpoint. We treated the same set of strains examined in

Figure 3B–D, with bleomycin at 231C after release from G1

arrest. cdc13-1, cdc13-1 pif1D, cdc13-1 exo1D and cdc13-1

exo1D pif1D mutants all behaved similarly, phosphorylating

Rad53 and arresting at methaphase (Figure 3E;

Supplementary Figure S4). We conclude that a functional

DDR pathway operates in (cdc13-1) exo1D pif1D cells but that

these cells are specifically defective in responding to telomere

uncapping.

Telomeric ssDNA stimulates metaphase arrest following

telomere uncapping (Garvik et al, 1995). We used synchro-

nous cultures (Figure 3A) and quantitative amplification

of ssDNA (QAOS) to measure subtelomeric ssDNA in repeti-

tive Y0 elements (present on Chromosome V and most other

chromosome ends) following Cdc13 inactivation (Figure 4A)

(Booth et al, 2001). cdc13-1 mutants with uncapped telo-

meres generated ssDNA at both the Y0600 and Y05000 loci

(Figure 4B and C). cdc13-1 exo1D mutants generated

less ssDNA following telomere uncapping at the Y0 loci, as
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previously reported (Maringele and Lydall, 2002; Zubko et al,

2004). Interestingly, cdc13-1 pif1D mutants, like cdc13-1

exo1D mutants showed reduced ssDNA generation in the

Y0600 and Y05000 loci following telomere uncapping.

Furthermore, cdc13-1 exo1D pif1D mutants generated no

detectable ssDNA at Y0600 or Y05000 loci following telomere

uncapping (Figure 4B and C). We confirmed that ssDNA

generation occurred on the TG (30) strand due to degradation

of the AC (50) strand, as we were unable to detect ssDNA

on the AC strand (Figure 4D). We conclude that Pif1, like

Exo1, is important for ssDNA generation after telomere

uncapping in cdc13-1 mutants and appears to regulate a

nuclease activity, which functions in parallel to Exo1 at

chromosome ends.

To examine how Pif1 and Exo1 affect ssDNA accumulation

further from chromosome ends, we measured ssDNA at single-

copy loci on Chromosome V after Cdc13 inactivation. At 4 h,

cdc13-1 mutants generated ssDNA at all loci examined, with
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the amount of ssDNA decreasing at loci further from the

chromosome end, as previously reported (Zubko et al,

2004). cdc13-1 exo1D mutants generated less ssDNA in the Y0

repeats and no ssDNA in single-copy loci on Chromosome V,

also as previously reported (Figure 4E) (Zubko et al, 2004).

cdc13-1 pif1D mutants generated similar amounts of ssDNA to

cdc13-1 exo1D mutants in the Y0 repeats. However, at more

distal, single-copy loci, cdc13-1 pif1D mutants generated less

ssDNA than cdc13-1 mutants but more than exo1D cdc13-1

mutants. The higher levels of ssDNA generated further from

the chromosome end in cdc13-1 pif1D mutants, in comparison

with cdc13-1 exo1D mutants, most likely accounts for their

sustained metaphase arrest following telomere uncapping

(Figure 3B and C). Furthermore, the ssDNA generated by

cdc13-1 and cdc13-1 pif1D mutants o10 kb from the chromo-

some end is 41.6% (1/64) (Figure 4E). Assuming 1 single-

stranded telomere per cell is sufficient to stimulate arrest, this

suggests that ssDNA extending o10 kb on one of the 64 G2

telomeres in Saccharomyces cerevisiae is sufficient to stimulate

metaphase arrest (Figure 4E) (Sandell and Zakian, 1993; Vaze

et al, 2002; Zubko et al, 2004).

