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Multicellular organisms, from Caenorhabditis elegans to humans,
have roughly the same number of protein encoding genes. We
show that the need to prevent disease-causing nonspecific interac-
tions between proteins provides a simple physical reason why
organism complexity is not reflected in the number of distinct
proteins. By collective evolution of the amino acid sequences of
protein binding interfaces we estimate the degree of misbinding
as a function of the number of distinct proteins. Protein interaction
energies are calculated with an empirical, residue-specific energy
function tuned for protein binding. We show that the achievable
energy gap favoring specific over nonspecific binding decreases
with protein number in a power-law fashion. From the fraction
of proteins involved in nonspecific complexes as a function of in-
creasing protein number and decreasing energy gap, we predict
the limits these binding requirements place on the number of
different proteins that can function effectively in a given cellular
compartment. Remarkably, the optimization of binding interfaces
favors networks in which a few proteins have many partners, and
most proteins have few partners, consistent with a scale-free
network topology. We conclude that nonspecific binding adds to
the evolutionary pressure to develop scale-free protein–protein
interaction networks.

protein–protein binding ∣ proteome size ∣ interactome ∣ contact potentials ∣
Hamming bound

The number of proteins encoded by the genomes of humans
and the nematode Caenorhabditis elegans is remarkably

similar, ∼20;000 each (1), with comparable numbers for other
eukaryotes (2). Large differences in organism complexity are thus
reflected far less in proteome size than in gene regulatory net-
works (3), the degree of compartmentalization (4), the variety
of distinct cell types (2), and alternative splicing (5). In this work,
we provide a physical explanation for the absence of an increase
in protein diversity from simple multicellular organisms to
humans. Our approach seeks to capture the fundamental aspects
of protein interactions conserved in any functioning cell, namely
high binding specificity and minimal aggregation as the proteins
participate in a network of binding interactions.

The networks of protein–protein interactions, or interactomes
(6–9), although distinctive to their individual organisms, manifest
global and local characteristics that are shared across species
(10, 11). Most notably, the organization of these networks exhi-
bits a scale-free topology (10, 12) with a substantial number of
highly connected hub proteins (13). Based on structural (14) and
temporal (15) information, the hub proteins can be classified as
date hubs or party hubs. In a date hub, multiple binding partners
compete for binding to a single interface, where binding to one
partner excludes simultaneous binding to any of the others. In
a party hub, a protein has multiple binding interfaces that are
accessible independent of each other, such that binding is not
competitive. Collectively, these network features are relevant
functionally by creating robust, modular interactomes (15, 16)
and physically by determining the number of proteins that can
operate efficiently in a cell, as shown below.

Proper protein function requires not only binding to specific
targets, as captured in the interaction networks, but also avoid-
ance of disease-causing nonfunctional interactions (17) and non-
specific aggregation (18) in the crowded cellular environment.
The failure of a protein to maintain a strong specificity for its
functional partners relative to other proteins can result in a vari-
ety of disease states. For the prion protein PrP, the erroneous
relocation of this protein from the membrane into the cytosol
allows it to bind to a cytosolic ubiquitin ligase, thus depleting
the free ligase from solution, diminishing its ability to complete
required tasks and contributing to neurodegeneration (17).
Related challenges arise in the maturation of the immune system,
where unsuppressed binding to “self” is associated with autoim-
mune reactions (19). Here we employ a simple physical model to
predict how the evolutionary pressure to minimize nonfunctional
protein–protein interactions (20, 21) limits the diversity of
proteins and shapes their interaction networks. We explore these
effects first in simple models of protein binding networks and
then in a network fragment from yeast (14).

