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Tübingen, Tübingen, Germany

Abstract

Human cytomegalovirus (HCMV) can infect many different cell types in vivo. Two gH/gL complexes are used for entry into
cells. gH/gL/pUL(128,130,131A) shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only
restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes
place, virus carrying the gH/gL/pUL(128,130,131A) complex is either released or retained cell-associated. We observed that
virus spread in fibroblast cultures was predominantly supernatant-driven, whereas spread in endothelial cell (EC) cultures
was predominantly focal. This was due to properties of virus released from fibroblasts and EC. Fibroblasts released virus
which could infect both fibroblasts and EC. In contrast, EC released virus which readily infected fibroblasts, but was barely
able to infect EC. The EC infection capacities of virus released from fibroblasts or EC correlated with respectively high or low
amounts of gH/gL/pUL(128,130,131A) in virus particles. Moreover, we found that focal spread in EC cultures could be
attributed to EC-tropic virus tightly associated with EC and not released into the supernatant. Preincubation of fibroblast-
derived virus progeny with EC or beads coated with pUL131A-specific antibodies depleted the fraction that could infect EC,
and left a fraction that could predominantly infect fibroblasts. These data strongly suggest that HCMV progeny is composed
of distinct virus populations. EC specifically retain the EC-tropic population, whereas fibroblasts release EC-tropic and non
EC-tropic virus. Our findings offer completely new views on how HCMV spread may be controlled by its host cells.
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Introduction

Human cytomegalovirus (HCMV) is ubiquitously distributed in

the human population. In immunocompetent adults infections are

mainly asymptomatic, but in immunocompromised patients like

transplant recipients or AIDS patients life threatening infections

occur at a high rate. HCMV is also the leading cause of birth

defects among congenitally transmitted viral infections. HCMV

replicates in vivo and in vitro in many different host cells including

epithelial cells, connective tissue cells, hepatocytes, various

leukocyte populations and vascular endothelial cells (reviewed in

[1]). The broad host cell range implicates that either an ubiquitous

cellular receptor, recognized by one protein or protein complex in

the viral envelope, mediates entry, or that HCMV uses elaborate

combinations of different viral envelope proteins to employ

different cellular receptors. More than 10 glycoproteins have been

identified in HCMV particles [2], including the essential

glycoproteins gB, gH, gL, gM and gN, which all play a role in

the virus entry process [3–7]. Although a number of cellular

surface proteins have been identified to bind these envelope

proteins and play a role in virus particle attachment or promoting

intracellular signaling after binding [8–13], none of them is

currently considered to be a functional entry receptor.

The best candidates for binding to entry receptors are the

HCMV gH/gL complexes. The gH/gL complex has been shown

to promote fusion of cellular membranes [7] and can either form a

gH/gL/gO [14,15] or a gH/gL/pUL(128,130,131A) complex

[16–18]. HCMV isolates from patients are consistently able to

form both gH/gL complexes [19,20]. In contrast, many HCMV

laboratory strains express only the gH/gL/gO complex, which

restricts virus entry to few cell types like fibroblasts and neuronal

cells [21,22]. Leukocytes, dendritic, epithelial and endothelial cells

(EC) can only be infected by virus expressing the gH/gL/

pUL(128,130,131A) complex [16,17,22,23], which can also

promote infection of fibroblasts [24]. Virus strains expressing only

gH/gL/gO enter fibroblasts through fusion at the plasma

membrane [25]. When fibroblast infection is promoted by gH/

gL/pUL(128,130,131A) only, then entry is through pH-sensitive

endocytosis [26].

It is currently not clear whether gH/gL/gO complexes exert

their function by directly initiating entry [27]. gO has been

shown to be incorporated in the virus envelope of the HCMV

strain AD169, a laboratory strain which does not express the gH/

gL/pUL(128,130,131A) complex [2,27], but not in the envelope

of the clinical isolate TR [27]. Deletion of gO in a virus

background, which still allows formation of the gH/gL/

pUL(128,130,131A) complex, strongly impairs release of infec-

tious virus particles from infected cells. Virus spread becomes

focal and dependent on the gH/gL/pUL(128,130,131A) complex

[24,26,28].
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In contrast to the gH/gL/gO complex, the gH/gL/pU-

L(128,130,131A) complex has been found to be consistently

incorporated into virions [16–18,29]. The exact roles of the

individual proteins of the gH/gL/pUL(128,130,131A) complex

are not known, but pUL128, pUL130 and pUL131A are all

needed to form a functional complex with gH/gL and to have this

complex incorporated into virions [16–18]. Although the data are

controversal, the gH/gL/pUL(128,130,131A) complex very likely

promotes entry into endothelial and epithelial cells through an

endocytotic pathway [30–33]. There is also good evidence for

epithelial cells that binding and uptake of virus is promoted

through a cell type-specific receptor for the gH/gL/pU-

L(128,130,131A) complex [34].

Viruses lacking both, gO and pUL(128,130,131A), are not

viable, indicating that at least one of the two gH/gL complexes is

needed for infection [24]. It is not known whether both gH/gL

complexes are incorporated in one particle or whether they are

incorporated into distinct particles, and how the usage of the

complexes for entry is regulated.

The formation of distinct gH/gL complexes is not restricted to

HCMV and has also been described for EBV and HHV-6 [35,36].

For EBV, a gH/gL/gp42 and a gp42-negative gH/gL complex

have been described. The latter binds to integrins avß6 and avß8

and promotes entry into epithelial cells by fusion at the plasma

membrane [37–39]. The gH/gL/gp42 complex binds to HLA-

DR ß and promotes entry into B-cells by an endocytotic route

[38–40]. During virus production in B-cells, gp42 is intracellularly

targeted to HLA-DR ß, where it is vulnerable for degradation.

Consequently, B-cells release virus particles, which are low in gH/

gL/gp42. This virus is directed towards epithelial cells. Epithelial

cells on the other hand do not express HLA-DR ß and produce

virus which is high in gH/gL/gp42 and is directed to B-cells [35].

Thus, the EBV host cell tropism is switched by alternate

replication in B- or epithelial cells. For HHV-6 a gH/gL/gO

and a gH/gL/Q1/Q2 complex have been identified [36,41,42].

The latter has a high affinity for the HHV-6 cellular receptor

CD46 [41], whereas the gH/gL/gO complex does not bind CD46

[36].

