11640 - The Journal of Neuroscience, September 1, 2010 - 30(35):11640—11653

Behavioral/Systems/Cognitive

Rapid Sequences of Population Activity Patterns
Dynamically Encode Task-Critical Spatial Information
in Parietal Cortex
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We characterized the temporal dynamics of population activity in parietal cortex of monkeys as they solved a spatial cognitive problem
posed by an object construction task. We applied pattern classification techniques to characterize patterns of activity coding object-
centered side, a task-defined variable specifying whether an object component was located on the left or right side of a reference object,
regardless of its retinocentric position. During a period in which the value of object-centered side, as defined by task events, remained
constant, parietal cortex represented this variable using a dynamic neural code by activating neurons with the same spatial preference in
rapid succession so that the pattern of active neurons changed dramatically while the spatial information they collectively encoded
remained stable. Furthermore, if the neurons shared the same spatial preference, then their pretrial activity (measured before objects
were shown) was correlated to a degree that scaled as a positive linear function of how close together in time the neurons would be
activated later in the trial. Finally, we found that while parietal cortex represented task-critical spatial information using a dynamic neural
code, it simultaneously represented task-irrelevant spatial information using a stationary neural code. These data demonstrate that
dynamic spatial representations exist in parietal cortex, provide novel insight into the synaptic mechanisms that generate them, and

suggest they may preferentially encode task-critical spatial information.

Introduction

It is often assumed that the brain represents information using a
stationary code in which each single neural representation corre-
sponds to a single pattern of firing rates over neurons. However,
the brain could represent a singular item of information dynam-
ically, by generating an orderly sequence of activity patterns over
time (Mazor and Laurent, 2005; Meyers et al., 2008; Buonomano
and Maass, 2009). To explore whether dynamic codes of spatial
information exist in primate parietal cortex, characterize their
relation to spatial cognitive function, and elucidate their neural
mechanisms, we analyzed the temporal dynamics of neural activ-
ity in parietal cortex of monkeys solving a spatial cognitive prob-
lem posed by an object construction task. The construction task
required monkeys to assemble a copy of a model object consisting
of a variable configuration of identical components. To perform
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the task correctly, monkeys had to evaluate object structure (con-
figuration), compute the object-centered locations of compo-
nents, and compare incomplete objects they were constructing to
a model object stored in working memory—all forms of spatial
cognition with clear neural correlates dissociated from sensori-
motor processing in parietal cortex (Chafee et al., 2007; Crowe et
al., 2008).

In the present study, we characterized patterns of population
activity representing the value of a covert spatial cognitive vari-
able, object-centered side, specifying whether a single critical
component was located on the left or right side of an object
regardless of its location in viewer-centered space. Defined as
such, object-centered side carried a single bit of task-critical spa-
tial information that remained constant over time within the
trial. Monkeys had to compute the value of side to make the
correct choice at the end of each trial, but side was uncorrelated
with stimulus features (such as object form or position) and mo-
tor parameters (such as response direction or timing) during task
performance.

We sought to contrast two distinct mechanisms of neural rep-
resentation. If the representation of side were mediated by a sta-
tionary code, then the distribution of firing rates over neurons
should remain stable over the period of time that the value of side,
as defined by task events, did not change. If instead the represen-
tation of side were mediated by a dynamic code, then the distri-
bution of firing rates over neurons would change in an orderly
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Figure 1.  Visual stimuli and event sequence in the object construction task and neural recording locations in posterior parietal
area7a.A, B, Objects presented during the construction task. Each object consisted of an arrangement of squares (1.4° on a side)
positioned withina 5 X 5 grid of possible locations. All objects included, ataminimum, squares within the central column and base
row of the grid forming an object frame in the form of an inverted ‘T’. Model objects consisted of this frame plus either one or two
additional squares placed at various locations. In each trial, the copy object was identical to the preceding model except that a
single square had been removed, which we refer to as the missing critical square. A, Model and copy objects presented on
shift-model trials. When two additional squares were present in the same row of the model, only the outermost was removed to
produce the copy object. B, Model and copy objects presented in shift-copy trials. , Electrode penetrations on the surface of the
inferior parietal gyrus in area 7a (IPS, Intraparietal sulcus; STS, superior temporal sulcus). D, Event sequence on shift-model trials
(time advances downward, duration of each epoch indicated at upper left of each panel). The model object was presented
randomly offset to the left or right over trials, whereas the copy object was always presented centered on the gaze fixation target.
Choice stimuli were presented in a horizontal or vertical array at random (horizontal choice array is shown). E, Event sequence on
shift-copy trials. The model object was presented centrally, whereas the copy object was presented randomly offset to the left or
right of the gaze fixation target (vertical choice array is shown).

and systematic fashion during a period of time when the infor-

J. Neurosci., September 1, 2010 - 30(35):11640-11653 = 11641

specific neuronal cohorts activated in se-
quence to mediate dynamic spatial codes;
(4) analyze correlation in pretrial activity
of these neurons to provide novel insight
into the cellular mechanisms that underlie
the dynamic representation; and (5) char-
acterize the neural representation of time
combined with the representation of
space in parietal activity.

Materials and Methods

Object construction task. We trained two male
monkeys (Macaca mulatta, 4 and 6 kg) to per-
form an object construction task (Fig. 1D, E)
that required them to construct a copy of a
model object (Chafee et al., 2005, 2007; Crowe
et al., 2008). The stimuli are similar to those
used to demonstrate object-based spatial ne-
glect in humans following damage to posterior
parietal cortex (Driver et al., 1994).

Monkeys initiated trials of the construction
task by directing their gaze at a central fixation
target and had to maintain gaze within 1.5° of
this target for the duration of the trial (eye po-
sition was monitored with an infrared eye
tracking system; ISCAN ). After 500 ms of cen-
tral fixation, we presented a model object for
750 ms (Fig. 1D,E, model) at different posi-
tions relative to the gaze fixation target. Model
objects consisted of various spatial configura-
tions of identical square components arranged
on a5 X 5 square grid. Square components
subtended 1.4° and the object grid subtended
8.3° of visual angle. All model objects included
a central column and base row of squares
present within the grid forming an inverted
“T” configuration that we refer to as the object
frame, in addition to which one or two addi-
tional squares were placed at various positions
(Fig. 1A,B). A delay period (750 ms) ensued
after the disappearance of the model object.
We then presented an incomplete copy object
(Fig. 1D, E, copy), at different positions rela-
tive to the gaze fixation target. The copy object
was identical to the preceding model object on
each trial except that a single square, which we
refer to as the as the missing “critical square,”
had been removed. The construction task re-
quired monkeys to compare the configuration
of the copy object, while it was visible, to the
configuration of the model object stored in
working memory to localize the missing criti-
cal square. Monkeys then had to add a square at
this position to the copy object to “construct”
or reproduce the configuration of the model
object presented earlier in the trial. Replace-
ment of the missing critical square was accom-
plished via a forced choice mechanism. After
the copy object had been visible for a period of
750 ms, we presented a pair of choice squares
flanking the copy object. The choice squares
were arrayed either horizontally (Fig. 1D,

choice array) or vertically (Fig. 1 E, choice array) at random over trials.

mation collectively coded by that activity did not change. The monkey selected one of the two choice squares to add to the copy

In this study we do the following: (1) provide evidence that object by timing when it depressed a single response key (a pedal it
spatial representations are mediated by dynamic neural codes  pressed with its left foot) in relation to a randomized choice sequence as
in parietal cortex; (2) show that dynamic codes represent task-  follows. After a random period (300—600 ms), we increased the bright-
critical but not task-irrelevant spatial information; (3) identify = ness of one choice square at a time in random order for a period of
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between 700 and 1000 ms each. The choice square that was bright at the
time that the monkey pressed the response key automatically translated
in a horizontal direction inward to join the copy object, producing a new
configuration. The direction of the required motor response did not vary
over trials—the timing of the response relative to the choice sequence
determined whether the trial was successful or not. If the monkey pressed
the pedal at the right time it selected the correct choice square, the addi-
tion of which to the copy object reproduced the model configuration (in
which case the monkey was rewarded with a 0.1 ml drop of juice). If the
monkey pressed the pedal at the wrong time it added the incorrect choice
square to the copy object, and the new object configuration that resulted
did not match that of the preceding model object (in which case the trial
terminated without reward). The choice sequence was randomized, so
that on one half of trials the first choice in the sequence was the correct
choice (Fig. 1 E, 1st choice), whereas in the remaining half of trials the
second choice was correct (Fig. 1 D, 2nd choice). The timing of the motor
response therefore was not predictable in advance of the choice sequence.