No checkpoint activation was detected in cdc13-1 exo1D
pif1D mutants following telomere uncapping, and no ssDNA

was detected in the Y0 elements (Figures 3D and 4B). However,

yku70D mutants at 231C have detectable ssDNA in the telo-

meric TG repeats but do not undergo checkpoint activation

(Gravel et al, 1998; Polotnianka et al, 1998; Maringele and

Lydall, 2002). Thus, we hypothesized that cdc13-1 exo1D
pif1D mutants might still generate detectable ssDNA in the

TG repeats. We used synchronous cultures (Figure 3A) and

measured ssDNA by in-gel assay to measure ssDNA in the TG

repeats in cdc13-1 mutants (Figure 4F and G). cdc13-1 mutants

generated large amounts of TG ssDNA at 2 and 4 h following

telomere uncapping (Figure 4F), corresponding to an approxi-

mately five-fold increase in signal compared with yku70D
mutants (Figure 4G). cdc13-1 exo1D pif1D mutants also gen-

erated detectable ssDNA 2 h following telomere uncapping,

but at a level approximately equal to that of a yku70D mutant

(Figure 4F and G). However, the ssDNA generated in cdc13-1

exo1D pif1D mutants was transient and was no longer detect-

able 4 h after telomere uncapping (Figure 4F and G).

Surprisingly, cdc13-1 pif1D mutants displayed only a modest

decrease in ssDNA generation in the TG repeats following

telomere uncapping, whereas cdc13-1 exo1D mutants gener-

ated very little ssDNA (Figure 4F and G). We conclude that

cdc13-1 exo1D pif1D mutants generate limited, transient

ssDNA that is insufficient to stimulate checkpoint activation

and that Exo1 is much more important than Pif1 for ssDNA

generation in the TG repeats following telomere uncapping.

Pif1 has important functions in cells lacking telomerase

It has been suggested that increased levels of telomerase at

the telomeres of cdc13-1 pif1D cells shields uncapped telo-

meres from nuclease activities (Vega et al, 2007). However,

this is somewhat inconsistent with our observation that Pif1

has relatively little effect on ssDNA generation in the telo-

meric TG repeats, where telomerase presumably binds

(Figure 4G). Therefore, we wanted to know whether the

ability of the pif1D mutation to improve the growth of

cdc13-1 mutants was dependent upon the telomerase tem-

plate component (TLC1) or catalytic subunit (Est2).

Interestingly, we found that cdc13-1 tlc1D pif1D and cdc13-1

tlc1D exo1D mutants grew better at 251C than cdc13-1 tlc1D
mutants (compare rows 7–8 and 11–12 with 3–4, Figure 5A;

Supplementary Figure S6). We also found that cdc13-1

est2D pif1D and cdc13-1 est2D exo1D mutants were able to

grow at 251C, whereas cdc13-1 est2D mutants were not

(Supplementary Figure S7). We conclude that Pif1 has a

telomerase (TLC1, Est2) independent effect at uncapped

telomeres. However, we note that est2D cdc13-1 and tlc1D
cdc13-1 mutants grow worse than cdc13-1 mutants, demon-

strating that telomerase contributes to telomere capping

following inactivation of Cdc13.

Pif1 is responsible for the residual checkpoint activation in

cdc13-1 exo1D mutants (Figure 3D) and inhibits growth of

cdc13-1 mutants lacking telomerase (Figure 5A). We hypothe-

sized that Pif1 would contribute to ssDNA generation at

uncapped telomeres and subsequent checkpoint activation,

even in cdc13-1 mutants lacking telomerase. To test this, we

measured Rad53 phosphorylation (Supplementary Figure

S8A) and telomeric TG repeat ssDNA (Supplementary

Figure S8B and C) in cdc13-1 and cdc13-1 tlc1D mutants,

before and after telomere uncapping. In cdc13-1 tlc1D exo1D
pif1D mutants, there was a decrease in Rad53 phosphoryla-

tion compared with cdc13-1 tlc1D exo1D mutants

(Supplementary Figure S8A). We also found that cdc13-1

tlc1D pif1D and cdc13-1 tlc1D exo1D pif1D mutants generated

less ssDNA than cdc13-1 tlc1D and cdc13-1 tlc1D exo1D
mutants, respectively, following telomere uncapping

(Supplementary Figure S8B and C). We conclude that Pif1

has a contribution to ssDNA generation and checkpoint

activation following telomere uncapping that is independent

of telomerase. However, we note that 40% of cdc13-1 tlc1D
cells were at metaphase at 231C compared with 30% of

cdc13-1 tlc1D pif1D cells (Supplementary Figure S8D). Thus,

we cannot exclude the possibility that reduced ssDNA gen-

eration in cdc13-1 tlc1D pif1D mutants is due to altered

kinetics of accumulation at metaphase.