Here, we show that, similar to EBV, also HCMV progenies

derived from different cell types differ in their cell tropism.

Fibroblast-derived virus progeny could readily infect fibroblasts

and EC, whereas EC-derived virus progeny was barely able to infect

EC, and this difference in tropism was reflected by a respectively

high or low content of the gH/gL/pUL(128,130,131A) complex in

virus particles. EC-tropism could be depleted from fibroblast-

derived virus progeny, indicating that this progeny is composed of

distinct populations of virus particles with different EC infection

capacities. Spread patterns in culture and cell disruption experi-

ments indicated that fibroblasts readily released EC-tropic and non

EC-tropic virus particles, whereas EC selectively retained the EC-

tropic population.

Results

HCMV shows different spread patterns in fibroblast and
EC cultures

When fibroblasts and EC are infected with HCMV in vitro, virus

homogeneously spreads in fibroblast cultures whereas spread in

endothelial cell cultures stays focal [17,43]. Here, we infected

fibroblasts and EC with the HCMV strains VR1814 and TB40/E,

two clinical isolates passaged on endothelial cells, and vTB40-

BAC4, a virus derived from TB40/E and cloned as a bacterial

artificial chromosome (BAC). Infections were performed at a low

multiplicity of infection (m.o.i.), and 2 or 8 days after infection

cells were stained for HCMV immediate early 1 (ie1) protein

expression. Numbers of initially infected HFF or EC were

comparable (Fig. 1A, VR1814, day 2 and data not shown). When

fibroblasts were infected, HCMV homogeneously spread through-

out the culture indicating release of virus from infected cells and

infection via free supernatant virus (Fig. 1A, day 8). In contrast,

EC infection remained focal indicating virus transmission which

delivers virus particles from cell-to-cell, without releasing it. This

spread pattern in EC cultures was comparable for all HCMV

strains tested and independent of whether a microvascular cell line

(TIME) or primary macrovascular endothelial cells (HUVEC)

were infected (Fig. 1A, day 8, lower panels). Focal spread in EC

cultures could be completely inhibited by neutralizing anti-HCMV

antibodies in human serum or anti-pUL131A antibodies (Fig. S1),

indicating that virus spread in EC cultures was not due to direct

cell-to-cell spread. Spread in fibroblast cultures was restricted from

supernatant-driven spread to focal spread by human antiserum

and not inhibited at all by anti-pUL131A antibodies (Fig. S1).

To test whether the focal spread could be attributed to

differences in release of infectious virus, we performed growth

curves of vTB40-BAC4 on HFF, TIME cells and HUVEC, and

measured virus release into the supernatants by titration on

fibroblasts. HFF and EC equally released high amounts of virus

into their supernatants (Fig. 1B). As spread of infection in EC

cultures was focal although EC released virus in abundance, focal

spread might be due to the inability of EC supernatant virus to

infect EC. Indeed, although HFF and EC supernatants compa-

rably infected fibroblasts, the capacities of EC-derived superna-

tants to infect EC were very low (Fig. 1C). In the experiment

shown, spread in HUVEC cultures appeared more cell-associated

than in TIME cell cultures, where also single cells in between foci

were ie1-positive (Fig. 1A). This correlated with the lower

HUVEC infection capacity of EC-derived supernatants when

compared to the TIME cell infection capacity (Fig. 1C).

Quantification of HCMV infection capacities using a
TB40-BAC4-derived virus expressing firefly luciferase

Infection capacities on different cell types are often compared

by methods, which depend on counting infected cells which are

either stained for viral antigen or GFP- expression. These methods

reach their technical limits, when the infection capacities strongly

differ on the cell types to be tested. It is very difficult to obtain

reliable cell counts on the less permissive cell type, without at the

same time saturating infection on the more permissive cells.

Author Summary

gH/gL complexes of herpesviruses are supposed to
promote fusion of the viral envelope with cellular
membranes. The gH/gL core complex associates with
additional proteins which define the tropism for certain
cell types by promoting binding to specific receptors. Two
alternative gH/gL complexes of human cytomegalovirus
(HCMV) define the cell tropism, the entry pathway and the
spread of virus. Formation of a gH/gL/gO complex during
infection determines release of infectious virus into the
supernatant. The gH/gL/pUL(128,130,131A) complex de-
termines the tropism for endothelial cells (EC) and
promotes focal spread. Here, we could show that HCMV-
infected cells produce EC-tropic and non EC-tropic virus
populations. While fibroblasts release both populations
into the supernatant, EC predominantly release the non
EC-tropic population. Different host cells of HCMV thus
may direct the distribution of virus progeny.

HCMV Virus Populations
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Figure 1. HCMV spread in fibroblast and EC cultures. (A) HFF, TIME cells and HUVEC were infected with VR1814, TB40/E and vTB40-BAC4 as
described in Materials and Methods to obtain equal numbers of initially infected cells (m.o.i. on HFF: 0.1). The initial infection (day 2) as well as virus

HCMV Virus Populations
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Saturation yet, would lead to an overestimation of the infection

capacity on the less permissive cells, when related to the more

permissive cells.

To circumvent these problems and to simplify the analysis, we

used a luciferase reporter virus to monitor infection. An SV40

promoter-driven luciferase expression cassette was inserted into

BAC4-FRT5-9, a TB40-BAC4-derived BACmid lacking the genes

UL5 to UL9 and carrying an FRT site at the position of the

deleted locus (Fig. S2A). Virus was reconstituted from BAC4-

FRT5-9 (vBAC4-FRT5-9) and BAC4-luc (vBAC4-luc). Virus

growth of these mutants in HFF and EC was comparable to

growth of the parental vTB40-BAC4 (Fig. S2B). Both, vBAC4-

FRT5-9 and vBAC4-luc, also showed comparable spread patterns

in HFF and EC cultures (Fig. S2C).

We used vBAC4-luc to evaluate EC and fibroblast infection

capacities of virus preparations on HFF and TIME cells. The

luciferase signals obtained from HFF and TIME cell infections

were related to each other and expressed as TIME/HFF infection

ratios, and thus, represent relative EC infection capacities. After

infection, phosphono acetic acid (PAA) was added to block the

viral DNA replication and the further amplification of the

luciferase signal. Thus, the luciferase activity evaluates infection

of cells in a fashion analogous to staining cells for HCMV ie1

protein expression. Indeed, when infection with one and the same

virus preparation was evaluated either by counting ie1-positive

cells or by measuring the luciferase activity in cell lysates, both

methods always gave comparable results (Fig. 2A and data not

shown). The assay proved to be linear over a wide range of m.o.i

and highly sensitive (Fig. 2B).