On shift-model trials (Fig. 1 D), we randomly shifted the center of the
model object to the left or right of the gaze fixation target so that the
model object (8.3° wide) was presented entirely in the left or right visual
hemifield, and then the copy object was subsequently presented centered
on the gaze fixation target. On shift-copy trials (Fig. 1E), we presented
the model object centered on the gaze fixation target and then randomly
shifted the horizontal position of the copy object relative to the gaze
fixation target. We used the same two eccentric object locations to record
the activity of all neurons without adjusting the locations of the reference
objects to fall at the receptive field centers of individual neurons (as we
typically recorded the activity of between 20 and 30 neurons simulta-
neously). We selected the two fixed eccentric locations of the reference
objects to place the objects as close to the fovea as possible, while still
presenting them entirely in the right or left visual hemifield, to minimize
the effect of reduced visual acuity at more peripheral locations and make
it easier for monkeys to analyze object structure without looking at the
objects directly. Each neuronal ensemble was recorded during the per-
formance of either shift-model or shift-copy trials. Shifting the position
of reference objects relative to the gaze fixation target (which delimited
the midline of eye, head, and body-centered spatial frameworks) allowed
us to dissociate a spatial variable referring to the position of the critical
square, which we refer as “side” in two distinct spatial frameworks.
Object-centered side specified whether the critical square was located on
the left or right side of the object with respect to its intrinsic midline.
Viewer-centered side specified whether the critical square was located to
the left or right of the gaze fixation target.

Set of model objects included. We presented monkeys with a variety of
model object configurations (Chafee et al., 2005) but restricted the
present analysis to a simple subset in which either only one square was
present in addition to the object frame (Fig. 1 A, B, 1-square models), or
two additional squares were present in the same row and on the same side
of the object (Fig. 1A, 2-square models). The monkey was able to antic-
ipate the position of the critical square as soon as these model objects
were presented, because each configuration included only a single square
that was ever removed to produce the copy object on a given trial. When
one square was present in addition to the frame in the model object, we
removed this one square to produce the incomplete copy (Fig. 14, B,
compare 1-square models to corresponding incomplete copies). When
two squares were present in addition to the frame in the same row and on
the same side of the model object, we removed the outermost of the two
squares to produce the incomplete copy (Fig. 1A, compare 2-square
models to corresponding incomplete copies). We have shown previously
that population activity codes the position of the critical square from the
model period onward in the trial when this set of model objects was
presented (Chafee et al., 2005), allowing us to examine the neural repre-
sentation of the object-centered side of the critical square over an ex-
tended period of time within the trial.

Neural recording. We recorded neural activity using a multielectrode
matrix containing 16 independently movable, glass-coated, platinum—
tungsten metal microelectrodes (Thomas Recording). Typically, we
would advance the electrodes individually until we had isolated the ac-
tion potentials of between 20 and 30 neurons and then record the elec-
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trical activity of the individually isolated neurons within this ensemble as
the monkey performed a set of 128 or 160 trials of the object construction
task. We isolated the action potentials of single neurons using either a wave-
form template matching system (Multi-Spike Detector, Alpha Omega Engi-
neering) or time—amplitude window discriminators (DDIS-1, Bak
Electronics). After we had recorded neuronal activity during a complete
trial set, we would then advance the electrodes to study another neural
ensemble. Additional details of surgery and recording technique can be
found in our prior reports (Chafee et al., 2005, 2007). Care and treatment
of the animals conformed to the Principles of Laboratory Animal Care of
the National Institutes of Health (NIH) (NIH publication no. 86-23,
revised in 1995). The Internal Animal Care and Use Committees of the
University of Minnesota and the Minneapolis Veterans Affairs Medical
Center approved all experimental protocols.

Neural database. The present results are based on the activity of 69
simultaneously recorded neural ensembles containing a total of 1601
area 7a neurons. We recorded 51 ensembles containing 1097 neurons
from two monkeys in shift-model trials (Fig. 1D) and 18 ensembles
containing 504 neurons from one monkey in shift-copy trials (Fig. 1 E).
Locations of neural recording in area 7a are provided in Figure 1C.

Data analysis. We evaluated whether neuronal activity during the
model or copy period of the task reflected the side of the critical square in
either object-centered or viewer-centered coordinates. For that purpose
we performed a two-way ANCOVA in which the factors were the object-
centered side (left or right relative to the object midline) and the viewer-
centered side (left or right relative to the gaze fixation target) of the
critical square. Because the critical square was located on the left or right
side of the reference object at random and the reference object was pre-
sented to the left or right of the gaze fixation target at random, object-
centered side and viewer-centered side were statistically independent.
For shift-model trials, we evaluated the influence of object- and viewer-
centered sides on neuronal activity during the model period. For shift-
copy trials, we evaluated the influence of these factors on neuronal
activity during the copy period. Firing rates during the premodel fixation
period and the elapsed time since the start of data collection were in-
cluded as covariates in the ANCOVA.

Using pattern classification to decode the side of the critical square from
neuronal population activity. We represented the pattern of population
activity on each trial as a vector consisting of the firing rates of individual
neurons and applied a pattern classification analysis (Klecka, 1980; John-
son and Wichern, 1998; Averbeck et al., 2003; Chafee et al., 2005, 2008) to
classify each population activity pattern as coding left or right, effectively
decoding side from population activity. We performed the classification
using fivefold cross validation. On each of five iterations, we divided trials
into a training set (4/5 trials) and a test set (1/5 trials) (Fig. 2A). We used
neural activity on the training trials to define the classification functions,
which in this case were multivariate normal probability densities model-
ing the distribution of activity vectors within the two groups of trials
when the critical square was left or right. To compute the classification
functions, we further divided training trials into two groups on the basis
of the side of the critical square and then averaged the firing rate of each
neuron within each group of training trials. This provided the mean
population activity vectors (patterns) associated with the neural repre-
sentation of left and right. To measure the degree of spread of activity
patterns around each mean, we computed the pooled within-groups
covariance matrix. The mean population activity vectors on left and right
trials and the pooled covariance matrix provided the free parameters of
the two multivariate normal probability density distributions we used to
model the distribution of activity patterns on left and right trials.