Although Pif1 clearly demonstrates a telomerase-indepen-

dent effect in cdc13-1 mutants, we note that cdc13-1 tlc1D
exo1D mutants could grow at 271C, whereas cdc13-1 tlc1D
pif1D mutants could not (compare rows 11–12 with 7–8,

Figure 5A). In contrast, cdc13-1 TLC1þexo1D mutants and

cdc13-1 TLC1þpif1D mutants could both grow similarly at

271C (compare rows 9–10 with 5–6, Figure 5A). This shows

that Pif1 is less potent than Exo1 at inhibiting growth of

cdc13-1 tlc1D mutants than cdc13-1 TLC1þ mutants.

To help clarify the role of Pif1 in cdc13-1 tlc1D and cdc13-1

TLC1þ mutants, we examined the effect of Pif1 in CDC13þ

tlc1D mutants. Yeast strains that cannot recruit telomerase

(e.g. tlc1D) lose telomeric DNA with each cell division until

the cultures senesce and lose proliferative capacity, much like

mammalian fibroblasts. Senescent, telomerase-deficient

yeast cultures usually recover, using telomerase-independent,

recombination-dependent mechanisms of telomere mainte-

nance, leading to clear changes in telomere structure

(Lundblad and Blackburn, 1993; Teng and Zakian, 1999).

Therefore, we germinated spores containing combinations

of null mutations in telomerase (TLC1), PIF1 and EXO1,

and assessed growth at various passages (Figure 5B). As

expected, tlc1D mutants grew well at passage 1, poorly from

passages 2–5 (senescence) and grew well again from passage

7 (recovery) (Figure 5B). tlc1D exo1D mutants showed a

similar pattern of growth to tlc1D mutants but grew slightly
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better prior to senescence, as previously reported (passages 3

and 4, Figure 5B) (Maringele and Lydall, 2004). In contrast,

tlc1D pif1D and tlc1D pif1D exo1D strains showed a rapid

decline in growth from passages 2–6 (senescence) and

exhibited a protracted senescence period but slowly recovered

by passage 15 (Figure 5B). We conclude that Pif1 inhibits

entry into senescence and promotes recovery. Taken with the

data discussed earlier, Pif1 contributes to good growth of tlc1D

mutants from passage 2 onwards, yet inhibits growth of

cdc13-1 mutants (Figures 1C and 5A). In contrast, Exo1 has

only a small effect on the growth of tlc1D mutants, yet inhibits

growth of cdc13-1 mutants (Figures 1C and 5A). Thus, it is

likely that the relatively poor growth of cdc13-1 tlc1D
pif1D compared with cdc13-1 tlc1D exo1D mutants is due to

the poor growth of tlc1D pif1D mutants compared with tlc1D
exo1D mutants.
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Figure 5 Pif1 has telomerase-independent effects at telomeres. (A) A cdc13-1/CDC13þ tlc1D/TLC1þexo1D/EXO1þpif1D/PIF1þ diploid
(DLY1628 x DLY5324) was sporulated, dissected and germinated at 231C to generate strains of the indicated genotype at 231C. These were
taken from the germination plate, grown to saturation, then serially diluted across agar plates and grown at the temperatures indicated for 3
days. (B) Strains of the genotypes indicated were passaged repeatedly by restreaking at 301C for 3 days along with TLC1þ controls. At the
passages indicated, strains were assayed for growth, which was then quantified (Supplementary Figure S9). Growth at each passage is given as
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After long cultivation (passage 15, 45 days growth) tlc1D
pif1D and tlc1D pif1D exo1D mutants could be distinguished

from those of tlc1D and tlc1D exo1D mutants by their poor

growth (Figure 5B). Telomerase-deficient survivors typically

show clear alterations in telomere structure—type I survivors

undergo dramatic amplification of Y0 elements and retain

short TG overhangs, whereas type II survivors show modest

amplification of Y0 elements but amplify their TG overhangs

(Teng and Zakian, 1999). Therefore, we examined the telo-

meres of tlc1D pif1D and tlc1D pif1D exo1D mutants. At

passage 1, before entry into senescence, tlc1D, tlc1D exo1D,

tlc1D pif1D and tlc1D pif1D exo1D mutants all had short

telomeres (compare lanes 1–4 with lanes 5–12, Figure 5C).