It is a standard observation in the field that one and the same

HCMV preparation yields variable results, when repeatedly

titrated on different target cell batches. When we tested HFF-

and TIME cell-derived supernatants in independent luciferase

assays, the results strongly depended on the quality of the cells used

and varied with e.g. passage number and time after passage

(Fig. 2C). Virus preparations derived from infected HFF and

TIME cells (virus source) were tested twice, using different batches

of HFF and TIME cells (assay 1 and 2). In assay one, the infection

capacities of the supernatants on HFF and TIME cell differed

much more than in assay two (Fig. 2C, upper panel), and

consequently, the TIME/HFF infection ratios were in the range of

8 and 1.5% in assay one and in the range of 40 and 6% in assay

two. (Fig. 2C, lower panel). Yet, when the TIME/HFF infection

ratios of the HFF supernatants were divided by the TIME/HFF

infection ratios of the TIME cell supernatants, the quotients were

comparable in both assays (assay one: 6.9, assay two: 7.5).

Therefore, the properties of virus preparations to be compared to

each other were always tested in parallel.

EC infection strictly depends on the gH/gL/pUL(128,130,131A)

complex [16,17]. The mutant vBAC4-luc/UL131Astop does not

express pUL131A. The gH/gL/pUL(128,130,131A) complex is not

formed, and the mutant cannot infect EC. The mutant vBAC4-luc/

DgO does not express gO and promotes entry into EC and also HFF

via the gH/gL/pUL(128,130,131A) complex [24,26–28]. We

compared both mutants and the parental vBAC4-luc in the

luciferase assay. Confirming the data from Figure 1C, supernatant

from a vBAC4-luc infection of HFF showed a lower capacity to

infect EC, when compared to the capacity to infect HFF (Fig. 2D).

vBAC4-luc/UL131Astop infected HFF, whereas the luciferase

signals obtained from infected HUVEC and TIME cells remained

below the detection limit. vBAC4-luc/DgO equally well infected

HFF, TIME cells and HUVEC and thus showed an infection

pattern clearly different from the parental vBAC4-luc. Taken

together, the luciferase assay proved to be highly sensitive, to allow

quantitative measurements over a wide range of m.o.i., and to

reflect what is seen, when infection is detected by staining cells for

ie1 protein expression.

With the luciferase assay described above, we could compare

the properties of virus progenies from HFF and EC. Supernatants

of infected HFF and EC were harvested 6 days after infection,

titrated on HFF, and the viral DNA content determined by real-

time PCR. The ratios of infectious virus to viral DNA copy

numbers were comparable for HFF- and EC-derived supernatants

(data not shown). These supernatants were then used to infect HFF

and TIME cells. Forty-eight hours later, infection was monitored

by the luciferase assay. Although virus derived from all three cell

types showed a comparable infection of HFF (data not shown),

EC-derived virus was significantly less capable in infecting EC

than fibroblast-derived virus (Fig. 3). On average, the TIME/HFF

infection ratios were about fourfold lower for virus released from

EC than for virus released from HFF.

The capacity of supernatant virus to infect EC correlates
with UL128 protein content in virions

Incorporation of gH/gL/pUL(128,130,131A) glycoprotein

complexes into virions [16,17] is a prerequisite to infect

endothelial cells. As virus released from EC was less capable in

infecting EC than virus released from fibroblasts, we asked

whether this difference can be associated with the abundance of

gH/gL/pUL(128,130,131A) complexes incorporated into virions.

We determined the gB and gH levels, and, representative for the

presence of the gH/gL/pUL(128,130,131A) complex, the pUL128

content in EC- and HFF-derived virions. Virus particles were

pelleted from EC- or HFF-derived supernatants, lysed, and their

gB, gH and pUL128 protein content determined by Western blot

analysis. The amounts of gB and gH in virus pellets from HFF and

EC supernatants always showed a constant relation (data not

shown). Yet, HFF-derived virus particles contained more pUL128

protein than EC-derived virus particles (Fig. 4A). This could be

quantitatively analysed by measuring the gB band intensities of the

lysates, which reflect the particle amounts loaded, and then,

relating the pUL128 band intensities to the respective gB bands

(Fig. 4A, middle panel). Remarkably, the pUL128/gB ratios

mirror the TIME/HFF infection ratios (Fig. 4B, lower panel).

Thus, a low EC infection capacity correlated with a low level of

gH/gL/pUL(128,130,131A) complexes in virions. Interestingly,

total cell lysates of the respective infected cells showed that EC and

HFF expressed comparable amounts of pUL128 (Fig. 4B). This

indicated that the differences in EC infection capacities observed

are created at a late stage during maturation or release of virus

progeny. To exclude that the observed differences between EC-

and HFF-derived supernatants are due to non-infectious particles

spread (day 8) were monitored by staining for HCMV ie1 protein expression. (B) Growth curves of vTB40-BAC4 on HFF, TIME cells and HUVEC. Cells
were infected as described in Materials and Methods to obtain equal numbers of initially infected cells (m.o.i. on HFF: 1). Cell culture supernatants
were harvested at the indicated time points post infection and virus titers determined by a TCID50 assay performed on HFF. (C) Infection capacities of
supernatant-derived vTB40-BAC4. HFF, TIME cells and HUVEC were infected at an m.o.i. of 1 with day 8 supernatants obtained from the growth curves
under (B). Infection capacities were monitored by staining for ie1 protein expression 48 hours post infection. Except where indicated, supernatants
used for infection were titrated by a TCID50 assay on HFF.
doi:10.1371/journal.ppat.1001256.g001

HCMV Virus Populations

PLoS Pathogens | www.plospathogens.org 4 January 2011 | Volume 7 | Issue 1 | e1001256



or contaminations with cell membrane components, gradient-

purified virus from infections of HFF and HUVEC were analysed

in the Western blot as described above (Fig. 4C). The pUL128/gB

ratios again mirrored the TIME/HFF infection ratios of the

supernatants, the virus was purified from.

