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Abstract
Background and Purpose—Lipoprotein(a) level (Lp(a)) is an established risk factor for
coronary artery disease and has been implicated in carotid artery disease (CAAD). The
relationship between genetic variation in the LPA gene region and CAAD risk remains unknown.

Methods—We genotyped single nucleotide polymorphisms (SNPs) in the LPAL2, LPA, and PLG
region in 530 individuals with severe CAAD and 770 controls and kringle IV type 2 (KIV2) repeat
length in a subset of 90 individuals.

Results—Nine SNPs collectively accounted for 30% of the variance in Lp(a) level. Six SNPs
were associated with Lp(a) level after accounting for KIV2 copy number, and the dominant KIV2
allele combined with these markers explained 60% of the variance in Lp(a) level. Five SNPs,
including rs10455872, which had an odds ratio of 2.1 per minor allele, and haplotypes formed by
rs10455872, rs6919346, and rs3123629 were significant predictors of CAAD. After accounting
for Lp(a) level, all evidence of CAAD-genotype association in the LPA region was eliminated.

Conclusions—LPA region SNPs capture some but not all of the effect of KIV2 repeat length on
Lp(a) level. There are associations between LPA region SNPs and CAAD which appear to be due
to effects on Lp(a) level.
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Introduction
Carotid artery disease (CAAD) is an important preventable risk factor for stroke, a leading
cause of mortality and long term disability in the United States.1 Effective medical and
surgical therapies for primary and secondary prevention of stroke are available, but many of
these interventions are expensive when viewed in terms of the number of patients needed to
treat and the cost to prevent one stroke.2 Therefore, it remains important to distinguish
individuals at low cerebrovascular disease risk from those at high risk. The heritability of
CAAD3–8 suggests that genetic data may help to refine risk estimates and thus better target
preventative therapies.

Elevated levels of lipoprotein(a) (Lp(a)), a small LDL-like particle formed by apolipoprotein
B (apoB) covalently bound to apolipoprotein(a) (apo(a)), confer increased risk for CAAD
and ischemic stroke.9, 10 The apo(a) protein varies in size due to a copy number
polymorphism of the kringle IV type 2 domain (KIV2) encoded by exons 4 through 5+2(n
−1) of LPA on chromosome 6q26, where n, ranging from 5 to greater than 50,11 is the
number of KIV2 copies. The KIV2 polymorphism has been reported to account for 69% of
the variability in Lp(a) level,12 with increased repeat number leading to impaired liver
secretion,13 lower plasma Lp(a) level,11, 12, 14, 15 and decreased risk of myocardial
infarction.16, 17

Although many risk factors overlap between CAAD and coronary artery disease (CAD), the
relative importance of non-genetic risk factors varies between these two disease processes,18

suggesting the possibility of differential underlying genetic diatheses. In addition, although
many well-established genetic risk factors for CAD also increase risk for CAAD,19, 20 some
loci, such as that on chromosome 10q11.21, appear to increase risk for CAD but not stroke,
20 while other genetic factors, such as dyslipidemia genetic risk scores, display much weaker
effects on CAAD.21 Therefore, given the known association between Lp(a) levels and
CAAD and the reported association between LPA polymorphisms and CAD,22 we evaluated
the role of LPA region polymorphisms in predicting Lp(a) level and CAAD risk. For
polymorphisms associated with Lp(a), we determined whether these effects were due to
linkage disequilibrium (LD) with the KIV2 repeat. Due to the labor intensive, low
throughput assays required for accurate KIV2 genotyping,23 we also sought to determine
whether LPA polymorphisms in LD with the KIV2 copy number polymorphism could act as
an adequate surrogate for KIV2 genotype in predicting Lp(a) level. Finally, we sought to
determine whether LPA polymorphisms contribute to CAAD risk because of, or in addition
to, their effects on Lp(a) level.