At passage 15, tlc1D mutants and tlc1D exo1D mutants had

amplified Y0 elements and terminal fragments to generate

type II (lanes 17–18, Figure 5D) or type I (lanes 21–22,

Figure 5D) survivors. In contrast, tlc1D pif1D and tlc1D
pif1D exo1D mutants at passage 15 had shorter telomeres

than at passage 1 and had undergone a reduction in Y0

elements, but did not appear to have generated type I or

type II survivor telomere structures (compare lanes 7–8 with

19–20 and lanes 11–12 with 23–24, Figure 5D). We noted that

tlc1D pif1D and tlc1D pif1D exo1D mutants resembled type I

survivors in that our TG probe did not detect any individual

telomeres further up the gel (marked with arrows, compare

lanes 7–8 with 19–20 and lanes 11–12 with 23–24,

Supplementary Figure S10), indicating that all telomeres in

these strains had acquired a terminal Y0 fragment. However,

the terminal fragments of tlc1D pif1D and tlc1D pif1D exo1D
were even shorter than those of type I survivors and they had

undergone a reduction, not an amplification in Y0 elements,

clearly distinguishing them from typical type I survivors

(compares lanes 19–20, 23–24 with lanes 21–22, Figure 5D).

We conclude that Pif1 is required for the generation of type I

and type II survivors and that in the absence of Pif1, cells

lacking telomerase can improve growth following senescence

without adopting typical type I or type II survivor structures.

Telomerase is crucial for survival in the absence

of Cdc13

Cdc13 has two crucial functions at telomeres—one, to shield

telomeres from nuclease activities and the second to recruit

telomerase to the telomere (Nugent et al, 1996). Although

elimination of Pif1 and Exo1 permits cdc13-1 mutants to grow

at 361C (presumably when cdc13-1 is completely inactivated),

this does not permit cdc13-1 tlc1D mutants to grow at 361C

(compare rows 13–14 with 15–16, Figure 5A), demonstrating

that telomerase has a function in cdc13-1 mutants at 361C.

Therefore, we hypothesized that at 361C, Cdc13-1 might

retain the ability to recruit telomerase, and Cdc13-dependent

telomerase activity might be essential for growth.

Alternatively, telomerase might be recruited to telomeres in

a Cdc13-independent manner.

To test whether Cdc13-1 retained the ability to recruit

telomerase in cdc13-1 exo1D pif1D cells at 361C, we decided

to delete CDC13. We generated diploid strains heterozygous

for pif1D, exo1D and cdc13D mutations. Diploids were sporu-

lated, tetrads dissected and vegetative cells containing com-

binations of the three deletion mutations were allowed to

form colonies. Figure 6A shows a representative image of one
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tetrad dissection plate. Importantly, we found that cdc13D
exo1D pif1D strains were viable and had a germination

efficiency of B90% compared with CDC13 exo1D pif1D
strains (Figure 6A; Supplementary Table SI). However, it

was clear that cdc13D exo1D pif1D mutants grew less well

than CDC13þexo1D pif1D mutants on the tetrad dissection

plates (Figure 6A). No viable colonies were formed from

cdc13D cells that were either PIF1þ or EXO1þ . We conclude

that neither Cdc13-dependent telomerase activity nor

Cdc13-dependent capping activities are required for growth

following elimination of Pif1 and Exo1.

The viability of cdc13D exo1D pif1D strains was surprising

in the light of the requirement for telomerase in cdc13-1

exo1D pif1D strains. We hypothesized that Cdc13-indepen-

dent telomerase activity was essential for the viability of

cdc13D exo1D pif1D strains. To test this, we generated diploid

strains heterozygous for pif1D, exo1D, cdc13D and tlc1D
mutations, containing a plasmid that carried a wild-type

copy of CDC13. Diploids were sporulated and tetrad dissec-

tion was performed to generate strains containing combina-

tions of the four deletion mutations, in addition to the wild-

type copy of CDC13. These strains were diluted across agar

plates either fully supplemented (YEPD), lacking uracil

(�URA) or containing FOA (FOA). FOA is toxic to cells with

an active uracil biosynthetic pathway so only cells able to

survive in the absence of the URA3- and CDC13-containing

plasmid would be able to grow. As expected, cdc13D TLC1þ

and cdc13D tlc1D mutants were able to grow on YEPD and

–URA, but not on FOA medium, demonstrating that CDC13

was essential for survival of these cell types (Figure 6B).