Model Development
Our model is designed to reproduce the competition between
specific and nonspecific protein binding in a cell and incorporates
both physicochemical information on protein interactions and
systems-level information on their interactomes. As illustrated
schematically in Fig. 1 for four protein binding interfaces that
are part of a larger set of N ¼ 200 interfaces, we first define a
target network of specific protein–protein interactions. In Fig. 1
each protein has one specific binding target, creating a network
topology with pairs of protein binding partners. Mimicking an
evolutionary process, we then optimize the sequences of the bind-
ing interfaces to maximize the specific interactions of the network
while suppressing all other interactions as much as possible. For
each protein interface in the network, this sequence optimization
produces two sets of binding energies, one for specific interac-
tions (i.e., with target partners in the network) and another for
nonspecific interactions (with all other interfaces).

As a simple physical measure of the achieved specificity in the
network, we will use the minimum-energy gap ΔE between the
specific and nonspecific binding energies for the different inter-
faces. An analogous gap between “ground states” and “first ex-
cited states” was previously used in studies of a related problem,
the stability of proteins with respect to mutations as a function of
their size (22). Here, large energy gaps indicate strong suppres-
sion of nonspecific interactions. From the binding energies, we
determine the N2 dissociation constants for both specific and
nonspecific complexes. For given total protein concentrations,
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the dissociation constants in turn determine the absolute concen-
trations of specific and nonspecific complexes (see Methods and
Figs. S1 and S2). The amount of proteins in nonspecific com-
plexes then provides an additional measure for the achieved
specificity in the network. The number of nonspecific complexes
present at equilibrium depends on the full distribution of non-
specific interactions and therefore represents a global measure of
the competitiveness of the cell or cellular compartment. We also
tested Z scores as an alternative statistical measure (SI Text).
Here the discriminatory power of Z scores is relatively low be-
cause of the large number of weak nonspecific interactions. We
are most interested in the competitive nonspecific protein bind-
ing that might interfere with functional interactions and, there-
fore, we focus on the minimum energy gap and the number of
nonspecific complexes formed at equilibrium.

Each of the N interfaces in a given protein interaction network
is represented by L ¼ 25 amino acids, arranged on a 5 × 5 grid, a
typical size for protein–protein binding interfaces (23). The pro-
teins bind to one another specifically with a given orientation
(perfect overlap). Binding with rotated or translated interfaces
is thus considered nonspecific in all cases, even if it may be func-
tional in some (24). To maintain a functional state, the binding
affinity must be stronger for specific functional interactions than
the most-competitive nonspecific interactions. We use Monte
Carlo (MC) optimization to select interface sequences that col-
lectively achieve strong, low-energy interactions between specific
binding partners, and weak, high-energy interactions with all
other interfaces in the network (see Methods and SI Text). To cal-
culate interaction energies, we use the experimentally derived

Miyazawa–Jernigan (MJ) contact potentials, tuned for protein
binding (25, 26). Previous studies of immune recognition used
similar energy functions and selection strategies (19, 27). In
the optimization, we require the overall amino acid composition
to be consistent with experimental observation (28) (see Meth-
ods). We assume that our cell operates near ambient temperature
and do not consider variations in temperature.

Results and Discussion
Binding Energy Gap in Simple Network Topologies. The simplest
measure of the competitiveness of a particular set of sequences
is the minimum-energy gap separating the weakest specific inter-
action from the most-competitive nonspecific interaction. First,
we investigate the decrease in the gap for simple protein–protein
interaction networks comprised of the basic building blocks of
pairs, simple date hubs, and chains (Fig. 2A) where each protein
has only a single binding interface. For optimized binding inter-
faces in these networks, we find that the minimum-energy gap
ΔE decreases in a power-law fashion with the number N of pro-
tein interfaces,ΔE ∼ N−γ (Fig. 2B). The power-law dependence is
conserved even for the complex topology of a yeast protein inter-
action network fragment (14) (Fig. 3D) and for networks opti-
mized with alternative energy functions (29, 30). A power-law
decrease was also found in lattice-model calculations of the en-
ergy gaps separating the native and the most-competitive nonna-
tive structures of proteins as a function of their length, reflecting a
similar increase in the combinatorial possibilities for nonspecific
interactions (22).