Materials and Methods
Study population

All study participants were ascertained at four Seattle medical centers and gave written
informed consent. The University of Washington, Virginia Mason Medical Center, and the
Puget Sound Veterans Affairs Health Care System human subject review boards approved
this study. Characteristics of study participants, clinical covariates, and phenotyping are
shown in Table 1 and are described in greater detail elsewhere.21, 24, 25 Three hundred six
CAAD cases and 534 controls overlap with the cohort described by Ober et al.26 which
analyzed the effects of rs6919346 and rs14224 on Lp(a) level. Briefly, CAAD cases have
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>80% internal carotid artery stenosis, in one or both arteries, detected by duplex ultrasound
or on prior endarterectomy. Controls have <15% internal carotid artery stenosis bilaterally
and no other known vascular disease. Individuals with carotid stenosis between 50% and
80% were included in analyses testing for association between SNPs and Lp(a) but not case
versus control analyses. The distributions of censored ages were approximately matched
between cases and controls based on the age of diagnosis for CAAD cases and the age at the
last blood draw for controls. Due to the limited numbers of other ethnic groups analyses are
limited to Caucasian ancestry was confirmed using STRUCTURE27 considering a panel of
ancestry informative markers on the Illumina HumanCVD BeadChip28. We excluded any
individual who showed greater than 10% non-Caucasian ancestry.

Lipoprotein(a) measurement and KIV2 copy number
Lp(a) concentrations in nmol/L were measured on fasting plasma samples by a double
monoclonal antibody-based enzyme-linked immunoassay as described.29 Apo(a) size
isoforms, defined by the relative number of KIV2 repeats, were determined in a subset of 90
subjects by high resolution sodium dodecyl sulfate-agarose gel electrophoresis followed by
immunoblotting as previously described.30, 31 Subjects were over-selected for infrequent
SNP genotypes to increase genetic diversity in the sub-sample. The repeat number of the
predominantly expressed isoform was used as the analysis trait;26 in 8 individuals with
equally expressed isoforms the two repeat numbers were averaged.

Genotyping and SNP selection
Genotyping was performed using the Illumina HumanCVD BeadChip platform.32 The
available region on chromosome 6q26-27 included approximately 318 kilobases and
encompassed the genes LPAL2, LPA, and PLG. A total of 53 SNPs were present within this
region and met quality control criteria for missing genotype rate (<10%) and minor allele
frequency (>1%). Two SNPs (rs3127569 and rs783144) were excluded due to departure
from Hardy-Weinberg equilibrium. Missing genotypes were imputed BIMBAM33 based on
unphased genotypes for CEU individuals from HapMap release 27.34 To reduce the
dependence among SNPs due to LD, we used ldSelect35 to identify 28 tagSNPs using the
default correlation threshold of 0.64. Haplotypes were estimated using PLINK.36

Statistical analyses
All analyses were performed in R37 and PLINK. Lp(a) level was natural log transformed
due to right skew, and in all analyses Lp(a) level refers the log transformed values. Unless
otherwise specified Lp(a) levels were adjusted for sex and age at the time of blood draw.
CAAD were adjusted for sex, censored age, body mass index, type 2 diabetes, current
smoking status, and total pack years smoked. Cholesterol levels, use of lipid lowering
medications, and use of antihypertensive medications were not included as covariates for
CAAD regression models because, consistent with guidelines, individual with CAAD in our
study are generally treated to lower cholesterol38 and blood pressure39 targets than
individuals without disease. Thus, including lipid and blood pressure measurements or
treatment status would lead to a problematic model in which the dependent variable, case
versus control status, is causal for these independent variables. Linear and logistic regression
were used to test for associations between the minor allele dose of each SNP and Lp(a)
levels and CAAD status, respectively. Haplotype based tests of association were carried out
in PLINK. The proportion of Lp(a) level variance explained was estimated by the difference
in adjusted r2 values between models which accounts for the number of explanatory terms.