cdc13D TLC1þexo1D pif1D strains were able to grow on

FOA, YEPD and –URA, demonstrating that CDC13 was not

essential in this background (Figure 6B). However, cdc13D
TLC1þexo1D pif1D cells grew much more poorly on FOA

than on –URA and YEPD consistent the poor growth of

cdc13D exo1D pif1D cells on the tetrad dissection plate(s)

(Figure 6A). Importantly, cdc13D tlc1D exo1D pif1D cells were

able to grow on YEPD and –URA but not on FOA, demon-

strating that they could not survive in the absence of

Cdc13. We conclude that telomerase is essential for the

survival of cdc13D exo1D pif1D mutants, suggesting that

Cdc13-independent recruitment of telomerase is essential

for their survival.

We used the same plasmid-based method to assess the

requirement for various proteins involved in telomere main-

tenance to the growth of cdc13D exo1D pif1D mutants. We

confirmed that TLC1 was required for the viability of cdc13D
pif1D exo1D as cdc13D pif1D exo1D tlc1D mutants could not

lose a plasmid carrying CDC13 (p[URA3]CDC13) (Figure 6C).

We also found that Yku70 (a component of the Ku complex,

which binds TLC1 to aid in recruitment of telomerase to the

telomere) and Rad52 (required for homologous recombina-

tion and the generation of type I and type II survivor telomere

structures) were required for the viability of cdc13D pif1D
exo1D mutants (Figure 6C). However, we found that Pol32

(subunit of Polymerase d, required for the generation of

type I and type II survivor telomere structures) was dispen-

sable for the viability of cdc13D pif1D exo1D mutants

(Figure 6C), although elimination of Pol32 did reduce the

frequency at which cdc13D pif1D exo1D mutants were able to

lose the pURA3[CDC13] (Supplementary Figure S12). We

conclude that cdc13D pif1D exo1D mutants are distinct

from type I and type II survivors, as they do not require

Pol32, and their telomeres are maintained through a combi-

nation of homologous recombination, Ku and telomerase

activity.

If cdc13D exo1D pif1D mutants are able to recruit telomer-

ase then they may not senesce or undergo the rearrangements

in telomere structure characteristic of telomerase-deficient

strains. To test this hypothesis, we compared the growth

and telomere structure of cdc13D exo1D pif1D strains with

tlc1D and tlc1D exo1D pif1D strains. As expected, telomerase-

deficient tlc1D mutants senesced and recovered (Figure 7A)

and by passage 11 they had generated type I (lane 15,

Figure 7B) and type II (lane 16, Figure 7B) survivors.

Interestingly, cdc13D exo1D pif1D strains showed a slight

growth defect at passage 1 (Figure 7A), consistent with the

small colonies formed by cdc13D exo1D pif1D mutants on the

tetrad dissection plate (Figure 6A) and the growth defect of

cdc13D TLC1þexo1D pif1D pURA3[CDC13] mutants grown

on FOA (Figure 6B). However, by passage 5 and in

all subsequent passages cdc13D exo1D pif1D mutants had

improved in growth (Figure 7A). The telomeres of cdc13D
exo1D pif1D mutants were long with more variation in length,

and by passage 11, the median telomere length and variance

in length increased (lanes 9–12, 21–24, Figure 7B). This is

consistent with previous work showing that hypomorphic

alleles of Cdc13 can cause increased telomere length and

variance in telomere length (Chandra et al, 2001). No clear

alterations in the telomere structure of cdc13D exo1D pif1D
mutants were observed, and at passage 1, their telomeres

most closely resembled those of cdc13-1 exo1D pif1D mutants

with capped telomeres, which notably do not senesce (com-

pare lanes 2, 14 with lanes 9–12, Figure 7B). The growth and

telomere structure of cdc13D exo1D pif1D mutants was clearly

distinct from that of telomerase-deficient tlc1D exo1D pif1D
mutants, which rapidly senesced and slowly recovered

(Figure 7A), while maintaining a relatively normal telomere

structure (compare lanes 7–8 with lanes 19–20, Figure 7B).