Fig. 1. Schematic of the sequence optimization formalism, illustrated for a Pairs interaction network. (Top Left) The initial random sequences of four protein
interfaces are part of a larger set ofN ¼ 200 interfaces. In the figure, specific partners are lined up horizontally and bind as in a book to be closed. Hydrophobic
residues are colored blue, polar residues are red, and positively and negatively charged residues are colored yellow and orange, respectively. The two specific
interaction energies E12 and E34 are shown in black (in units of kBT ), and all the nonspecific ones in red (including those for self-binding, as indicated by circular
arrows). Each protein is labeled from 1 to 4 (pink and green circles), and these labels are maintained in the other panels. (Top Right) After sequence optimiza-
tion, the specific binding energies are more negative, and the gap to the nonspecific interactions has widened. (Bottom Right) From the binding energies,
pairwise dissociation constants (in units of nM) are calculated for the two specific (black) and the eight nonspecific complexes (red). (Bottom Left) From the
dissociation constants, and for total concentrations of 100 nM of each of the proteins, equilibrium concentrations (in nM) are calculated for all complexes and
the free proteins.
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The scaling exponent γ determines how quickly the energy gap
decreases to zero as the number of interfaces increases, and cor-
respondingly how quickly binding specificity is lost. Although the
exponents in Fig. 2B are small, ranging from 0.13 to 0.19, the gap
reduction is significant for typical proteome sizes. Even for the
simplest “Pairs” network topology in Fig. 2 A and B, increasing
the number of distinct interfaces to ∼10;000 (by extrapolating the
power-law fit) would reduce the gap to only ∼5 kBT. For the
slightly more complex “Chains” topology, the same number of
interfaces would result in an even smaller gap of ∼2.5 kBT, lead-
ing to significant protein misbinding. For the more realistic yeast
network fragment discussed below, a similarly small gap is already
reached with ∼1;000 interfaces (Fig. 3D).

To provide a theoretical justification for the observed power-
law scaling and to quantify the scaling exponent γ, we consider the
simplest binding network model, with only two types of residues
in perfectly aligned interfaces of size L. In this binary model,
we define the energy of interaction between two sequences as
Eij ¼ −Lþ Δ, where Δ is the Hamming distance, i.e., the number
of nonidentical residues in sequences i and j. As a result, pairs
of specific binding partners have identical sequences, with a
Hamming distance of zero and therefore the lowest possible
(strongest) binding energy, with self-binding not considered here.
For the Pairs network (Fig. 2A), in which each protein has exactly
one specific partner, the optimization problem for the binary
model is identical to choosing N∕2 points on an L-dimensional
hypercube of 2L points, such that the N∕2 points are mutually as
far apart as possible. In effect, each pair of proteins repels all
other protein pairs. In this binary model, the minimum-energy
gap ΔE corresponds to the Hamming distance of the two closest
protein pairs and has an upper bound given by the Hamming

bound (Fig. 2D). This bound scales with the number of proteins
as Δ ¼ ΔE ∼N−γ (SI Text), and we show analytically that the scal-
ing exponent γ decreases with the size of the protein interfaces
as 1∕L. Hence with larger interfaces, the gap is shifted to larger
values and drops off slightly more slowly. Although one may ex-
pect the full 20-residue model to have weaker scaling compared
to the binary model of the same length, the scaling exponents are
in fact quite similar between the binary and full models for the
Pairs network (Fig. 2 B and D). This similarity reflects degenera-
cies of the 20 amino acid interaction matrix (31) that reduce its
effective dimensionality, and the added competition from shifted
and rotated nonspecific binding in the full model.