Endothelial cells produce, but not readily release
EC-tropic HCMV

Whereas the virus released by EC is low in gH/gL/

pUL(128,130,13A) complexes, focal spread in EC cultures was

highly efficient. Like EC infection by supernatant virus, it can be

blocked by anti-pUL128, anti-pUL130 and anti-pUL131A

antibodies [16,17,44,45]. This indicates that pUL(128,130,131A)

are accessible to antibodies and promote infection of neighboring

cells. We tested different cellular preparations for the presence of

cell-associated EC-tropic virus. HUVEC and as a control HFF

were infected with vBAC4-luc, and 6 days after infection

supernatants were harvested. Cells were washed to remove loosely

bound virus and then homogenized using cell douncers. Aliquots

of the total homogenates, containing the disrupted cells and virus

freed by cell disruption, were saved. Homogenates were then

cleared by centrifugation at 3,5006g to separate supernatants

containing virus, which can be released by physical disruption.

The pellets of cell debris, containing virus which is not released

from cells, were also resuspended. These four preparations were

then tested on HFF and TIME cells by the luciferase assay. Virus

supernatants from HFF and HUVEC showed a high and a low EC

infection capacity, respectively (Fig. 5A). All three homogenate

preparations from HFF showed a reduced EC infection capacity,

when compared to HFF supernatant virus. Notably, the two

HUVEC preparations, which contained cell debris showed an

about tenfold higher EC infection capacity than the HUVEC

Figure 2. vBAC4-luc as a tool to study infection capacities. (A) HFF and in parallel TIME cells were infected on 96 well plates at an m.o.i. of 0.3
with a cell culture supernatant derived from HFF infected with vBAC4-luc. After infection, PAA was added and 48 hours later cells either stained for
HCMV ie1 protein expression or lysed and subjected to a luciferase assay. The experiment was performed in triplicates. For ie1 staining, three
independent wells were infected and one microscopic field per well was counted. For the luciferase assay, lysates from three wells were analysed.
Shown are means +/2 SD of these triplicates. The TIME cell infection capacity was related to the HFF infection capacity which was set to 100%, and
the ratio expressed in percent. (B) HFF and TIME cells were infected with serial 5-fold dilutions of a supernatant derived from HFF infected with
vBAC4-luc starting at an m.o.i of 0.5 and 48 hours later analysed by a luciferase assay performed in triplicates. The background level of the luciferase
assay is indicated by the dotted line. (C) Two independent luciferase assays using different batches of HFF and TIME cells. Three TIME cell and three
HFF supernatants from three independent infections with vBAC4-luc were assayed. For the luciferase assay, cells were infected at an m.o.i. of 0.1 and
analysed in triplicates 48 hours after infection. Shown are means +/2 SD of three supernatants tested in triplicates. (D) HFF, TIME cells and HUVEC
were infected at an m.o.i. of 0.02 (centrifugal enhancement) with supernatants from vBAC4-luc, vBAC4-luc/UL131Astop and vBAC4-luc/DgO
infections of HFF. 48 hours after infection cells were subjected to a luciferase assay. Shown are means +/2 SD of luciferase activities determined in
triplicates.
doi:10.1371/journal.ppat.1001256.g002

HCMV Virus Populations
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supernatants (Fig. 5A). Thus, the progeny able to infect EC is

released by HFF, but remained tightly associated with cellular

structures in the case of EC. The differences observed are not due

to different quantities of virus in the different preparations,

because all HFF- and HUVEC-derived preparations showed high

luciferase values, when tested on HFF (Fig. 5B). The tenfold

differences between HUVEC-derived preparations, containing

broken cells, and those without cells are due to high and low

luciferase values on TIME cells, respectively (Fig. 5B). Highly EC-

tropic virus could neither be released from EC by sonication nor

by several rounds of freezing and thawing (data not shown). Taken

together, the data show that HFF readily release, whereas

HUVEC tightly retain EC-tropic virus.

HFF release virus progeny, which is not homogeneous
Virus released from EC is only poorly tropic for EC, whereas

virus associated with EC shows a much higher tropism for EC.

Virus released from HFF is highly EC-tropic and virus found in

the particulate fraction of disrupted HFF rather shows a lower

tropism for EC. One explanation would be that HCMV progeny

is heterogeneous and consists of distinct virus populations with

regard to their EC-tropism. EC show a propensity to retain EC-

tropic virus and release non EC-tropic virus, whereas HFF readily

release both, EC-tropic and non EC-tropic virus. The hypothesis,

that HFF progeny is a mixture of EC-tropic and non EC-tropic

virus is testable by separation of EC-tropic and non EC-tropic

Figure 3. Virus released from EC shows a lower capability to
infect EC than virus released from fibroblasts. HFF, TIME cells and
HUVEC were infected with vBAC4-luc as described in Materials and
Methods to obtain equal numbers of initially infected cells (m.o.i. on
HFF: 1). Supernatants from these infections were harvested 6 days after
infection and titrated. HFF and TIME cells were then infected with these
supernatants at an m.o.i. of 0.1. After infection, PAA was added to the
cultures, and 48 h later, cells were lysed and subjected to a luciferase
assay. The capacity of supernatant virus to infect EC was expressed as
the ratio of TIME cell infection to HFF infection. HFF infection was set to
100%. Shown are means +/2SD of at least five independent
experiments. EC-derived supernatants were significantly less capable
to infect EC than fibroblast-derived supernatants (Student’s t test).
doi:10.1371/journal.ppat.1001256.g003

Figure 4. EC infection capacities correlate with pUL128 protein content of virus particles. HFF, TIME cells and HUVEC were infected with
vTB40-BAC4 or vBAC4-luc for the gradient purified virus as described in Materials and Methods to obtain equal numbers of initially infected cells
(m.o.i. on HFF: 1). Supernatants were harvested, when cells showed about 80% CPE. (A) Supernatant-derived particles were concentrated by
ultracentrifugation and pUL128 and gB protein levels detected by Western blot analysis of undiluted or 1:4 diluted lysates. The pUL128 band
intensities of undiluted samples are expressed as ratios of pUL128 band intensities to gB band intensities. This ratio was set to 100% for the HFF-
derived particles and the ratios for HUVEC and TIME cell-derived particles expressed relative to the HFF value (middle panel). The virus preparations
were additionally tested for their TIME/HFF infection ratios by staining infected HFF and TIME cells for ie1 protein expression 48 h after infection
(lower panel). (B) Cellular expression levels of gB and pUL128 were monitored by Western blot analysis of total cell lysates of infected cells. (C)
Analysis of gradient-purified virus derived from HFF and HUVEC infections. Cells were infected as described above. Virus was purified from the
supernatants on glycerol/tartrate gradients as described in Materials and Methods and virus preparations analysed as described under (A).
doi:10.1371/journal.ppat.1001256.g004