To account for multiple testing we performed Bonferroni corrections or estimated false
discovery rates (FDR) using the Benjamini Hochberg procedure.40 Bonferroni corrections
assume independence of tests and are conservative in the presence of correlated tests, so to
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estimate a family wise error rate in the setting of LD between SNPs we permuted CAAD
status and non-genetic covariates 10000 times, and for each permutation determined the
most significant association across the 28 tagSNPs. To identify associations between
multiple SNPs and Lp(a), while removing SNPs associated with Lp(a) solely due to LD with
other variants, we used backward stepwise regression.

Power calculations—We assessed the power of our sample size to detect association
between SNPs and CAAD case versus control status conservatively assuming an underlying
variant that confers a relative risk of 2.0 for homozygotes and 1.5 in the heterozygotes.22, 41,
50 As shown in Supplementary Table 1 our sample size provides robust power to detect
association with for risk allele frequencies as low as 0.05 when either the causal SNP itself
or surrounding markers in LD are tested.

Results
Prediction of Lp(a) level by SNPs

As expected, we found that Lp(a) level was elevated in women, older individuals, and
individuals with vascular disease. Lp(a) level was significantly higher in CAAD cases than
in controls (β = 0.74; p = 5.7 × 10−6), adjusting for sex, age, body mass index, current
smoking and total pack years smoked, diabetes, and use of antihypertensives and lipid
lowering medication. After excluding CAAD status from the regression, only female gender
(β = 0.48; p = 0.031) and age (β = 0.017; p = 0.037) were predictive of elevated Lp(a) level.

Multiple SNPs individually and jointly predict Lp(a) level. We found that 20 out of 28
tagSNPs were associated with Lp(a) level at a p-value of 0.05, corresponding to a FDR of
0.067 (Table 2). Using backward stepwise regression identify a multi-SNP model in which
redundant associations due to LD were discarded, 9 SNPs were jointly associated with Lp(a)
at an inclusion p-value of 0.05, corresponding to a FDR of 0.0064. These 9 SNPs, shown in
order of inclusion in Figure 1, explained 30% of the variance in loge transformed Lp(a)
levels in the complete cohort and 27% in controls.

Haplotypes formed by these 9 SNPs showed significant association with Lp(a) levels but did
not improve the percent variance explained compared to the multi-SNP model. The minor
alleles of rs10455872 and rs3798820 mark haplotypes carrying short KIV2 alleles and are
associated with elevated Lp(a) levels. In a global search of all 2 and 3 SNP haplotypes, the
minor allele haplotypes (GA and AG) of these two SNPs were the strongest predictors of
elevated Lp(a) (Table 3). To determine whether a haplotype associated with elevated Lp(a)
on the major allele backgrounds of rs10455872 and rs3798820 could be identified, we
analyzed all possible combinations of 2 and 3 SNP haplotypes formed from the 7 remaining
SNPs. One haplotype marked by several SNPs, including GA of rs6919346 and rs2295368
and GCA of rs6919346, rs3798221, and rs2295368 was associated with higher Lp(a) level
(Bonferroni corrected p-values of 4.1 × 10−12 and 8.3 × 10−18 for 21 and 35 two and three
SNP haplotypes tested, respectively). However, models explicitly including this haplotype
did not account for much more variance in Lp(a) level (25%) than the model that included
the underlying SNPs as independent additive covariates (24%).

KIV2 copy number effects
We assayed KIV2 repeat length in a subset of 90 individuals that were approximately
representative of 1496 individuals for whom Lp(a) levels were measured. The distribution of
Lp(a) level was indistinguishable between these 90 individuals selected for KIV2 typing
compared with the complete sample (Kolmogorov-Smirnov p = 0.64), as were the
frequencies of CAAD cases and controls (Fisher’s test p = 0.66). The distributions of all
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non-genetic covariates were similar between the subsample and complete sample (data not
shown). Although six SNPs showed significantly greater minor allele frequencies in the sub-
sample at a p-value of 0.05 (Supplementary Table 2), these SNPs did not tend to be better
predictors of Lp(a) level conditional on KIV2 effects (Figure 1).