Effects of Interaction Network Topology. Building on this quantita-
tive understanding of the Pairs network, we can now characterize
the change in the magnitude and scaling of the energy gap ΔE
with variations in the topology of the interaction network. We
find that the topology of the protein interaction network can
greatly influence the degree of nonspecific binding. In the
date-hub topologies “Threes” and “Fives” (Fig. 2B), in which
each central protein (or interface) has multiple binding partners,
the gap ΔE is smaller than with only pairwise binding. With a
smaller gap, the competition for binding from nonspecific inter-
faces is stronger, and as a consequence the concentration of non-
specific complexes is larger (Fig. 2C). Decreases in the minimum
gap are generally accompanied by a shift in the distribution of
nonspecific energies to lower values.

Binding to multiple partners increases the complexity of the
sequence optimization problem because hub interfaces must at-
tract several distinct specific binding partners that in turn have to
repel one another. The resulting competition explains the smaller
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Fig. 2. Specific and nonspecific binding of proteins in simple interaction networks. (A) Basic topological units of the protein–protein interaction networks.
Orange and green circles represent shared and unshared interfaces, respectively, and black lines indicate specific binding. The units are replicated to create
networks, as illustrated in the oval for a Pairs and Threes network with N ¼ 20 proteins. (B) Minimum-energy gap ΔE for networks of N proteins. Optimal gaps
(symbols as in A) were found byMC optimization of interfaces with L ¼ 25 amino acids. The gray dashed line is the Hamming bound of the binary model, scaled
by an arbitrary factor 2∕3 for comparison. Solid lines are power-law fits, with scaling exponents γ ¼ 0.13 for the Pairs topology, 0.13 for Pairs and Threes in a 1∶1
ratio, 0.14 for Threes, 0.14 for Fives, and 0.19 for Chains. We also optimized the Pairs topology with different contact potentials. For the Betancourt–Thirumalai
(30) and Skolnick et al. (29) potentials, we obtained γ ¼ 0.12 and 0.13, respectively. (C) Concentration of proteins bound in nonspecific complexes, normalized
by the concentration bound in specific complexes and free in solution. Individual protein concentrations are set at 100 nM each. With fixed total protein
concentration the results are similar (SI Text and Fig. S5). Data are averaged over the two configurations of protein sequences with the largest mini-
mum-energy gaps. (D) Hamming bound (34) on the minimum gap for N binary sequences of length L. For comparison, the gap of the Pairs network in B
and the corresponding power law are shown as red symbols and line, multiplied by an arbitrary factor of 1.65.
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gap ΔE in the date-hub topologies. Remarkably, though, the scal-
ing exponents for networks with isolated date hubs (Threes and
Fives) are nearly identical to that of the Pairs network (Fig. 2B).
In contrast, for a chain of interacting interfaces the gap drops
more strongly with protein number N, resulting in a larger scaling
exponent. To understand these changes in the scaling exponent,
we use the result for the binary model (SI Text), where a larger
scaling exponent occurs when the sequence length L is reduced
(Fig. 2D) and therefore fewer sequences exist to select from.
Here, a similar contraction of the effectively available sequence
space is responsible, as explained below.

The scaling exponent γ of the energy gap reflects the complex-
ity of optimizing sequences for a given interaction network topol-
ogy. For the shared interfaces in the date-hub topologies Threes
and Fives (Fig. 2A), the sequences of the binding partners tend to
be similar, as might be expected if gene duplication is a means of
evolving new partners for date hubs (10). These highly similar
interfaces will thus all be attracted to the same hub interface,
while being repulsive to each other by the requirement of no
self-binding. As a result, the sequence options are not signifi-
cantly constrained compared to the Pairs network. For a shared
interface in a chain topology, however, the sequences of its bind-
ing partners must be distinct. Otherwise, the next specific binding
partner in the chain would be attractive to both these partners,
including the nonspecific one. This competition in chains of date
hubs results in frustration effects that significantly restrict the se-

quence selection and thereby contract the available sequence
space.