We then classified the population activity pattern measured on each
test trial as coding either left or right. We computed the distance in rate
space between the population activity vector on that test trial and the
mean activity vectors coding left and right in the training data. We then
converted these two distances to posterior probabilities under the as-
sumption that the distribution of activity patterns on left and right trials
was multivariate normal and classified the test trial to the side (left or
right) associated with the greater posterior probability. We then repeated
the procedure selecting the next 1/5 trials to serve as test trials and the
remaining 4/5 trials to serve as training trials until all trials had been
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The first step in the classification procedure
is to determine the average activity vectors as-
sociated with left and right trials in the training
data. In the two-dimensional case, this can be
visualized by plotting the activity vector of the
population on each training trial as a point in
the rate space and color coding the points ac-
cording to the side of the critical square (Fig.
2B), producing one cloud of points associated
with left (blue), and another cloud of points
associated with right (red). The two clouds of
points are separated to some degree in the rate
space, indicating that the pattern of activity in
the population differed as a function of side.
The average activity vector associated with left
in the training data is the center (centroid) of
the blue cloud, with coordinates equal to the
firing rate of neurons 1 and 2 averaged across
all left trials. Likewise, the average activity vec-
tor associated with right is the center of the red
cloud. The spread of points within the left and
right trial clusters relative to their respective
centroids is quantified by the within-groups
covariance matrix, which measures variability
in the activity pattern on trials with the same
value of side or, more specifically, the degree to
which firing rates of all possible pairs of neu-
rons deviate together from their group cen-
troid. The capacity of the brain to discriminate
left from right based on the pattern of activity
in this population is a function of the distance
between the two group centroids relative to the
within-groups covariance. If the centroids are
widely separated in the rate space relative to the
within-groups covariance, the population sig-

Neuron 2 firing rate ——>

distribution of points within groups is multi-
variate normal (shading). Classify the test trial
to the group with higher posterior probability

nal coding side is relatively strong and decod-
ing accuracy will be correspondingly accurate.
If the two distributions of activity patterns
largely overlap or the distance between cen-
troids is small relative to the covariance, the

Neuron 1 firing rate ——>

Figure 2.

cates the strength of the population signal coding side.

classified. The proportion of trials correctly classified by this procedure
measured the strength of the population signal coding side. We per-
formed the analysis assuming equal prior probabilities for left and right.
We used the classify function in the Matlab Statistics Toolbox to perform
this analysis (The MathWorks).

To provide a conceptual illustration of the classification analysis, we
address the hypothetical case of decoding object-centered side from the
pattern of activity in a population containing two neurons. The two-
neuron case has the graphical advantage that the pattern of activity in the
network can be expressed by a point in a two-dimensional rate space, the
coordinates of which comprise a two-element vector corresponding to
the firing rates of neurons 1 and 2 (Fig. 2 B). The same principles apply
if scaled up to a larger population of neurons, in which case the
activity state of the network would be represented by a point in a mul-
tidimensional space with dimensions equal to the number of neurons,
and the coordinates of the point along each axis would be given by a
vector comprised of the firing rate of each neuron.

Graphical illustration of pattern classification analysis applied to a simplified case in which side is decoded from a
population containing two neurons. A, Cross-validation procedure. Trials are divided into a test set (1/5 trials) and a training set
(4/5 trials). Classification functions are defined by neural activity on training trials and used to classify each test trial as coding left
or right. The classification is repeated five times, treating successive 1/5 trials as test trials until all are classified. B, Graphical
illustration of classification based on a two-dimensional (e.g., two neuron) case. Each trial is represented by a point in the
two-dimensional rate space with coordinates equal to the firing rates of neurons 1 and 2. Points are colored according to the
object-centered side of the critical square. The separation of the group centroids, relative to the within-groups covariance, indi-

population signal coding side is weak and
decoding accuracy will approach chance
classification.

To illustrate how test trials are classified, we
plot the position of the activity vector on a test
trial in the rate space of the population (Fig.
2B, TEST trial) and determine the distance
from this point to each group centroid com-
puted from the training data (Fig. 2B, red and
blue arrows). Distance between two points in
the rate space is a measure of the dissimilarity
between the activity vectors associated with the
points. Consequently, the activity vector on the
test trial is most similar to the nearest group centroid (Fig. 2B, RIGHT
centroid). After converting the distances between the activity vector on
the test trial and each group centroid to posterior probabilities, we then
classify the test trial to the group, left or right, associated with the greater
posterior probability. We performed the classification assuming equal
covariance matrices within each group, which has been shown to extract
all of the available information (Averbeck and Lee, 2006).

Contrasting stationary and dynamic neural codes. To determine
whether the neural code for side was stationary or dynamic in time, we
performed a time-resolved decoding analysis (Fig. 3). We divided each
test trial into a sequence of 100 ms time bins (which we refer to as test
bins). We then classified the population activity vector in each test bin as
coding either left or right (Fig. 3A). This produced a sequence of classi-
fications for each test trial, only some of which were correct (Fig. 3B). The
proportion of test trials correctly classified as left or right in each test bin
of the test data provided a measure of the strength of the representation
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Figure 3.  Time-resolved decoding analysis based on pattern classification. A, Grids repre-
senta hypothetical population of neurons; firing rate is indicated by shading (dark, higher rate).
The classifier is trained by computing the average activity patterns coding left and right (as well
as the covariance matrix across neurons) using firing rates measured within a single time bin on
training trials (bin 3 is the training bin in this example). The pattern of activity found in each 100
ms test bin of the test trial is classified based on its relative similarity to the two patterns coding
left and right in the training bin. For example, the activity pattern in test bin 12 is most similar
to the activity pattern coding left in training bin 3. The activity pattern in bin 12 is therefore
classified as coding left. B, This produces a sequence of left/right classifications for each test trial
that are recoded as correct (1) or error (0) depending on whether the decoded value of side (left
or right) in each time bin matched the actual side of the critical square on that test trial. The
proportion of test trials correctly classified in each time bin provides a decoding time course for
the training bin used. C, The shapes of decoding time courses generated using different time
bins to train the classifier indicate whether patterns of activity coding side are stationary or
dynamic. Blue lines indicate decoding time courses obtained using bin 3 to train the classifier.
Red lines indicate decoding time courses obtained using bin 9 to train the classifier. If parietal
cortex employed dynamic patterns of activity to code side, each decoding time course would
exhibita peak that remained aligned to the training bin as it was stepped through the trial (solid
symbols and lines). If parietal cortex employed stationary patterns of activity to code side, the
decoding time courses would largely overlap regardless of the training bin used (open symbols,
dashed lines).

of side by population activity at each time point (Fig. 3B). To perform the
above classification, we used firing rates measured within a single 100 ms
time bin on training trials (which we refer to as the training bin) to
compute the mean population activity vectors associated with left and
right and the within-groups covariance matrix, thereby defining the clas-
sification functions and training the classifier (Fig. 3A). Using classifica-
tion functions based on population activity measured in a single time bin
in the training data, we defined the population activity patterns associ-
ated with the neural representation of left and right at a single time point
within the trial. For each individual training bin in the training data, we
generated an entire decoding time course quantifying the proportion of
test trials correctly classified within each test bin throughout the trial
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(Fig. 3A, B). This compared population activity patterns at all time points
in the test data to population activity at a single time point in the training
data. Fluctuations in the accuracy of decoding over time bins in the test
data reflected the degree to which the activity patterns associated with left
and right in each time bin of test trials resembled those associated with
left and right in the single training bin on training trials. This in effect
provided a measure of the lifespan of the specific population activity
patterns coding side in the training bin. During times in the test data
when decoding accuracy was comparatively high, population activity
patterns coding left and right resembled those coding left and right in the
training bin. When decoding accuracy was comparatively low, popula-
tion activity patterns coding left and right on test trials no longer resem-
bled those coding left and right within the training bin. Having generated
an entire decoding time course for a given training bin, we advanced the
training bin and repeated the procedure, generating a new decoding time
course.