Although the KIV2 copy number polymorphism alone accounted for a greater percentage of
Lp(a) level variation than the 9 SNPs described above, SNPs added independent explanatory
power not captured by the kringle genotype (upper curve in Figure 1). The dominant KIV2
repeat length (see Methods) showed significant association with Lp(a) level (p = 1.1 ×
10−4), and conditional on this dominant repeat, there was no further information for Lp(a)
prediction provided by either the short (p = 0.58) or long (p = 0.89) isoform. The dominant
KIV2 repeat length combined with 6 SNPs included in backward stepwise regression at a p-
value of 0.05 (FDR = 0.16) accounted for 60% of the variation in loge Lp(a) in the subset of
90 individuals for whom KIV2 genotypes were assayed and 57% in controls alone.
Although the FDR is rather liberal, the two weakest predictors, rs3798220 and rs10455872
(p = 0.0083 and p = 0.034, respectively), have previously been shown to predict Lp(a) level
conditional on KIV2 repeat number.41, 42

Prediction of CAAD by SNPs
Five SNPs, spanning 3 separate LD blocks, showed significant association with CAAD at a
p-value of 0.05, corresponding to a FDR of 0.19 (Figure 2 and Table 2). All 5 SNPs showed
significant association with Lp(a) level, and for each SNP the same allele associated with
increased Lp(a) was also associated with increased risk of CAAD. At more stringent p-value
threshold of 0.01, 3 SNPs were significantly associated with CAAD (FDR = 0.065). The
most significant SNP, rs10455872, whose minor allele confers an odds ratio of 2.1 per allele
(95% CI = 1.3 to 3.2; p = 0.0013), was significant at a family-wise error rate of 0.05
(corresponding to p = 0.0024) estimated by permutation testing.

An additive genetic risk score in which alleles of each of the 9 SNPs were weighted
according to their effect on Lp(a) level improved prediction of CAAD risk (OR = 1.5 per
unit increase in risk score; p = 7.9 × 10−5). We also performed a comprehensive search of all
2 and 3 SNP haplotypes that could be formed from the 28 tagSNPs in the region. A 2 SNP
haplotype formed by rs10455872 and rs6919346 was significantly associated with CAAD
(nominal p = 5.2 × 10−5; p = 0.020 after Bonferroni correction for 378 two SNP haplotypes
tested). Among 3 SNP haplotypes, the rs10455872, rs6919346, rs3123629 system was
nearly significant (nominal p = 1.7 × 10−5; Bonferroni corrected p = 0.054 for 3276
haplotypes tested).