Yeast Protein–Protein Interaction Network. Thus far we have char-
acterized model interaction networks comprised of the basic
topological elements of pairs, simple date hubs, and chains with
a 1∶1 ratio of interfaces to proteins. We will now use the under-
standing derived from these elementary networks to study a rea-
listic, more complex network fragment of the yeast interactome
(14). As a major extension, we have to distinguish between bind-
ing interfaces and the proteins to which they belong. A protein
can have an interface that is shared between multiple partners
to form a date hub. Alternatively, a protein can have multiple
interfaces that form a party hub. Consequently, the network of
protein–protein interactions is only a reduced representation
of the more complex network of binding interface interactions
(Fig. 3A). As shown in Fig. 3D, and discussed above, duplicated
yeast networks also exhibit power-law scaling of the energy
gap with both the number of proteins and interfaces, albeit with
a larger exponent of γ ¼ 0.29 that reflects the greater network
complexity.

We can use the yeast network fragment to explore whether
nonspecific binding also exerts pressure on the topology of the
protein–protein interaction network. To address this question,
we modify the interface–interface interaction network in ways
that do not change the underlying protein–protein interaction
network, but do change the number of interfaces and their con-
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Fig. 3. Fragment of yeast protein–protein interaction network. (A) Component of the yeast interactome (14) with all unique binding interfaces explicitly
indicated. The shared interfaces on each light green protein are shown in orange, and the unshared interfaces are in dark green. The separate small graph
shows the largest connected component. (B) Modified network with one unshared (dark green) interface removed from each available protein in A. The edge is
then reconnected to the same protein by a remaining interface such that the protein–protein interaction network is unchanged (in contrast to the interface
network). By reducing the number of interfaces from 52 to 40, this procedure decreases the combinatorial number of possible nonspecific interactions, but
creates 12 new shared interfaces. In B the edges are reconnected specifically to avoid chains of interactions, creating a minimally connected network. For this
network, the reduction in interfaces outweighs the introduction of new shared interfaces and the minimum-energy gap is higher than in the original network.
(C) Modified network with number of interfaces reduced to 40, as in B, but with edges reconnected to maximize the creation of chains of interactions. This
procedure results in a highly connected component (smaller graph) that constrains the sequences in the optimization and results in a smaller energy gap than
either in A or in B. (D) Minimum-energy gap (green, left scale) and concentration of nonspecific complexes normalized by the sum of specific and free protein
concentrations (blue, right scale), as a function of the number N of proteins (bottom scale) and binding interfaces (top scale). Individual protein concentrations
are set at 100 nM. Interactomes in A were replicated and connected by added interfaces indicated by black arrows. The scaling exponent of the minimum-
energy gap is γ ¼ 0.29.
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nectivity. Specifically, we alter the interface network to reduce
the number of interfaces and minimize the number of chains by
creating date hubs (Fig. 3B). For comparison, we also construct a
network that similarly reduces the number of interfaces, but max-
imizes the formation of chains (Fig. 3C). By comparing the effects
of these changes on the binding energy gap, we gain insight into
the effects of interface network topology on the degree of protein
misbinding.

After optimization, the maximally connected network in
Fig. 3C with its date-hub chains produces the smallest ΔE and
correspondingly the worst specificity, despite having only two-
thirds as many ways to bind nonspecifically (Fig. S3). In contrast,
the network with the smallest numbers of chains and interfaces
(Fig. 3B) has the largest ΔE. These findings reinforce the poor
specificity of the chain topology observed in Fig. 2B and suggest
that introducing a new interface on a protein by creating a party
hub is overall less costly than sharing an interface in a date-hub
chain, despite the larger number of interfaces requiring optimi-
zation.