The shapes of the resulting decoding time courses generated by suc-
cessive training bins allowed us to contrast stationary and dynamic pop-
ulation codes for side. We could expect that for the period of time that
parietal cortex used stationary population codes to represent left and
right, decoding time courses generated from different training bins
would essentially overlap, because in a stationary representation the same
population activity patterns would be present to code left and right in
each time bin. Consequently, which training bin had been selected to
train the classifier would have little effect. Overall decoding accuracy
might fluctuate to reflect variation in the strength with which population
activity coded side at each time point, but peaks and valleys in the decod-
ing time courses generated from different training bins should align (Fig.
3C, dashed lines). On the other hand, for the period of time that parietal
cortex used dynamic population codes for side, we could expect that
decoding time courses generated from different training bins would tend
to exhibit a clear peak in accuracy that remained aligned to each training
bin. As the training bin was stepped through the trial, a new peak in
decoding accuracy would emerge at each step, aligned to the new training
bin, so that the peak in decoding accuracy would travel through the trial
to follow the training bin at each step (Fig. 3C, solid lines). The rise and
fall in decoding accuracy to either side of each training bin would be
evidence that patterns of population activity coding left and right in that
training bin were short lived. The rising phase of the decoding time
course leading up to the training bin would reflect the emergence of a
new pair of activity patterns in the population associated with the neural
representation of left and right. The subsequent falling phase of the de-
coding time course after that training bin would reflect the disappearance
of those activity patterns in the population. The staggered peaks in de-
coding accuracy associated with successive training bins would in this
way reflect a succession of population activity patterns briefly emerging
and then fading to carry the same spatial information over time through-
out the trial (Fig. 3C, solid lines), specifically whether the critical square
was located on the left or right side of the reference object. For this
analysis, we included either all 504 neurons recorded during shift-copy
trials or, alternatively, all 1097 neurons recorded during shift-model tri-
als in the population without preselection.

Identifying neurons engaged to represent side in each training bin. Pop-
ulation decoding accuracy relies on reliable differences in the firing rates
of single neurons as a function of the decoded variable. Given a particular
decoding time course at the population level, there should then exist
within the population a subset of single neurons that exhibited a differ-
ence in firing rate as a function of side with a similar time course. To
identify which subset of neurons provided neural activity that most di-
rectly accounted for the shape of a given population decoding time
course, we first subtracted the mean firing rate of each neuron on left and
right trials in each time bin. This produced an activity difference time
course measuring variation in the strength of the signal coding side in
that neuron. We then computed the correlation coefficient between the
activity difference time course for that neuron and each population de-
coding time course. If the correlation was significant ( p < 0.0001), we
assigned the neuron to the training bin that generated the decoding time
course, as the correlation provided evidence that the neuron was one of
those contributing most directly to the population activity patterns cod-
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ing side in the training bin. We describe neurons assigned to a particular
time bin by this procedure as being significantly engaged in the represen-
tation of side at that time point. Neurons could be assigned to multiple
time bins by this procedure. For the purpose of assigning neurons to time
bins, we again included either all 504 neurons recorded during shift-copy
trials or, alternatively, all 1097 neurons recorded during shift-model tri-
als in the population for the correlation analysis without preselection.

Measuring correlated noise in pretrial activity. We evaluated the degree
to which spontaneous firing rate was correlated over trials in pairs of
neurons that had been assigned to a time bin in the dynamic representa-
tion of side by the above procedure. To assess correlation in activity, we
measured firing rates during a pretrial period spanning the 500 ms of
central gaze fixation before the presentation of the model object on each
trial. We used pretrial activity before objects were shown and neurons
were engaged to represent side or other trial-specific information to
ensure that correlations were not due to neurons having similar re-
sponses to task events. This measure of correlation is often referred to as
noise correlation to distinguish it from signal correlation, which would
be correlations due to changes in rates brought about by task-related
responses. We compared the number of neuron pairs with significantly
correlated pretrial activity when the two neurons were recorded simul-
taneously and at different times. (To correlate pretrial activity in pairs of
neurons that were not recorded simultaneously, we matched trials ac-
cording to the repetition of a given combination of model and copy
objects presented within the trial set.)

We evaluated correlation in the pretrial activity of pairs of neurons
that had been assigned to the same time bin as a function of their spatial
preference for the side of the critical square. We also evaluated the cor-
relation in pretrial activity of pairs of neurons that were assigned to
different time bins, defining the bin lag as the number of 100 ms steps
between the time bins containing the two neurons. In the latter analysis,
we excluded pairs of neurons that were assigned to both time bins at
nonzero lags (to constrain the analysis to pairs in which one neuron was
engaged in the representation of side before or after the other neuron at
a given bin lag) and included neuron pairs in which the correlation in
pretrial activity was significantly positive ( p < 0.05).

Decoding time. To characterize temporal information present within
the population signal coding object-centered side, we applied pattern
classification analysis to decode the current time within the trial (specif-
ically, the number of the current time bin; the bins are numbered 1-40
from the start of the trial) from the population activity pattern in each bin
(chance classification was 1/40 or 0.025 correct). For this decoding anal-
ysis, we limited the population to cells that exhibited a significant corre-
lation between their activity difference time course and a population
decoding time course for object-centered side at p << 0.0001. Further-
more, to reduce the possibility that our estimate of time information in
population activity was contaminated by neural signals coding the reti-
nocentric positions of objects (which varied between model and copy
periods and, therefore, as a function of time), we excluded neurons from
the population if their activity related ( p < 0.1) to the viewer-centered
side (left or right relative to the gaze fixation target) of reference objects
during either the model or copy periods (based on ANCOVA with
viewer-centered side as a factor).

Results

We recorded neural activity in parietal cortex of monkeys per-
forming an object construction task and applied pattern classifi-
cation techniques to population activity to decode the value of a
binary spatial cognitive variable, object-centered side, specifying
whether a critical object component was present on (or missing
from) the left or right side of a reference object. An example of the
activity of a single neuron in area 7a coding object-centered side
is illustrated in Figure 4. Activity increased during the copy pe-
riod when the critical square was missing from the right side of
the copy object relative to the midline of the object (Fig. 4A,B),
regardless of whether the critical square (and reference object)
was located to the left (Fig. 4A) or right (Fig. 4B) of the gaze
fixation target and consequently regardless of whether the critical
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square fell in the left or right half of viewer-centered space. In a
two-way ANCOVA (with object-centered and viewer-
centered side as factors), the firing rate of this neuron during
the copy period varied significantly as a function of object-
centered side (Fopjece = 56.40, p < 0.001) and not viewer-
centered side (Fieyer = 2.67, p = 0.104) or the interaction
(Fipter = 2.13, p = 0.146). Therefore, this neuron encoded
“right” with respect to the object in a way that could be statisti-
cally dissociated from retinocentric (viewer-centered) position, a
physiological property common to many parietal neurons active
during this task (Chafee et al., 2007). Our prior work has
provided evidence that this neural signal does not reflect the
form or position of the objects displayed, the position of an
attended visual stimulus, or the direction of a planned saccade
(Chafee et al., 2005), but appears instead to encode spatial
information needed to solve the cognitive problem posed by
the object construction task.