We conclude that cdc13D exo1D pif1D mutants do not under-

go senescence and maintain their telomeres for at least 11

passages (44 days). This is consistent with our notion that

cdc13D exo1D pif1D mutants are able to maintain telomeres

in a telomerase-dependent manner, even in the absence

of Cdc13.

Finally, although we observed that cdc13-1 exo1D
pif1D mutants generated ssDNA only in the TG repeats,

transiently over the course of a single cell cycle, we wished

to know whether repeated cell division in the absence of

telomere capping would lead to accumulation of ssDNA. By

in-gel assay, we found that cdc13-1 exo1D pif1D mutants

grown at 361C for 4 h (B2 population doublings with un-

capped telomeres) and cdc13D exo1D pif1D mutants

from Passage 1 (B50 population doublings with uncapped

telomeres) generated comparable levels of ssDNA in the

TG repeats to a yku70D mutant (Figure 7C and D).

This was comparable to the transient level of ssDNA seen

in cdc13-1 exo1D pif1D mutants 2 h after telomere uncapping,

within a single cell cycle (Figure 4G). We conclude

that continued growth following telomere uncapping in

exo1D pif1D mutants does not lead to ssDNA accumulation.

This suggests that no residual nuclease activities continue

to resect uncapped telomeres in the absence of Pif1

and Exo1.
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Discussion

We have shown that Pif1 and Exo1 are responsible for

extensive ssDNA generation at uncapped telomeres in

cdc13-1 mutants and also that Pif1 has telomerase-indepen-

dent functions at telomeres. This leads us to propose a model

where Pif1 can initiate the DDR at uncapped telomeres by

controlling nuclease activity. Furthermore, and remarkably,

cells lacking Pif1 and Exo1 are viable and grow well in the

absence of the usually essential telomere capping protein

Cdc13.

In our model (Figure 8), Pif1 unwinds telomeric duplex

DNA, generating ssDNA that is cleaved by an unidentified

ssDNA endonuclease in a manner analogous to the function

of Pif1 in Okazaki fragment processing and at stalled replica-

tion forks (Budd et al, 2006; Chang et al, 2009; George et al,

2009; Pike et al, 2009). We propose that close to the chromo-

some end (o5 kb) both Pif1- and Exo1-dependent activities

generate ssDNA, causing weak initial checkpoint activation.

We propose that Exo1 subsequently generates ssDNA 45 kb

from the chromosome end, leading to stronger checkpoint

activation that is sufficient to arrest all cells with uncapped

telomeres. Our model is consistent with Pif1 being ExoY, a

hypothetical nuclease proposed to function in parallel to Exo1

at uncapped telomeres (Zubko et al, 2004). Pif1, like ExoY, is

more important for ssDNA generation at the end of the

chromosome than further away (Figure 4E).

In our model, Exo1 recognizes the junction between 30

(TG) ssDNA and duplex DNA, at native telomeric overhangs

as previously suggested (Maringele and Lydall, 2002) or at

stalled replication forks (Segurado and Diffley, 2008). We

propose that Pif1 binds and unwinds 50 (AC) overhangs

because Pif1 is a 50–30 helicase (Lahaye et al, 1991; Zhou

et al, 2000; Pike et al, 2009). If Pif1 does engage telomeric

dsDNA and convert it to ssDNA, 50 (AC) ssDNA presumably

exists (Supplementary Figure S15A). Interestingly, 50 telo-

meric ssDNA has been observed both in mammalian cells

and in Caenorhabditis elegans (Cimino-Reale et al, 2003;

Raices et al, 2008) and but not so far in S. cerevisiae.

However, 50 ssDNA overhangs could in principle occur at

stalled replication fork structures (Supplementary Figure

S15B) or Okazaki fragments.