HCMV Virus Populations
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virus. As HUVEC strongly retain EC-tropic virus, they might

serve to specifically bind EC-tropic virus and deplete HFF virus

progeny of its EC-tropic fraction. We preincubated HFF-derived

supernatant virus with HUVEC or with HFF, pelleted the cells,

and analysed the HFF and TIME cell infectivity of virus remaining

in the supernatants (Fig. 6A). Preincubation with HUVEC

removed about 30 to 90% and preincubation with HFF about

99% of the infectious virus from supernatants, when tested on

HFF (data not shown). The TIME/HFF infection ratios of the

non-bound virus in supernatants preincubated with HUVEC was

drastically and significantly reduced to the level observed in

supernatants of HCMV-infected HUVEC (Fig. 6A). Preincubation

with HFF in contrast, although it removed the bulk of infectivity,

only weakly reduced the EC infection propensity of the non-bound

virus (Fig. 6A). Thus, HUVEC, which retained EC-tropic virus in

infection, were a good matrix for binding EC-tropic virus, whereas

HFF, which readily released EC-tropic virus into the supernatant,

were a weak matrix for EC-tropic virus. The depletion of EC-

tropism strongly suggested that HFF virus progeny was heteroge-

neous and composed of distinct virus populations, which could be

sorted. To find out whether the depletion of EC-tropism is based on

removing virus particles expressing the gH/gL/pUL(128,130,131A)

complex, we coincubated HFF-derived virus progeny with protein

G sepharose beads to which we had bound anti-pUL131A

antibodies. Beads coated with antibodies specific for pUL131A,

but not uncoated beads or beads coated with preimmune serum,

depleted about 70% of the EC-tropism (Fig. 6B). This strongly

implied that depletion of EC-tropism is through retaining virions,

expressing the gH/gL/pUL(128,130,131A) complex.

Discussion

The use of different receptor binding proteins to mediate entry

into different cell types, and the use of different entry pathways

even into one cell type is a common feature of herpesvirus entry.

Herpesviruses have additionally developed strategies, which may

route infection in vivo. For EBV, the group of L. Hutt-Fletcher has

pioneered the paradigm that epithelial cells produce a virus

progeny high in gH/gL/gp42 complexes, which promotes B-cell

infection. B-cells in turn, produce virus progeny low in gH/gL/

gp42 complexes which efficiently infect epithelial cells, but not B-

cells. Although not absolute, this relative switch of cell tropism

after alternate replication in epithelial and B-cells directs infection

from one cell type to the other.

Here, we propose that also different producer cells of HCMV

may direct the infection. gH/gL/gO complex formation is needed

for release of infectious virus from any infected cell type tested so

far [24,28]. Incorporation of gH/gL/pUL(128,130,131A) com-

plexes into virions is essential for infection of e.g. endothelial,

epithelial, and dendritic cells, and for leukocytes [16,17,22,23]. If

Figure 5. Endothelial cells retain EC-tropic virus particles. HFF were infected with vBAC4-luc as described in Materials and Methods to obtain
equal numbers of initially infected cells (m.o.i. on HFF: 0.2). Six days after infection supernatants were harvested, cells homogenized as described in
Materials and Methods and different fractions of the homogenates tested on HFF and TIME cells for their infection capacities by luciferase assay. (A)
shows the TIME/HFF infection ratios and (B) the absolute luciferase activities of the different cell preparations on HFF and TIME cells. Shown are
means +/2 SD of three independent experiments assayed in triplicates. For HFF all homogenate preparations were significantly less EC-tropic than
the cell culture supernatants. For HUVEC the total homogenates and the resuspended pellets were significantly more EC-tropic than the cell culture
supernatants (Student’s t test).
doi:10.1371/journal.ppat.1001256.g005
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gO is missing, then the infection spreads predominantly focal and

depends on the gH/gL/pUL(128,130,131A) complex, even in cell

types, which usually do not depend on this complex for infection

[24,26].

Our initial observation was that virus spread in fibroblast

cultures differed from virus spread in EC cultures [17]. Spread in

fibroblast cultures appeared supernatant- driven, whereas spread

in EC cultures was focal. A strictly cell-associated virus spread in

EC cultures had also been observed by the group of G. Gerna,

who reported that propagation in HUVEC strictly depended on

passage of cells and could not be achieved by supernatant virus

[43]. We offer an explanation for the focal spread in EC cultures

by showing that EC predominantly release virus, which is not EC-

tropic, but at the same time tightly retain EC-tropic virus which

may then be transferred to neighboring cells only. Virus transfer

was accessible to neutralizing antibodies and dependent on the

gH/gL/pUL(128,130,131A) complex, as we could show in Figure

S1. Focal spread was completely blocked by a neutralizing human

antiserum and by anti-pUL131A antibodies. Interestingly, when

infected HFF cultures were treated in a similar way, a neutralizing

human antiserum blocked infection by free virus, but left a focal

spread of virus, indicating that for HFF a direct cell-to-cell spread

mechanism may be possible [46]. Anti-pUL131A antibodies could

not at all inhibit spread in HFF cultures. These data confirmed

earlier studies by our group, which showed that only gH/gL/

pUL(128,130,131A) dependent virus spread, like spread in EC

cultures, or spread of a delta gO mutant in fibroblast cultures

could be inhibited by anti-pUL131A antibodies [17,26].

Similar to the EBV model, supernatants from infected HFF

showed a higher capacity to infect EC than EC-derived superna-

tants, and we could show that the biochemical basis for that is a

respectively high and low content of gH/gL/pUL(128,130,131A)

complex in virions.