Prediction of CAAD by SNPs conditional on Lp(a)
After accounting for Lp(a) level, CAAD status was no longer associated with genetic
variation in the 6q26-27 region. When Lp(a) level was included as a covariate in CAAD
analyses, the minimum p-value across the 28 tagSNPs analyzed was 0.088 (FDR = 1). In a
model including both Lp(a) level and the genetic risk score described above, Lp(a) level
(OR = 1.40 per unit increase; p = 2.6 × 10−7) but not the risk score (OR = 1.08; p = 0.52)
was associated with CAAD. Neither the 2 SNP haplotype system formed by rs10455872 and
rs6919346 (nominal p = 0.37), nor the 3 SNP haplotype system formed by the rs10455872,
rs6919346, and rs3123629 (nominal p = 0.313) was a significant predictor of CAAD after
accounting for Lp(a) level. Among all possible 2 and 3 SNP haplotypes, the minimum p-
values observed after conditioning on Lp(a) level (p = 0.044 and 0.0024, respectively) were
well within the expectation for the null distribution.
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Discussion
We identified 9 SNPs that are significantly associated with Lp(a) level when analyzed
jointly and a partially overlapping set of 6 SNPs that were significantly associated with
Lp(a) level when analyzed conditional on KIV2 repeat length. Among the 9 SNPs predictive
of Lp(a) independent of KIV2 length, 5 overlapped with the set of 7 SNPs described by
Clarke et al.22 Among the 6 SNPs predictive of Lp(a) conditional on KIV2 repeat, 4
overlapped with previous reports.41, 42 In particular, rs10455872, which marks a haplotype
carrying a low KIV2 copy number, and rs3798220, which is in LD with both the KIV2 copy
number polymorphism and the SLC22A3-LPAL2-LPA haplotype associated with coronary
artery disease,43 are strongly associated with Lp(a) level. Interestingly, both of these SNPs
continued to be associated with Lp(a) level after accounting for KIV2 repeat length,
consistent with previous observations.41, 42 It has been proposed that the nonsynonymous
SNP rs3798220 may affect protein stability,41 while rs10455872 may be in LD with
regulatory variants.44 Alternatively, their continued association with Lp(a) level after
regressing on KIV2 effect may reflect inaccuracies in measurement of or statistical
modeling of KIV2 repeat length.

Although we identified multiple SNPs that jointly predict Lp(a) level, these SNPs accounted
for just over half of the variance in Lp(a) level explained by KIV2 alone. Our ability to only
partially capture KIV2 copy number effects using SNP markers is consistent with the
theoretical expectation of high expansion and contraction mutation rates for copy number
variants and repeat polymorphisms45, 46 as well as previous empirical data suggesting weak
LD between the KIV2 copy polymorphism and surrounding variation.47 Moreover, a
pentanucleotide repeat polymorphism upstream of LPA reportedly accounts for 10–14% of
the variation in Lp(a) level.48 In addition to the possibility that recurrent mutation has placed
the same KIV2 and pentanucleotide repeat alleles on multiple haplotype backgrounds,
another plausible explanation for the observation that multiple tagSNPs are jointly
associated with Lp(a) level is the existence of numerous rare variants in the region which
can lead to high rates of synthetic association.49

Our finding that tagSNPs improve prediction of Lp(a) level when combined with KIV2
genotype is consistent with a recent report by Lanktree et al.42 However, in Caucasian
individuals Lanktree et al. report that only 36% of the variance in Lp(a) level can be
explained by SNPs and KIV2 copy number. In contrast, in a large coronary artery disease
cohort Clarke et al.22 report that 36% of Lp(a) level can be explained by rs10455872 and
rs3798220 alone. In our CAAD cohort we found that these two SNPs explain only 22%
(20% in controls) of Lp(a) variance whereas SNPs and the KIV2 repeat explain 60% (57%
in controls). One explanation for such heterogeneous estimates is that ascertainment on
vascular disease and for KIV2 typing introduces an upward bias into estimates of percent
variance explained in Lp(a); these limitations require that our estimates of the percent
variation in Lp(a) explained be interpreted with some caution. However, with regard to
ascertainment on CAAD, the differences between the percent variation explained in our total
sample compared to controls only were modest, and in randomly ascertained families where
variance explained would be expected to be less, Boerwinkle et al.12 estimate that 69% of
the variance in Lp(a) is due to KIV2 copy number and 90% of the variance in Lp(a) is due to
variation at the LPA locus in general. These mutually inconsistent results highlight the
difficulties in accurately assaying and modeling Lp(a) and KIV2 copy number, and
underscore the importance of identifying alternative genetic markers in the region.