The value of object-centered side, as defined by the model and
copy objects shown and quantified by our decoding analysis, re-
mained fixed throughout the duration of each trial of the con-
struction task. In the present study, we sought to determine
whether parietal cortex represented the same value of object-
centered side (left or right) on each trial using a stationary neural
code, in which case the distribution of firing rates over neurons
would remain relatively stable, or a dynamic neural code, in
which case the pattern of population activity would continuously
evolve.

We present evidence in the following order that: (1) parietal
cortex generated a dynamic neural representation to represent
the same fixed value of object-centered side over time; (2) distinct
groups of neurons with the same object-centered spatial prefer-
ence were activated in rapid succession to mediate the dynamic
code; (3) the neurons recruited into this process exhibited corre-
lated pretrial activity that predicted the relative timing of their
sequential activation; (4) the temporal pattern of population ac-
tivity (dynamic or stationary) varied as a function of whether the
coded spatial information was relevant or irrelevant to the cur-
rent cognitive goal; and finally (5) population activity patterns
integrated both spatial and temporal information.

Parietal cortex generates dynamic neural representations

of space

To visualize how neural firing rates in the population of neurons
coding object-centered side were changing over time during the trial,
we first measured the firing rate of 96 neurons coding object-
centered side every 100 ms and then projected the resulting pop-
ulation activity vectors into a lower dimensional space defined by
the first three principal components of population activity to
produce neural trajectories illustrating how the distribution of
firing rates over neurons was changing over time. Neural trajec-
tories on object-left and object-right trials were separated in the
principal components space (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material) as predicted by the
selection of neurons coding object-centered side. However, the
neural trajectories also exhibited prominent loops around
the model and copy periods of the trial when the distribution of
firing rates across neurons was changing rapidly, suggestive of a
dynamic code. Had the population coded left and right using
stationary patterns of activity, the projection of activity into the
principal component analysis space would have produced two
points or restricted clusters of points on right and left trials,
rather than the extended trajectories shown (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material).
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Activity of a single area 7a neuron coding the object-centered side of the missing critical square during the copy period. Data are from shift-copy trials: model objects were centered on

the gaze fixation target, copy objects were randomly offset to the left or right of the gaze fixation target over trials. A, B, On trials in which the critical square was located on the right side of the model
(left panel), the critical square was missing from the right side of the copy object (middle panel, orange arrows). The neuron increased its firing rate during the copy period in this case (right panel)
to a comparable degree whether the copy object was presented in the left (4) or right (B) visual hemifield. Note that the retinal coordinate of the missing critical square, as indicated by the orange
arrows, was never occupied by a part of the model object because it appeared at a different location in the display. The trials included in the rasters included a mixture of model objects in which the
critical square was located in either the top or middle row of the object grid on the right side of the object. €, D, On trials in which the critical square was located on the left side of the model (left panel),
the critical square was missing from the left side of the copy object (middle panel; orange arrows). The neuron was less active during the copy period in this case despite the fact that the same copy
objects were presented at the same retinocentric locations as when the missing square was on the right, preferred side of the object.

To more directly measure the spatial information coded by
population activity patterns and evaluate the possibility that the
population code for object-centered side was dynamic in time, we
employed a time-resolved pattern classification analysis (Fig. 3)
to decode the value of object-centered side (left or right) using
patterns of neural activity measured in successive 100 ms time
bins. Using a single time bin to train the classifier, we generated a
decoding time course measuring the degree to which activity pat-
terns coding left and right in each time bin of test trials resembled
those coding left and right within the single training bin on train-
ing trials.

Using this analysis, we found that decoding time courses ex-
hibited a peak in accuracy that remained aligned to the training
bin as it was stepped through the model or subsequent copy
periods (Fig. 5A,C,D, each vertical dashed line indicates the train-
ing bin used to generate the decoding time course of matching
color). This provided evidence that the neural code for side was
dynamic during these task periods (Fig. 3C, solid lines). The rise
in decoding accuracy leading up to each training bin reflected the
emergence of a new pair of activity patterns in the population
coding left and right. The fall in decoding accuracy after each
training bin indicated the disappearance of these activity pat-
terns. The emergence of new peaks in decoding accuracy each

shifted forward in time as the training bin advanced provided
evidence that the population continuously generated new pat-
terns of activity to represent the same spatial information (the
side of the critical square) over time.

The results illustrated in Figure 5 were obtained by applying
the decoding analysis to neural activity on shift-copy trials. We
obtained similar results applying the analysis to neural activity
recorded on shift-model trials, although the tendency for the
peak to track the training bin later in the trial was less prominent
during the copy period (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). For both data sets, ani-
mations revealed a traveling wave in decoding accuracy that
followed the training bin (at the vertical line) as it was swept
through the trial (supplemental movies 1 and 2 for shift-copy and
shift-model data, respectively, available at www.jneurosci.org as
supplemental material). When the training bin was positioned
within the delay period, decoding time courses had a broader
profile and essentially overlapped regardless of the training bin
used, indicating slower population dynamics (Fig. 5B; supple-
mental Fig. 2 B, available at www.jneurosci.org as supplemental
material).

Two sources of variability in the population representation
contributed to the temporal pattern of population decoding we
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Figure5. Population decoding time courses for object-centered side. Each lineillustrates the
decoding time course produced using a single time bin to train the classifier (the time of the
training bin for each time course is indicated by the dashed vertical line of the same color).
Fluctuations in each time course measure the varying degree to which activity patterns coding
left and right at all time points resembled those coding left and right in the training bin. Neural
data are from shift-copy trials. A—D, Groups of decoding time courses generated when the
training bin was within (or near to) the model period (4), delay period (B), early copy period (C),
or late copy period (D) of the trial. Peaks in decoding accuracy newly emerging just before
presentation of the copy object are indicated by vertical arrows in C.

obtained. The first was variation in the strength with which a
specific pair of activity patterns found within a single training bin
was associated with left and right over time within the trial (as
indicated by the rise and fall in decoding accuracy before and
after each training bin as described above). The second was vari-
ation in the strength with which population activity represented
side at different times in the trial overall, as indicated by variation
in the height of the peak in decoding accuracy obtained in the
decoding time course generated by each successive training bin
(Fig. 5A) (for example, peak decoding accuracy increases as the
training bin is stepped through the model period). To measure
variation in the overall strength of population representation
more directly, we generated a decoding time course indicating the
proportion of test trials correctly classified in each time bin when
the classifier was trained using neural data on training trials in the
same time bin (supplemental Fig. 3, available at www.jneurosci.
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org as supplemental material). This analysis shifted the training
bin along with the test bin at each step, allowed any neurons to
participate in the population representation at each time point,
and so measured variation in the strength with which any activity
patterns in the population were associated with the value of side
in each time bin. This procedure therefore captured fluctuation
over time bins in the overall strength of representation of side by
the population taken as a whole. We found that although the
population representation so defined varied in strength over
time, the representation of side supported by the specific activity
patterns found in each training bin fluctuated more rapidly, as
indicated by a faster rise and fall in decoding accuracy in the time
course generated from each training bin relative to the overall
population representation, even during the model period (sup-
plemental Fig. 3A, available at www.jneurosci.org as supplemen-
tal material). Therefore, the population representation was dynamic.
New patterns of activity rapidly emerged to mediate the popula-
tion representation of side at successive time points, even during
periods in which the overall strength of population representa-
tion was also changing, but at a slower rate.