A striking aspect of the yeast interactome fragment in Fig. 3A
is the large number of unique interfaces distributed among the
proteins. This high ratio of interfaces to proteins reflects both
the functional need to maintain a connected set of protein inter-
actions and the physical need to maintain specificity in binding.
Our results indicate that these requirements favor the evolution
of two major topologies: date hubs and party hubs. Date hubs can
improve the specificity of a network by reducing the number of
distinct interfaces used between proteins, as long as two date hubs
do not bind directly to one another [and, in fact, highly connected
date hubs in experimental networks rarely interact directly with
each other (12)]. Indeed, the minimally connected network in
Fig. 3B has more date hubs and a larger ΔE (higher specificity)
than that in Fig. 3A thanks to a reduction in the net number
of interfaces. Without changing the network topology at the
protein–protein level, unfavorable chains of connected date hubs
can be separated through the creation of party hubs, in which
additional unshared interfaces take over connections from shared
interfaces. Correspondingly, the network in Fig. 3A with fewer
chains has a larger ΔE than the maximally connected network
in Fig. 3C. Hence the pressure to minimize nonspecific binding
supports the formation both of party hubs, which are often func-
tionally essential for forming large multiprotein complexes, and
of date hubs, which are often needed to perform the same action
on multiple proteins (such as protein kinases) (14).

Chains of date hubs are not only the least favorable topology
for binding specificity, but they produce exactly the reverse of a
scale-free distribution of the number of connections: many shared
interfaces and few unshared interfaces. In contrast, both date
hubs and party hubs (by replacing a shared interface with two un-
shared interfaces) are favorable for binding specificity and result
in a high number of singly connected interfaces, and a low but
significant number of highly connected interfaces—a hallmark
of a scale-free topology. With these conditions for functional
connectivity of proteins and physical specificity in binding inter-
faces satisfied, we treat the yeast network fragment (Fig. 3A) as
a representative biological topology. Extrapolating this system
to larger protein numbers (by duplicating and connecting this
fragment; Fig. 3D) we estimate that on the order of 1,000 distinct
proteins can be accommodated in a cellular compartment, with
<10% of proteins trapped in nonspecific complexes.

Cross-Compartmental Mixing and Binding Specificity. Nonspecific
binding potentially affects the experimental determination of
protein–protein interaction networks. Proteins fully localized
in different subcellular compartments (32) may not be optimized
against nonspecific interactions, thus increasing the probability of
false positives in assays designed to probe functional binding
within the entire proteome. To mimic cross-compartmental mix-

ing and to quantify the resulting spurious nonspecific interac-
tions, we studied the binding between protein ensembles that
were optimized independently, and then mixed together. We find
that the combinatorial increase in the number of possible nonspe-
cific interactions (32) and the lack of optimization together result
in a small but significant increase in the relative affinities to
nonspecific partners (Fig. S4). Hence these cross-compartment
nonspecific interactions are relatively more likely than intracom-
partment nonspecific interactions to trigger false positives for
functional interactions. Careful culling of purported interactions
between proteins that are not colocated should improve the net-
work quality.

Conclusions
Proteins exist in a finite range of sizes with a limited amino acid
alphabet. We find that these restrictions set an intrinsic limit to
designing protein interfaces that can bind selectively to target
proteins, while remaining relatively repulsive to all other protein
interfaces. Roughly, for a cell or cellular compartment with N
proteins, there are on the order of N specific interactions, but
almostN2 nonspecific ones. Hence there is a disadvantage to sim-
ply expanding the number of distinct proteins in organisms of
greater complexity because introducing more proteins into a cell
will eventually result in random, nonspecific interactions taking
over. These unwanted interactions are favorably attenuated when
proteins interact in a network topology that is globally connected
by hub proteins with both shared and distinct interfaces, as the
trade-off between adding more interfaces versus sharing the same
interfaces favors a mixture of both types. Such networks exhibit
improved specificity while maintaining communication between
proteins. Nonspecific association can also be suppressed by
lowering protein concentrations and by varying their spatial and
temporal expression patterns. The requirement for protein spe-
cificity amid a sea of sticky protein surfaces should contribute to
the evolution of protein interaction networks with a scale-free
topology and a limited number of proteins, regardless of organ-
ism complexity.