Our observation that LPA region SNPs and haplotypes predict CAAD extends that of Clarke
et al.22 who found that 6q26-27 SNPs are associated with coronary artery disease. In fact,
rs10455872 confers a higher risk of carotid disease (OR = 2.1) than any SNP among a panel
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of 34 markers associated with elevated LDL or decreased HDL (highest OR = 1.8).21 In
general, the genetic effects on CAAD that we observe are consistent with those reported by
Clarke et al. and others for the LPAL2-LPA-PLG locus. Although due to its low minor allele
frequency rs3798220 failed to achieve statistical significance in our study, the odds ratio for
the minor allele (1.8) is within the confidence intervals for the effect of this variant on CAD
risk reported in other studies.22, 41, 50 We also found, in agreement with Clarke et al., that
conditioning on Lp(a) level eliminated the association signal in the 6p26-27 region. This has
several implications. First, since SNP genotypes undergo “Mendelian randomization”, their
use as an instrumental variable51 indicates that Lp(a) levels are causal for CAAD as well as
coronary artery disease, as previously suggested,17 rather than the reverse. Second, because
conditioning on Lp(a) level abolished any evidence of association between tagSNPs or
haplotypes and CAAD, this argues against the presence of common structural variation,
such as non-synonymous changes, within LPA that effect protein function without affecting
protein level. Third, in spite of a lack of standardization,23 direct measurement of Lp(a)
surpasses use of genetic polymorphisms as a surrogate marker.

Summary
In summary, we identified 9 SNPs that jointly accounted for 30% of the variation in Lp(a)
levels. This was less variance explained than by use of KIV2 repeat number alone, but by
combining 6 SNPs with KIV2 repeat number we accounted for 60% of the variance in Lp(a)
levels. Five SNPs, all of which were strongly associated with Lp(a) levels, predicted CAAD
risk, but these associations, as well has haplotype based CAAD association signals within
the LPAL2-LPA-PLG region, appeared to be driven exclusively by interindividual variation
in Lp(a) levels.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proportion of variance in Lp(a) level explained by SNPs and KIV2 copy number
Curves show the percent variation in Lp(a) level as SNPs are added sequentially in
backward stepwise regression; bold indicates p < 0.05. The upper gray curve and SNPs
listed along the top correspond to a model including KIV2 number. The leftmost point on
the upper curve corresponds to KIV2 alone.
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Figure 2. CAAD association results, gene structure, and LD patterns in the 6q26-27 region
Vertical lines (circles) in the upper panel show −log10 p-values (risk allele odds ratios) for
association between tagSNPs and CAAD. Dashed lines indicate p = 0.05 and p = 0.0024
(family wise error rate < 0.05). Solid circles correspond to SNPs with p < 0.05. The lower
panel shows HapMap LD, with darker shading indicating larger |r2|.
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Table 1

Study participant demographics.

Cases (>80% stenosis) 50%–80% stenosis Controls (<15% stenosis)
P-value

n = 530 n = 196 n = 770

Female 10.9% 17.3% 17.1% 0.0025

Censored age 66.6 68.1 64.7 2.1 × 10−4

Mean Lp(a) nmol/L (median) 91 (38) 93 (42) 47 (23) 5.5 × 10−16

Loge Lp(a) nmol/L 3.6 3.6 3.0 1.5 × 10−12

Body mass index, kg/m2 27.8 27.5 28.5 0.0080

Diabetes 30.8% 27.6% 12.8% 4.7 × 10−14

Antihypertensive therapy 86.9% 79.7% 47.7% 1.4 × 10−44

Current smoker 28.0% 19.5% 9.6% 1.0 × 10−15

Pack years smoked 45.5 41.4 24.6 2.0 × 10−25

Lipid lowering therapy 71.7% 63.6% 22.9% 1.5 × 10−63

HDL, mg/dL 46.4 47.0 51.9 1.3 × 10−9

LDL, mg/dL 99.6 106.1 117.4 6.0 × 10−22

Means or percentages are shown for each trait. P-values are for comparison between cases with at least 80% carotid stenosis versus controls with
less than 15% stenosis using chi-squared tests for categorical variables or t-tests for continuous variables.
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