Rapid population dynamics were prevalent around the time
that visual objects were shown, raising the possibility that they
reflected application of the decoding analysis to transient visual
signals in parietal cortex evoked by presentation of the objects.
However, on shift-copy trials a new peak in decoding accuracy
emerged at the end of the delay period during which the neural
representation of side was relatively stationary, just before the
copy object appeared (Fig. 5C, arrows indentify peaks in decod-
ing accuracy in time bins preceding the onset of the copy object).
As this population dynamic occurred in advance of the visual
input, it was internally initiated and not visually driven.

Distinct groups of neurons are activated in rapid succession
to mediate the dynamic code

Decoding of object-centered side at the population level (Fig. 5)
depended on the degree to which the firing rate of single neurons
differed reliably on right versus left trials. To identify the individ-
ual neurons that most directly contributed to the newly emerging
patterns of population activity coding side in each training bin of
the decoding analysis, we subtracted the firing rate for each neu-
ron on right and left trials and correlated the resulting activity
difference time course with the population decoding time course
generated using a given time bin to train the classifier. The pro-
cedure identified neurons in which the difference in firing rate as
a function of side followed a time course that closely resembled
the time course of decoding accuracy at the population level as-
sociated with a given training bin (Fig. 6).

For example, the difference in firing rate as a function of side
in neuron A (Fig. 6C, top, black line) followed a time course that
was significantly correlated (p < 0.0001) with the population
decoding time course generated when using bin 13 to train the
classifier (Fig. 6C, top, red line). We assigned neuron A to bin 13
on that basis. The difference in firing rate as a function of side in
neurons B and C in contrast (Fig. 6C, middle and bottom, black
lines) followed time courses that were significantly correlated
(p < 0.0001) with the population decoding time course gener-
ated when using activity in bin 19 to train the classifier (Fig. 6C,
middle and bottom, blue lines). We therefore assigned neurons B
and C to bin 19. The activity difference time course averaged over
neurons assigned to the same time bin (Fig. 6D, black lines)
closely matched the decoding time course generated when that
time bin was used to train the classifier (Fig. 6 D, orange lines).
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Figure 6.  Assigning neurons to time bins based on correlation between firing rate and

decoding accuracy. A, Population decoding time courses generated using bins 13 and 19 to train
the classifier. B, Neurons were assigned to the training bin that had produced a given decoding
time course if decoding accuracy over time and firing rate over time were significantly corre-
lated ( p << 0.00071). C, Correlation between decoding accuracy and firing rate. Black lines in
each panelindicate the difference in firing rate of a single neuron on preferred and nonpreferred
side trials. The activity difference time course of neuron A (top, black line) closely resembled the
decoding time course produced using bin 13 to train the classifier (top, red line). Neuron A was
assigned to bin 13 on that basis. The activity difference time courses of neurons B and C (middle
and hottom, black lines) closely resembled the decoding time course produced using bin 19 to
train the classifier (middle and bottom, blue lines). Neurons B and C were therefore assigned to
bin 19. D, Similarity between the average activity difference time course of neurons assigned
tothe same time bin (black lines), and the population decoding time course generated using the
same time bin to train the classifier (orange lines). Examples using three training bins are
illustrated (the number of the training bin relative to the start of the trial and the number of
neurons assigned to the training bin are shown above each panel). div, Division.

The assignment of a neuron to a training bin by this procedure
indicated not that the neuron was only active to code side at that
single time point, but rather that the neuron was one of those
driving fluctuations in decoding accuracy over the entire trial in
the particular pattern observed when the time bin in question was
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selected to train the classifier. Consequently we could conclude
that the neuron was one of the those participating in the popula-
tion activity patterns coding side in that training bin as measured
by the decoding analysis. (Although single neurons tended to exhibit
a strong signal coding side in the training bin, consistent with the
tendency for the peak in population decoding accuracy to occur at
that time, they typically exhibited differences in firing rate as a func-
tion of side at other time points in the trial as well.) (Fig. 6).

After assigning neurons to time bins, we could graphically
illustrate the changing pattern of activity parietal cortex gener-
ated to represent a fixed value of object-centered side over time
(Fig. 7). Filled circles within each rectangular grid represent the
subset of a population of 196 parietal neurons that was signifi-
cantly engaged to code object-centered side in a given training
bin (circles are arranged left to right in the order of the time of
their engagement in the representation). Parietal cortex gener-
ated a succession of activity patterns to carry the value of side over
time during a period in which the value of side remained either
left or right throughout (Fig. 7). New groups of neurons were
recruited into the dynamic representation of side just before the
presentation of the copy object on both shift-copy (Fig. 7, filled
arrows) and shift-model trials (supplemental Fig. 4, available at
www.jneurosci.org as supplemental material, filled arrows), re-
flective of an internally initiated process. Animations of the re-
sults of this analysis over successive time steps reveal the rapid
succession of activity patterns generated in parietal cortex to
represent the same item of spatial information over time (sup-
plemental movies 3 and 4 illustrate population dynamics on
shift-copy and shift-model trials, respectively). Interestingly, the
first time of engagement of neurons was uncorrelated with their
visual response latency (supplemental Fig. 5, available at www.
jneurosci.org as supplemental material). Neurons were typically
activated shortly after the presentation of the model object, but
their activity often did not differentiate between left and right
trials until later in the trial.

Neurons exhibit correlated pretrial activity that predicts the
relative timing of their sequential activation

To further elucidate aspects of the synaptic organization of the
network generating dynamic representations in parietal cortex,
we analyzed correlations in pretrial activity between pairs of neu-
rons as a function of their spatial preference for side and time of
engagement. Pairs of neurons that were recorded simultaneously
and assigned to the same time bin more frequently exhibited
significantly positively correlated pretrial activity (p < 0.05) if
they shared the same spatial preference for side (Fig. 8A, blue bar)
than if they had opposite spatial preferences (Fig. 8 A, red). To
confirm that correlated pretrial activity was only detected in pairs
of simultaneously recorded neurons, we repeated the correlation
analysis using pairs of neurons recorded at different times and
detected significant correlations in pretrial activity at the ex-
pected 5% false positive rate given the 0.05 significance level of
the test (Fig. 8 A, Non-simultaneous).

We next evaluated pretrial activity correlation in pairs of neu-
rons that had been assigned to different time bins, defining the
bin lag of each neuron pair as the number of steps between the
time bins containing the two neurons (Fig. 8 B). We found that if
the pair of neurons shared the same spatial preference for side,
then their pretrial activities were correlated to a degree that scaled
as a positive linear function of how close together in time the two
neurons would be activated later in the trial during the dynamic
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Figure7. Parietal cortexrepresented each value of side (left or right) by activating a sequence of neuronal groups with the same

spatial preference in rapid succession (data from shift-copy trials). Filled circles within each grid illustrate the subset of a population
of 196 neurons that were significantly engaged to represent object-centered side in a given time bin (time is indicated relative to
model onset). Circles are arranged left to right within each grid in order of the time of their first engagement in the trial (the
position of neurons within the grid does not reflect their anatomical location). Open arrows indicate neuronal recruitment follow-
ing presentation of the model object. Filled arrows indicate neuronal recruitment beginning before presentation of the copy object.
The vertical gray shading indicates the set of neurons activated during the model period.

representation of side (or in other words, the strength of correla-
tion was a decreasing linear function of bin lag) (Fig. 8C, blue
line).