Methods
Sequence Optimization. For the binding rules established by the connectivity
of a particular protein–protein interaction network, the optimal set of N
sequences has the largest minimum-energy gap ΔE, defined as the smallest
energy gap between specific and nonspecific binding partners:

ΔE ¼ min
1≤i≤N

�
min

1≤k≤Ki
Eik − max

1≤m≤Mi
Eim

�
;

where Mi is the number of specific binding partners of interface i in the net-
work, and Ki is the number of nonspecific partners of interface i that includes
self-, rotated, and shifted alignments. Eij is the binding energy between a
pair of interfaces si and sj ,

Eijðsi;sjÞ ¼ ∑
L

m¼1

vMJðsim;sjmÞ;

where the sum extends over the L amino acid contacts in a given alignment,
with L ¼ 25 for perfect alignment. The vMJ are MJ contact potentials (26) that
have been optimized for the calculation of protein binding affinities (25),
shifted up by a constant energy e0 ¼ 2.27 kBT. The potentials have been
optimized for ambient conditions (25, 26).

To find optimal sequences of the proteins in a given network, we perform
global optimization with a fitness function designed to bias toward large
gaps. With binding constants being proportional to the Boltzmann factors
of the binding energies, we define the fitness function as the negative
sum over Ki the Boltzmann-weighted nonspecific energies of each protein
pair, multiplied by a sum over the Mi inverse-Boltzmann-weighted specific
binding energies,

f ðfsNgÞ ¼ 1

N∑
N

i¼1

�ðMi þ KiÞ
Mi ∑

Mi

i0
exp½þJEii0 �

��
1

Ki ∑
Ki

j≠i0
exp½−JEij�

�
;
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averaged over all interfaces i, with J as a positive free parameter. This fitness
function favors low (strong) specific binding energies and high (weak) non-
specific binding energies, and therefore a large ΔE.

For each sequence set, we compute the amino acid frequencies
pα ¼ Nα∕∑γNγ , where Nα is the number of residues of type αwithin the entire
set. To ensure that these amino acid frequencies are close to the distributions
pref
α observed in actual protein interfaces (28), we add a relative entropy term

S ¼ −∑20
α¼1 pα lnðpα∕pref

α Þ to the fitness function (where S ¼ 0 implies perfect
agreement with the experimental distribution, and S < 0 implies deviations).
The total fitness is defined as FðfsNgÞ ¼ −fðfsNgÞ þ λSðfsNgÞ, where λ is a free
parameter chosen empirically between 0.05 and 0.3. To create sets of N se-
quences fsNgwith large fitness FðfsNgÞwe useMC sampling with Hamiltonian
replica exchange and simulated annealing (33) for couplings J ranging from
0.1 to 1.1. From the resulting ensemble we then select the sequence set
with the largest gap ΔE, ensuring realistic amino acid distributions by
requiring S > −0.3.

Equilibrium Calculations. Once a set of sequences has been optimized, the
resulting binding energies Eij between interfaces i and j are transformed into
equilibrium dissociation constants Kij

d . To do so we use the definition
Kij

d ¼ K0 expðEij∕kBTÞ, where kB is Boltzmann’s constant and T is the tempera-
ture. We choose the reference K0 such that the Kd for the average specific
binding partners is equal to 1 nM, a biologically realistic value. As a result, the
Kd for each specific binding reaction is ∼1 nM, with larger Kd for nonspecific
binding. From the dissociation constants, we determine the equilibrium
concentrations of all proteins and their complexes using both perturbation
theory and the Gillespie algorithm (with binding and dissociation rates of
kd ¼ 1∕s and kb ¼ kd∕Kd ensuring proper equilibria). Further details on all
methods are provided in SI Text.
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