The question, which arose then, was, what causes the observed

difference in gH/gL/pUL(128,130,131A) content. For EBV it has

been described that in infected B-cells HLA-DR ß binds the gp42

protein of the gH/gL/gp42 complex, which promotes B-cell

infection, holds it back intracellularly, and thus, makes it

vulnerable for degradation. As a consequence, B-cells release

mainly virions containing a two-part gH/gL complex, which

cannot infect B-cells. Epithelial cells, which do not express HLA-

DR ß, do not retain gp42 and thus, release virus, which contains

more of the three-part gH/gL/gp42 complex. The mechanisms,

by which the differences in the released populations of virions in

HCMV are achieved, appear to be different. For HCMV, we

found that EC and fibroblasts produce heterogeneous virus

progenies. EC release a virus progeny, which is not EC-tropic,

and retain a progeny, which is highly EC-tropic. HFF release an

EC-tropic progeny. which can be depleted of its EC-tropism by

using HUVEC or protein G sepharose beads coated with

antibodies directed against pUL131A. This strongly suggested

that HFF progeny is composed of distinct EC-tropic and non EC-

tropic virus populations, and that the EC-tropic population most

likely is a population with a high gH/gL/pUL(128,130,131A) con-

tent. If HFF-derived virus progeny was homogeneous, a specific

depletion only of EC-tropic virus would not be possible.

Interestingly, HUVEC, which retain EC-tropic virus in infection

experiments, were a good matrix to retain EC-tropic virus in the

test tube, whereas HFF, which readily release EC-tropic virus in

infections, were a bad matrix.

Thus, we propose that the difference in cell tropism of virus

released from EC and fibroblasts is the result of a sorting process.

EC strongly and specifically retain EC-tropic virus through the

gH/gL/pUL(128,130,131A) complex. HFF release EC-tropic and

non EC-tropic virus. Thus, for HCMV, not protein components of

gH/gL complexes are retained in a cell-type specific manner, but

rather mature virions carrying the gH/gL/pUL(128,130,131A)

complex in their envelopes. Figure 7 depicts the EBV and HCMV

models for virus spread side by side.

Future experiments will have to show where and how EC-tropic

virus is held back. It has recently been shown that overexpression

of gH/gL/pUL(128,130,131A) in epithelial cells interferes with

HCMV infection. It has been postulated that this reflects binding

of the gH/gL/pUL(128,130,131A) complex to the respective entry

receptor [34]. This was not observed for fibroblasts and thus, an

HCMV entry receptor binding to gH/gL/pUL(128,130,131A)

Figure 6. HFF virus progeny can be depleted of EC-tropic virus
by coincubation with endothelial cells and beads coated with
anti-pUL131A antibodies. (A) 26106 HFF or HUVEC were incubated
(90 min, 37uC) with 130,000 TCID50 vBAC4-luc diluted in 30 ml DMEM
(5% FCS). Then 500 ml of DMEM (5% FCS) was added, the cells pelleted
by centrifugation at 3006g for 5 min and the supernatants cleared at
3,5006g for 15 min. As a control 130,000 TCID50 vBAC4-luc diluted in
30 ml DMEM (5% FCS) were mock-incubated and mock-treated as
described above. HFF and TIME cells were infected with the
supernatants from the coincubations and the controls and subjected
to a luciferase assay. TIME/HFF infection ratios of the supernatants after
coincubation were expressed as % of the TIME/HFF infection ratios of
the control. Shown are the means of TIME/HFF infection ratios +/2 SD
determined in six independent experiments each assayed in triplicates.
(B) 30 ml of a 50% protein G sepharose preparation (GE Healthcare,
Germany) were coincubated overnight with 300 ml rabbit anti-pUL131A
antiserum (1:10 diluted in PBS) or as controls preimmune serum (1:10
diluted in PBS) or PBS. Then, beads were washed 3 times with PBS and
coincubated for 2 hours at RT with 130,000 TCID50 vBAC4-luc diluted in
500 ml DMEM without serum. After coincubation beads were pelleted
and 5% FCS added to the supernatants. Then, HFF and TIME cells were
infected with these supernatants and subjected to a luciferase assay.
Shown are the means of TIME/HFF infection ratios +/2 SD determined
in triplicates. The TIME/HFF infection ratios of virus coincubated with
anti-UL131A antibody coated beads was significantly different from the
values obtained from virus coincubated with preimmune serum-coated
beads.
doi:10.1371/journal.ppat.1001256.g006
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and expressed on EC would be a good candidate also for retaining

EC-tropic virus by infected EC. How virus is then transferred to

neighboring cells, will also have to be investigated in the future. An

attractive model would be a mechanism as described for MHV-68,

for which it has been shown that virus particles attached to and

moving on plasma membrane fronds are directly transferred to

neighboring cells [47].

Assuming that gH/gL/pUL(128,130,131A) complexes are

incorporated into virus progeny at random, EC-tropism of a virus

particle might be defined by a threshold level of gH/gL/

pUL(128,130,131A) complexes. Accordingly, high levels of gH/

gL/pUL(128,130,131A) complexes in turn could also block release

from EC. Thus, the levels of gH/gL/pUL(128,130,131A)

complexes could define whether a particle is EC-tropic or not,

whether it is retained by EC during infection, and whether it can

be depleted from supernatants by EC-preincubation. This could

also explain, why progeny of a DgO virus, which expresses only

the gH/gL/pUL(128,130,131A) complex, readily spreads cell-

associated and can barely be released from EC [24,28]. DgO virus

progeny can equally well infect EC and HFF (Fig 2D). Wildtype

TB40-BAC4 virus progeny, in contrast, shows a higher propensity

to infect HFF (Fig. 2D), which could be explained by being a

mixture of EC-tropic and non EC-tropic particles.

For EBV, it has been observed that virus bound to the surface of

resting B cells is 103-104 times more infectious for epithelial cells

than cell-free virus [48]. For HCMV it has not yet been tested

whether surface-bound virus could promote a switch of cell tropism.

We restricted our experiments to endothelial cells and

fibroblasts. Macrophages, dendritic cells, and epithelial cells also

strictly depend on the gH/gL/pUL(128,130,131A) complex for

their infection. Whether their infection also follows the pattern of

the EC infection shown here, will have to be investigated in the

future. Recently, it has been published by Wang et al. [30] that

HCMV progenies derived from epithelial cells and fibroblast also

differ. They reported that both cell types release progenies which

can readily infect epithelial cells and fibroblasts, but differ with

respect to the pathway they use to enter epithelial cells. They

found a twofold higher gH/gL/pUL(128,130,131A) content in

epithelial cell-derived particles, which they considered as marginal.