This was particularly interesting because the degree of corre-
lation in spontaneous activity was observed during a period in the
trial before neural activity was modulated by the objects shown
and before side was defined, so that the correlation structure
among neurons was predictive of the relative timing of neuronal
engagement during the dynamic representation before the fact—
before the dynamic representation unfolded and neurons were
sequentially engaged to represent side later in the trial. Further-
more, we did not find a linear relation between activity correla-
tion and bin lag in the case that two neurons had opposite spatial
preferences for side (Fig. 8C, red line). This is evidence that the
pattern of correlation in pretrial activity was functionally related
to the spatial information processing required by the task. The
slope of the regression line fit to the correlation-lag data was
significantly different from zero for neuron pairs with the same
(p < 0.0005) but not opposite ( p = 0.362) spatial preferences
(Fig. 8C, asterisks indicate a significant difference in pretrial ac-
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tivity correlation as a function of spatial
preference by ¢ test at p < 0.05).

Parietal cortex selectively employs a
dynamic code to represent task-critical
but not task-irrelevant spatial
information

We contrasted population dynamics asso-
ciated with the representation of two dif-
ferent kinds of spatial information on
shift-model trials derived from the same
visual stimulus (the model object): the
object-centered side of the critical square
(left or right relative to the object midline)
and the viewer-centered side of the critical
square (left or right relative to the gaze
fixation target). We found that rapid pop-
ulation dynamics in the model period
were much more prominent in the neural
population representing the object-
centered side (Fig. 9A) than the viewer-
centered side (Fig. 9B) of the critical
square. Specifically, whereas decoding
time courses for object-centered side ex-
hibited a clear peak aligned to the training
bin (Fig. 9A, arrows), decoding time
courses for viewer-centered side did
not—the time courses were broader (Fig.
9C, width measured at 60% of the peak),
spanned the model period, and essentially
overlapped regardless of the training bin
(Fig. 9B, arrows).

We evaluated the tendency of the time
of the peak in decoding accuracy to follow
the training bin by plotting one time
against the other (Fig. 9D). The slope of
the resulting linear fit was significantly
nonzero when decoding the object-
centered side (Fig. 9D, solid lines; p <
0.005), but not the viewer-centered side
(Fig. 9D, dashed line; p = 0.17) of the crit-
ical square. These observations suggest
more stationary patterns of population

activity coded viewer-centered side during the model period. The
overall accuracy of decoding (although not necessarily the tem-
poral dynamics shown here) can depend on the number of
neurons in the population and the strength of the signal they
carry relating to the decoded variable. To demonstrate that
differences in neuron number or signal strength did not ac-
count for differences in the population dynamics observed, we
repeated the analysis after controlling for these variables. Signif-
icant differences in the temporal dynamics of population activity
coding object-centered and viewer-centered side during the
model period were still evident (supplemental Fig. 6, available at
www.jneurosci.org as supplemental material).

We found, interestingly, that on shift-copy trials parietal neu-
rons represented viewer-centered side dynamically during the
copy period (supplemental Fig. 7F, available at www.jneurosci.
org as supplemental material). Because the choice array moved
with the copy object on shift-copy trials, the viewer-centered
position of the critical square during the copy period was corre-
lated with the position of the correct choice the monkey had to
select (and therefore viewer-centered position was task-relevant
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Figure 8.  Correlation of pretrial activity in pairs of neurons as a function of their spatial
preference for side and the relative time of their sequential engagement. The correlation anal-
ysis was restricted to pairs of neurons with positively correlated pretrial activity ( p << 0.05) that
were assigned to a time bin in the neural representation of object-centered side by the proce-
dure illustrated in Fig. 6. A, Pretrial activity correlation in pairs of neurons assigned to the same
time bin. A larger proportion of neuron pairs exhibited correlated pretrial activity if they shared
the same spatial preference for object-centered side (blue bar) than if they had opposite spatial
preferences (red bar), but only if the two neurons were recorded simultaneously. B, Definition of
bin lag. We defined the bin lag of a pair of neurons as the number of steps between the time bins
they were assigned to (neuron pairs of bin lag 1and 5 are shown). ¢, Mean correlation coeffi-
cient for pretrial activity in pairs of neurons as a function of bin lag. For neurons sharing the same
spatial preference for side (blue line), the mean pretrial activity correlation coefficient was a
linear function of bin lag (significantly nonzero slope; p << 0.0005). For neurons with opposite
spatial preferences (red line), pretrial activity correlation was not related to bin lag (slope not
significantly different from zero; p = 0.362). Asterisks indicate bin lags where the mean pretrial
activity correlation coefficients for pairs with same and opposite spatial preferences were sig-
nificantly different (t test, p < 0.05).

under these conditions). Population dynamics did not appear to
be a function of the coordinate frame used to define the coded
spatial information, but instead reflected whether the spatial in-
formation coded by activity was task relevant in the sense of being
correlated or uncorrelated with the spatial choice the monkey
had to make.
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Population activity patterns integrate spatial and

temporal information

We employed pattern classification to decode the number of the
current time bin (bins are numbered 1-40 from the start of the
gaze fixation period) from the pattern of population activity in
that bin. We included neurons in the population if they were
assigned to a time bin in the dynamic neural representation of
object-centered side (Fig. 6) and if their activity did not signifi-
cantly reflect the retinocentric side of the critical square during
either model or copy periods ( p > 0.1 for viewer-centered side in
an ANCOVA). Decoding accuracy for bin number peaked in the
45-50% correct range during the model, copy, and choice peri-
ods (Fig. 10) (chance classification is 1/40 or 2.5% correct in this
analysis). Decoding accuracy for bin number started to climb just
before the onset of model and copy objects (Fig. 10), suggesting
that the representation of temporal information was anticipatory
in nature to some degree and was not driven solely by the presen-
tation of visual stimuli.

Discussion

We characterized the temporal dynamics of population activity
in parietal area 7a of monkeys performing an object construction
task. We sought to determine whether the neural representation
of a spatial cognitive variable (object-centered side) was mediated
by a stationary pattern of activity or by a sequence of activity
patterns during a period of time in which the value of the coded
variable did not change. If the representation was stationary, we
would predict that the distribution of firing rates over neurons
would not change as long as the information coded by that activ-
ity (side) did not change either. If the representation was dy-
namic, we would predict instead that side would be represented
by an orderly sequence of activity states, even in the case that the
value of side remained constant. We report here that area 7a
neurons represented a single, fixed value of side by generating an
orderly sequence of population activity patterns over time (Figs.
5,7, supplemental Figs. 2, 4, and supplemental movies 1-4, avail-
able at www.jneurosci.org as supplemental material). Thus, side
was represented dynamically, and one neural representation cor-
responded to a sequence of activity states in area 7a. For example,
on trials when side was right, parietal cortex represented “right”
by briefly activating distinct groups of neurons that shared the
same spatial preference for right in a reliable order, each for a
brief interval of time.

Dynamic representations reflect task relevance of coded
spatial information

We found that population dynamics in parietal cortex varied as a
function of the relevance of coded spatial information to the
current behavioral objective. Across trial periods and task condi-
tions we found that when side was relevant to the task, it was
represented dynamically (Fig. 9A, supplemental Figs. 6C, 7F),
defining relevance as being correlated with the side of the
correct choice in a given spatial framework or during a partic-
ular task period. In contrast, when side was irrelevant to the
task, the population representation of side was stationary (Fig.
9B, supplemental Figs. 6 D, 7A). In this regard, it interesting that
in a match-to-category task (Meyers et al., 2008), the population
representation of object category (task-relevant information)
was more dynamic than the representation of object identity
(task-irrelevant information) in inferotemporal cortex. The
agreement between that study and the present one could point to
a common principle of cortical information processing by which
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Figure 9.  Neural populations coding different types of spatial information exhibit distinct temporal dynamics. A, Dynamic
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B, Stationary representation of the viewer-centered side of the critical square during the model period on shift-model trials (left or
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period essentially overlap. C, Average width of peaks in decoding accuracy (measured at 60% of peak amplitude). Error bars
indicate == SEM. Peaks were significantly broader (¢ test; p << 0.05) when decoding viewer-centered side than object-centered side
on both shift-copy and shift-model trials. D, Quantification of the tendency of the peak in decoding accuracy to track the training
bin. The relationship between the time of the peak in decoding accuracy and the training bin is significantly linear when
decoding the object-centered side of the critical square during the model period in both shift-model (orange line) and
shift-copy (red line) trials (slopes of regression lines significantly different from zero; p << 0.005), but not when decoding

the viewer-centered side of the critical square during the model period (blue line; slope of regression line not significantly
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rapid population dynamics mediate task-
critical cognitive processing.