DSBs that can be repaired by homologous recombination

and DSB-induced shortened telomeres are processed by

nucleases dependent upon Sgs1/Dna2, Exo1 and MRX/Sae2

(Gravel et al, 2008; Zhu et al, 2008; Mimitou and Symington,

2009). Other work recently published from our laboratory

demonstrates that Sgs1 also contributes to resection of

uncapped telomeres, but elimination of Sgs1 and Exo1 is

insufficient to prevent the resection of uncapped telomeres

in cdc13-1 mutants (Ngo and Lydall, 2010). The work pres-

ented here demonstrates that elimination of Pif1 and Exo1

prevents resection of uncapped telomeres in cdc13-1 mutants.

However, at DSBs that can be repaired by homologous

recombination or at DSB-induced shortened telomeres, Pif1

has little effect on resection (Zhu et al, 2008; Bonetti et al,

2009). Interestingly, Pif1 has been shown to have a critical

role repair of DSBs where break-induced replication (BIR)

is the main repair pathway (Chung et al, 2010). A major

challenge will be to determine which substrates are exposed

at DSBs, shortened telomeres and uncapped telomeres and

how nuclease activities are coordinated to process them.

Pif1 contributes to the vitality of cells lacking telomerase,

both before and after recovery from senescence (Figure 5B).

Interestingly, pif1D cells improve their growth following

senescence without adopting typical survivor-like telomeric

DNA structures (Figure 5C). Usually following senescence,

survivors are generated by homologous-recombination- and

BIR-dependent alterations in telomere structure (Teng and

Zakian, 1999; Lydeard et al, 2007). If BIR is eliminated, cells

lacking telomerase senesce and undergo a complete loss in

viability (Lydeard et al, 2007). The relatively unaltered

telomere structure and poor growth following senescence in

cells lacking Pif1 and telomerase is consistent with the

impaired BIR seen in cells lacking Pif1 (Chung et al, 2010).

Therefore, reduced BIR in pif1D cells may be sufficient to
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maintain comparatively normal telomere structure in telo-

merase-deficient cells but insufficient to permit the typical

amplification of Y0 elements or terminal TG repeats seen in

survivors. The absence of telomeric repeat amplification

could prevent these cells from achieving the high levels of

post-senescence growth seen in other telomerase-deficient

mutants.

We have demonstrated that attenuation of the DDR at

uncapped telomeres, by elimination of Pif1 and Exo1 permits

telomere maintenance in a Cdc13-indpendent but telomerase

and Ku-dependent manner. This is surprising because Cdc13

is considered crucial for efficient recruitment of telomerase

and thus to prevent senescence (Nugent et al, 1996). We

propose that in the absence of Cdc13, Yku80 binds TLC1, the

telomerase RNA, to help recruit telomerase to the telomere

(Peterson et al, 2001). The requirement for Rad52 for the

survival of cdc13D exo1D pif1D mutants is surprising. It will

be interesting to investigate whether telomeric repeats from

extremely long telomeres in cdc13D exo1D pif1D mutants

(Figure 7B) can be distributed to shorter telomeres by homo-

logous recombination, thus preventing short telomeres from

becoming critically short. Finally, it will also be paramount to

determine whether the requirement for telomerase in cdc13D
exo1D pif1D mutants is a consequence of the increased

utilization of telomerase that has been reported at the telo-

meres of cells lacking Pif1 (Boule et al, 2005).

We show that following inactivation of Cdc13 or telomer-

ase, telomeric DNA can be stabilized by elimination of Pif1,

eliminating resection of uncapped telomeres in cells lacking

Cdc13 or permitting telomere maintenance without the gen-

eration of typical type I or type II survivor structures in cells

lacking telomerase. As Pif1 and Exo1 are conserved from

yeast, to mice, to humans, Pif1 might also contribute to

the premature mortality caused by telomere dysfunction in

telomerase knockout mice (Lahaye et al, 1991; Huang and

Symington, 1993; Wei et al, 2003; Mateyak and Zakian, 2006;

Snow et al, 2007). pif1�/� and exo1�/� mice have previously

been examined (Wei et al, 2003; Snow et al, 2007), and

it might be interesting to combine these mutations in a

telomerase knockout background to investigate the conse-

quences of telomere dysfunction in pif1�/� exo1�/� mice, as

EXO1 contributes to the telomere dysfunction and premature

mortality seen in telomerase knockout mice (Schaetzlein

et al, 2007).