As they used an AD169 mutant, in which UL131A had been

repaired, it will have to be clarified, whether their findings reflect

that epitheliotropic virus produced in epithelial cells is, in contrast

to our findings in EC, not retained, or whether the observed

differences are due to differences of the HCMV strains used. It has

recently been shown that AD169 incorporates gO into virions,

whereas HCMV strain TR does not [27]. This suggests that strain-

specific differences may indeed affect gH/gL-dependent processes.

Whether our observations made in cell culture, reflect features

valid for all HCMV strains, and what role a switch in tropism and

spread patterns may play in vivo, will be the subject of future

research. It will be of particular interest to find out whether the

relative propensity of different cell types to release virus plays a

crucial role in establishment of infection and transfer of virus to

new hosts or the fetus. For HCMV, it has been shown that

primary isolation of EC-tropic virus depends on infected cells as a

source of virus, whereas fibroblast infection can also be achieved

with cell-free virus sources like throat washes and amniotic fluid

[43]. This might already be an indication that cells lining the

compartments, where these fluids are produced, do not release

EC-tropic virus.

Figure 7. HCMV and EBV models for virus spread in cell culture. The EBV model proposes a switch of cell tropism through depletion of gp42
from B-cell derived virus progeny resulting in a gp42low progeny versus a gp42high progeny released from epithelial cells. The HCMV model proposes
the production of a heterogeneous virus progeny from fibroblasts and EC. Fibroblasts release EC-tropic and non-EC tropic viruses which results in a
pUL128high progeny, whereas EC release a non EC-tropic pUL128low progeny and retain the EC-tropic virus. This results in a switch of the spread
mode. The tropism of virus progenies is indicated by color codes.
doi:10.1371/journal.ppat.1001256.g007
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Materials and Methods

Cells and viruses
Primary human foreskin fibroblasts (HFF) (PromoCell, Ger-

many) were used from passage 12 to 22 and maintained in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal calf serum, 2 mM L-glutamine, 100 units/ml penicillin

and 100 mg/ml streptomycin. Primary human umbilical vein

endothelial cells (HUVEC) (LONZA, USA) were used from

passage 1 to 6. HUVEC and TIME (telomerase-immortalized

human microvascular endothelial) cells [49] were maintained in an

EGM-2 MV BulletKit medium system (LONZA, USA).

The HCMV strains used were VR1814 [19], TB40/E [50] and

TB40/E cloned as a BAC (TB40-BAC4) [51].

BAC mutagenesis and construction of recombinant
HCMV

The HCMV strain TB40/E cloned as a bacterial artificial

chromosome (BAC) (TB40-BAC4) [51] was used for HCMV BAC

mutagenesis. A 48 bp FRT site was inserted into the TB40-BAC4,

thereby disrupting the open reading frames (ORFs) UL5, UL6,

UL7, UL8 and UL9. Briefly, a linear PCR fragment containing a

kanamycin-resistance gene flanked by two 48 bp FRT sites and

sequences homologous to the HCMV UL5 and UL9 coding

regions was generated using the primers UL5pcp15for (59-

ATGTTTCTAGGCTACTCTGACTGTGTAGATCCCGGCT-

TTGCTGTATATCGTGTATCTAGACGGGGGTGTCCAG-

GGTTTTCCC-39) and UL9pcp15rev (59-ATTGTTGTAAC-

GATAACTAAGGGTATGATCCACATTGTATGTGGGGTG-

GCAGTATCGTGTCTTCCGGCTCGTATGTTGTGTGG-3)

and pCP15 as template [52]. The PCR product was inserted into

TB40-BAC4 by homologous recombination in E. coli, thereby

deleting 3,066 kb. The kanamycin-resistance gene was subse-

quently excised by FLP-mediated site-directed recombination [53],

and the resulting BAC mutant called BAC4-FRT5-9.

To generate a luciferase reporter HCMV, the SV40-driven

firefly luciferase expression cassette was excised from pGL3-

promoter (Promega) with Sal I and Bgl II, filled in by Klenow

polymerase and inserted into the pOriR6K-zeo plasmid linearized

by EcoR V. The resulting plasmid pO6-Luc was inserted into

BAC4-FRT5-9 via FLP-mediated FRT recombination mutagen-

esis using the temperature-sensitive expression plasmid pCP20

[54]. The resulting BAC mutant was called BAC4-Luc.

The BAC mutants BAC4-Luc/DgO and BAC4-Luc/UL131A-

stop were cloned into the BAC4-Luc background as described

previously [24,26].

Deletions and insertions were controlled by restriction pattern

analysis and subsequent sequencing.

Reconstitution of virus from recombinant BACmids
BACmids were reconstituted to virus by transfection of BAC

DNA into HFF using FugeneHD transfection reagent (Roche

Diagnostics) according to the manufacturer’s instructions. Trans-

fected cells were propagated until viral plaques appeared and the

supernatants from these cultures used for further propagation of

virus.

Preparation of virus stocks, concentration of virus
particles, virus titration and infections

Virus stocks were prepared from supernatants of infected HFF,

HUVEC or TIME cells. Supernatants were cleared of cellular

debris by centrifugation for 15 min at 3,5006g and stored at

280uC.

For Western Blot analysis of HCMV particles, virus was

concentrated from cell culture supernatants. Briefly, 200 ml

supernatant from infected cells showing about 90% CPE was

cleared of cellular debris by centrifugation at 3,5006g for 15 min.

Then, virus was pelleted from cleared supernatant by ultracentri-

fugation at 80,0006g for 70 min. Virus pellets were resuspended

in 1.5 ml 0.04 mol/l sodium phosphate pH 7.4.

Virus titers of cleared supernatants were determined by a

TCID50 assay performed on 96 well plates on HFF.

To infect cells, medium was removed from 90% confluent cell

monolayers and replaced by virus diluted in DMEM containing

5% FCS. For some experiments, virus infection was enhanced by a

centrifugation step (30 min, 8606g at room temperature),

followed by incubation at 37uC for 90 min. To compare infectivity

of virus derived from fibroblasts and endothelial cells, subsequent

infections were performed in DMEM 5% FCS/EGM-2 mixed at a

ratio of 1:1, to exclude medium effects. During infections, medium

was exchanged every second day in a way that supernatants

harvested contained virus released during the preceding 48 hours.