Relation between correlated activity
and the timing of neuronal activation
We were able to identify the subgroups of
neurons that were engaged at each time
point during the dynamic representation
(Figs. 6, 7), allowing us to discover a sys-
tematic relation between the correlated
spontaneous activity of neurons and the
relative timing of their activation in the
dynamic representation. In pairs of neu-
rons with the same spatial preference for
side, the strength of correlation in pretrial
activity predicted how close in time the
two neurons would be sequentially en-
gaged to represent side later in the trial
(Fig. 8C). Neurons tend to exhibit corre-
lated spontaneous activity to the degree
that they exhibit similar tuning to features
such as movement direction in primary
motor cortex (Lee et al., 1998), line orien-
tation in primary visual cortex (Kenet
et al., 2003), or place in hippocampus
(Wilson and McNaughton, 1994). By
demonstrating a relation to the timing
of neuronal activation, the present data
provide new insight into the functional
organization of the network generating
dynamic representations. Neurons that
will be activated closer together in the se-
quence of recruitment share a stronger
synaptic drive. This relationship could re-
flect a number of different patterns of
connectivity between neurons. Perhaps
the simplest is a network in which each
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Figure 10.  Accuracy of decoding the current time bin number (bins are numbered 1-40
starting at the beginning of the gaze fixation period) based on the pattern of population activity
observed within that bin (chance decoding is 1/40 or 2.5% correct). Neurons were included in
the population if they were assigned to a time bin in the representation of object-centered side
by the procedure shown in Fig. 6 and if their activity was not significantly related to viewer-
centered side during either the model or copy periods ( p > 0.1).

group of neurons participating in the dy-
namic representation provides the stron-
gest synaptic drive to the next group in the
sequence, driving the network along a trajectory through the state
space.

Relation of population dynamics to receptive or movement
field properties

The decoding analysis identified a succession of population ac-
tivity patterns that coded the value of object-centered side (left or
right). The information carried by the activity of these neurons
did not reflect sensory or motor parameters of the task, because
object-centered side was uncorrelated with both the form and the
retinocentric position of reference objects as well as the direction
or timing of the required motor response (Chafee et al., 2005,
2007). In a prior study (Chafee et al., 2005), we provided evidence
that the spatial selectivity that neurons demonstrated during ob-
ject construction was not congruent with the location or shape of
their retinocentric visual receptive or movement fields as tested
in sensorimotor control tasks. The activity of >80% of parietal
neurons that varied significantly as a function of the position of
the missing critical square in the copy object did not vary signif-
icantly as a function of the position of a spot visual stimulus
presented at the same retinocentric locations in control tasks,
even though monkeys were required to either direct covert atten-
tion or plan a delayed saccade toward those visual stimuli (Chafee
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etal,, 2005). Of the remaining minority of neurons, many exhib-
ited incongruent spatial preferences as a function of task context,
suggesting that spatial selectivity during object construction was
independent of the locations of retinocentric receptive fields
tested in the control tasks. Consistent with this, we found that
when we shifted the retinocentric position of reference objects.
many parietal neurons coded the object-centered position of
missing squares in a manner that could be statistically dissociated
from retinocentric position (Fig. 4) (Chafee et al., 2007). Finally,
the time of neuronal recruitment in the representation of object-
centered side was temporally independent from receptive field
properties in the sense of being uncorrelated with the visual re-
sponse latency of neurons in the task (supplemental Fig. 5, avail-
able at www.jneurosci.org as supplemental material).

Dynamic representations in other neural systems

In the olfactory system, presentation of an odor briefly activates
neurons in a temporally extended sequence that codes the iden-
tity of the stimulus (Laurent et al., 1996; Wehr and Laurent, 1996;
Laurent et al., 2001, 2002). In the isolated nervous system of the
leech, stochastic population dynamics predict which of two alter-
native motor patterns the network will generate in response to a
single stimulus (Briggman et al., 2005, 2006). In monkeys, pop-
ulation activity in prefrontal cortex is dynamic during the delay
period of working memory tasks, switching spontaneously be-
tween different activity states (Seidemann et al., 1996) or exhib-
iting temporal trends (Chafee and Goldman-Rakic, 1998; Romo
et al., 1999) in which time and stored spatial information exert
separable influences on firing rate (Machens et al., 2010)—a dy-
namic successfully modeled by networks in which units are si-
multaneously “tuned” along both feature and time dimensions
(Singh and Eliasmith, 2006). Similarly, in the lateral intraparietal
area, neurons carry spatial and temporal information, coding
either elapsed time (Leon and Shadlen, 2003) or the time of an-
ticipated events (Janssen and Shadlen, 2005), in addition to the
direction of a forthcoming saccade. In the present study, rather
than exhibiting relatively gradual changes in firing rate and coded
information, parietal cortex generated a rapid succession of ac-
tivity patterns to code side around the time that task-critical stim-
uli were presented and dynamics slowed during the delay period.
Furthermore, the pace of population dynamics varied as a func-
tion of the behavioral relevance of the coded information, and the
order of neuronal activation was reflected by the strength of cor-
relation in spontaneous activity. Finally, although our data indi-
cate that different groups of neurons are recruited at generally the
same time within each trial, this does not require that the action
potentials of the neurons be precisely timed or synchronous
(Abeles et al., 1993; Aertsen et al., 1996).

Computational utility of dynamic representations

Theoretical studies have shown that artificial networks can code
information using sequences of activity states rather than the
steady-state patterns of activity associated with attractor dynam-
ics (Maass et al., 2002; Buonomano and Maass, 2009). Transient
inputs perturb such systems in an informative way and pro-
duce temporally extended responses. By incorporating time
into the neuronal representation and allowing for sequences of
states to become informative, the brain may increase the state
space it has available to separate neural representations (Laurent,
2002; Buonomano and Maass, 2009). Another computational
advantage of dynamic coding could derive from a property evi-
dent in our data, namely that the active neural group provided
not only spatial but also temporal information (Fig. 10). Further-
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more, dynamics were not uniform over the trial, being faster
during the model and copy periods (Fig. 5A, C) and slower dur-
ing the intervening delay period (Fig. 5B), so that the amount of
temporal information carried by population activity was focused
around the time of task-critical events (Fig. 10). Therefore dy-
namic coding could serve to synchronize cognitive information
processing operations to a stereotypic sequence of sensorimotor
events.

Our data provide evidence that temporally dynamic neural
representations of space: (1) exist in parietal area 7a; (2) prefer-
entially represent task-relevant spatial information; (3) are me-
diated by the rapid recruitment of distinct neuronal groups; (4)
are predicted by patterns of correlation in spontaneous activity
before they occur; and (5) incorporate temporal along with spa-
tial information.
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