Materials and methods

Bioinformatics/analysis
A genetic interaction network was created in Cytoscape using
S. cerevisiae genetic interactions from BioGRID (v2.0.53) (Stark
et al, 2006; Cline et al, 2007). Genes that had genetic interactions
with EXO1 were identified (first neighbours of EXO1). A ranked list
of all known genes was created, according to how many of the first
neighbours of EXO1 they had a genetic interaction with. The top
10% of this ranked list were then shown. Nodes for each gene were
coloured according to whether the genes affected cdc13-1 growth
defects or telomere length (Askree et al, 2004; Zubko et al, 2004;
Downey et al, 2006; Gatbonton et al, 2006; Tsolou and Lydall, 2007;
Addinall et al, 2008; Ungar et al, 2009).

Yeast strains
All strains used in this study are RAD5þ and in the W303 genetic
background (Strain Table, Supplementary data). Standard genetic
procedures of transformation and tetrad analysis were used. New
gene deletions were constructed by transforming a diploid with

PCR-based deletion modules (Goldstein and McCusker, 1999). Point
mutations were generated integrated into the genome as described
(Schulz and Zakian, 1994; Ribeyre et al, 2009).

Yeast growth assays
Growth assays were performed as previously described (Zubko
et al, 2004). Pooled colonies were inoculated into 2 ml of YEPD and
grown to saturation at 231C. Five-fold serial dilutions were
replicated onto agar plates and grown at a range of temperatures.
Plates were photographed using an SPimager (S&P Robotics).
Levels were adjusted with Photoshop CS4.

Passage experiments and quantification of growth
To passage cultures, multiple individual colonies were pooled and
restruck. Where growth was quantified, unmodified images were
analysed with Colonyzer (Lawless et al, 2010) and the sum of the
trimmed greyscale pixel values for all pixels corresponding to spots
and colonies of each strain were used as a measure of growth.
Growth was then expressed relative to a TLC1þ or TLC1þ CDC13þ

strain included on the same plate.

Telomere length detection
Southern hybridization to examine telomere length and structure
was performed similarly to previously described (Maringele and
Lydall, 2004). Genomic DNA was extracted, digested with XhoI then
run overnight on a 1% agarose gel at 1 V/cm. Southern transfer and
detection was then performed using DIG-High Prime Labelling and
Detection Kit (Roche) as per the manufacturer’s instructions and
visualized on a FUJI LAS4000. Telomeric probes were synthesized
using PCR DIG Probe Synthesis Kit (Roche). TG probe was B180 bp
of TG repeats, whereas Y0 probe was B820 bp of Y0 sequence, both
amplified from pDL987 (pHT128) (Tsubouchi and Ogawa, 2000)
using oligos m933 and m934 or m935 and m936, respectively.
CDC15 probe was synthesized using oligos m1045 and m1046 as
previously described (Foster et al, 2006).

Synchronous cultures, cell cycle scoring and QAOS
Experiments to measure cell cycle progression and ssDNA following
telomere uncapping were carried out in bar1D cdc15-2 cdc13-1 cells
and performed as described (Zubko et al, 2006). Where indicated,
cells were treated with Bleomycin at a final concentration of
50mg/ml (Morin et al, 2008).

Rad53 phosphorylation
Western blotting to detect Rad53 phosphorylation was performed
essentially as described (Morin et al, 2008). Antibodies against
Rad53 were from Dan Durocher, Toronto. Anti-tubulin antibodies
were from Keith Gull, Oxford. Multiple gels were run to process all
samples from a single experiment, but were transferred and
detected in parallel and imaged simultaneously.

In-gel assay
In-gel assays were performed essentially as previously described
(Zubko and Lydall, 2006) using a Cy5-labelled oligonucleotide
(m2188) detected on a GE Healthcare Typhoon Trio imager.
Following detection of ssDNA, the gel was subjected to Southern
transfer and hybridization to detect CDC15. To quantify ssDNA, the
fluorescent signal from the 0.7 to 12 kb range on the gel was
measured, relative to the intensity of an exponentially dividing
yku70D mutant on the same gel. All values were then normalized
relative to the CDC15 signal as determined by Southern blot.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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