As HCMV in general more readily infects fibroblasts than EC,

in all experiments, where infections of EC and fibroblasts (spread

patterns and growth curves) were compared, the infections were

adapted in a way that EC were infected with more virus than

fibroblasts to achieve comparable numbers of ie1-positive cells

after 48 hours.

Gradient purification of virions
For gradient purification of virions, supernatants from infected

cell cultures showing approximately 100% late-stage CPE were

cleared of cell debris by centrifugation for 10 min at 2,8006g.

Supernatants were then ultracentrifuged for 70 min at 80,0006g.

Pellets containing virions were resuspended in 1 ml PBS and

transferred onto a preformed, linear glycerol/tartrate gradient

(15–35% sodium tartrate and 30–40% glycerol in 0.04 mol/l

sodium phosphate pH 7.4), which was ultracentrifuged for 45 min

at 80,0006g. The virion-containing band was harvested with a

syringe and the virions were washed and pelleted by an additional

ultracentrifugation for 70 min at 80,0006g. The pellet was

resuspended in 0.04 mol/l sodium phosphate.

Indirect immunofluorescence
HCMV-infected cells were fixed in 50% acetone/50%

methanol, stained using a mouse anti-ie1 antibody (anti-ie1;

Perkin Elmer) and detected with a Cy3-coupled goat anti-mouse

antibody (Dianova). For counterstaining of cell nuclei, cells were

incubated in PBS containing 5 mg/ml Hoechst 333258 (Invitro-

gen) for 1 min.

Luciferase assay
HFF and TIME cells were grown in 96 well plates (20,000 cells/

well) and infected in triplicates at an m.o.i. between 0.02 and 0.5

for 90 min. Inoculi were then replaced by medium supplemented

with 300 mg/ml phosphono acetic acid (PAA). 48 h after infection

cells were lysed in 50 ml lysis buffer (25 mM Tris/H3PO4, 2 mM

CDTA, 2 mM DTT, 10% glycerol, 5% Triton-X 100) and

luciferase activity was determined for 20 ml of lysate with a

luciferase assay system (Promega) according to the manufacturer’s

instructions.

Western blot analysis
Virus particles or infected cells were lysed in 66 sample buffer

(300 mM Tris-HCl (pH 6.8), 10% SDS, 30% glycerol, 5% ß-

mercaptoethanol, 0.01% (w/v) bromphenolblue, 0.01% (w/v)
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phenolred), separated on 15% polyacrylamide gels and transferred

onto nitrocellulose (Amersham Biosciences). Membranes were

blocked with 5% low-fat milk in TBS and stained for gB or

pUL128 using mouse anti-gB antibody (2F12; Abcam) or mouse

anti-pUL128 antibody (4B10, kindly provided by T. Shenk,

University of Princeton, USA), respectively. The specific protein

bands were detected by using an peroxidase-coupled anti-mouse

antibody (Dianova) and the SuperSignal West Dura Extended

Duration Kit (Perbio).

The intensities of protein bands were quantified using the

Fujifilm Intelligent Light Box LAS-300 and the Image reader

LAS-300. Non-saturated light signals were analysed to determine

the protein amounts using ImageQuant 5.0 software. The pUL128

levels were related to gB levels of the respective samples.

Homogenization of cells
Cells were infected in 6 cm dishes, and 6 days after infection the

supernatants (4 ml) harvested and cleared of cellular debris

(3,5006g, 15 min). Cell monolayers were washed with cold PBS,

scraped and cells dounced in 4 ml DMEM medium supplemented

with 5% FCS using tight fit hand homogenizers (Sartorius-

Stedium). 3.5 ml of the total homogenized cells were pelleted

(3,5006g, 15 min), the supernatant removed (supernatant of

homogenized cells) and the pellets resuspended in fresh 3.5 ml

DMEM medium supplemented with 5% FCS.

Accession numbers
GeneBank/EMBL/DDBJ accession number for TB40-BAC4 is

EF999921.

Supporting Information

Figure S1 Neutralizing antibodies block focal spread of HCMV

in EC cultures. HFF and HUVEC were infected with vBAC4-luc

as described in Materials and Methods to obtain equal numbers of

initially infected cells (m.o.i. on HFF: 0.1). After infection, cells

were washed three times with medium and then fresh medium (no

serum) or serum diluted in medium was added (1:25 dilutions of

the HCMV-negative and -positive sera and a 1:10 dilution of the

anti-pUL131A rabbit antiserum [17]). Cells were incubated in the

presence of the antisera for 8 days. Initial infection (day 2) as well

as virus spread (day 8) were monitored by staining for HCMV ie1

protein expression. The HCMV-positive antiserum showed a

complete and the HCMV-negative serum no neutralization of

HFF and EC infections when tested with free virus (data not

shown).

Found at: doi:10.1371/journal.ppat.1001256.s001 (0.56 MB TIF)

Figure S2 Growth properties of vBAC4-FRT5-9 and vBAC4-

luc. (A) Schematic presentation of TB40-BAC4 derived mutants

BAC4-FRT5-9 and BAC4-luc. The UL and US regions, the

positions of internal and terminal repeats (dark grey), the open

reading frames UL5 and UL9, the BAC cassette (light grey), the

position of the FRT-site and the insertion of a luciferase expression

cassette are indicated. (B) Growth curves of vTB40-BAC4,

vBAC4-FRT5-9 and vBAC4-luc on HFF, TIME cells and

HUVEC. Cells were infected as described in Materials and

Methods to obtain equal numbers of initially infected cells (m.o.i.

on HFF: 1). Cell culture supernatants were harvested at the

indicated time points post infection and virus titers determined by

a TCID50 assay performed on HFF. (C) Spread of vBAC4-FRT5-

9 and vBAC4-luc in HFF and endothelial cell cultures. HFF were

infected with vBAC4-FRT5-9 and vBAC4-luc at an m.o.i. of 0.1.

For TIME cells and HUVEC the m.o.i. were adapted. The initial

infections (day 2) as well as virus spread (day 8) were monitored by

staining for HCMV ie1 protein expression.

Found at: doi:10.1371/journal.ppat.1001256.s002 (0.63 MB TIF)
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