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Abstract
Perceptual learning refers to the phenomenon that practice or training in perceptual tasks often
substantially improves perceptual performance. Often exhibiting stimulus or task specificities,
perceptual learning differs from learning in the cognitive or motor domains. Research on
perceptual learning reveals important plasticity in adult perceptual systems, and as well as the
limitations in the information processing of the human observer. In this article, we review the
behavioral results, mechanisms, physiological basis, computational models, and applications of
visual perceptual learning.

1. Introduction
Although early Gestalt psychologists denied any role of learning in perception, (Helmholtz,
1911) made learning an essential component in his theories of perception. Taking an
ecological approach, Eleanor J. Gibson (Gibson, 1967) reviewed development of perceptual
expertise in early childhood and postulated that perceptual learning is a process of
discovering how to transform previously overlooked potentials of sensory stimulation into
effective information. The systematic documentation of various specificities of perceptual
learning with implications of a early sensory site of learning re-charged the research on
perceptual learning (Karni and Sagi, 1991). Since then, perceptual learning in adult human
observers has been documented in a wide range of perceptual tasks in visual, auditory, and
somatosensory domains (Fahle and Poggio, 2002). In this review, we focus on perceptual
learning in the visual domain.

2. Perceptual Learning
Perceptual learning has been documented in virtually every visual task, including the
detection or discrimination of visual gratings (DeValois, 1977; Fiorentini and Berardi, 1980;
1981; Mayer, 1983), stimulus orientation judgment (Dosher and Lu, 1998; Shiu and Pashler,
1992; Vogels and Orban, 1985), motion direction discrimination (Ball and Sekuler, 1982;
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1987; Ball, Sekuler, and Machamer, 1983), texture discrimination (Ahissar and Hochstein,
1996; Karni and Sagi, 1991; Karni and Sagi, 1993), time to perceive random dot
stereograms (Ramachandran and Braddick, 1973), stereoacuity (Fendick and Westheimer,
1983), hyperacuity and vernier tasks (Beard, Levi, and Reich, 1995; Bennett and
Westheimer, 1991; Fahle and Edelman, 1993; Kumar and Glaser, 1993; McKee and
Westheimer, 1978; Saarinen and Levi, 1995), and object recognition (Furmanski and Engel,
2000).

The trade-mark finding in perceptual learning is that some of what is learned is specific to
stimulus or task factors such as retinal location (Karni and Sagi, 1991), spatial frequency
(Fiorentini and Berardi, 1980), orientation (Poggio, Fahle, and Edelman, 1992) (Figure 1),
or background texture (Ahissar and Hochstein, 1996). Perceptual learning that is highly
specific to retinal location and stimulus has been claimed to reflect neural plasticity in basic
visual processing mechanisms (Karni and Sagi, 1991).

Several recent papers re-examined specificity of perceptual learning and found that a
number of factors in the training procedures, some of that were not obviously related to
specificity or transfer of learning, determine the degree of specificity, including task
precision (Jeter, Dosher, Petrov, and Lu, 2009), task difficulty (Ahissar and Hochstein,
1997), number of trials (Censor and Sagi, 2009), and training schedule (Xiao, Zhang, Wang,
Klein, Levi, and Yu, 2008). Xiao et al (2008) developed a novel double-training paradigm
that employed conventional feature training (e.g., contrast) at one location, and additional
training with an irrelevant feature/task (e.g., orientation) at a second location, either
simultaneously or at a different time. They showed that this additional location training
enabled a complete transfer of feature learning (e.g., contrast) to the second location.
Understanding factors that determine specificity/transfer of perceptual learning is one of the
most important challenges in the study of perceptual learning.

3. Mechanisms of Learning
Mechanisms of perceptual learning, i.e., what is learned during perceptual learning, have
been investigated in recent years in psychophysics (Dosher and Lu, 1998; 1999; Gold,
Bennett, and Sekuler, 1999; Saarinen and Levi, 1995), neurophysiology (Crist, Li, and
Gilbert, 2001; Ghose, Yang, and Maunsell, 2002; Schoups, Vogels, Qian, and Orban, 2001),
brain imaging (Schiltz, Bodart, Dubois, Dejardin, Michel, Roucoux, Crommelinck, and
Orban, 1999; Schwartz, Maquet, and Frith, 2002), and patients (Fahle and Daum, 2002; Xu,
Lu, Wang, Dosher, Zhou, Yang, Zhang, and Zhou, 2010).

In psychophysical studies, Dosher and Lu (1998) introduced a theoretical framework and an
external noise plus training paradigm to analyze how perceptual inefficiencies improve over
the course of perceptual learning (Figure 2). Perceptual inefficiencies are attributed to three
limitations in perceptual processes (Lu and Dosher, 2008): an imperfect perceptual template,
internal additive noise, and multiplicative noise. Systematic measurements of human
performance as a function of both the amount of external noise added to the signal stimulus
and the length of training received by the observers make it possible to distinguish three
mechanisms of perceptual learning: perceptual template retuning, stimulus enhancement,
and contrast-gain control reduction. It has been consistently found that two independent
mechanisms (Figure 3), stimulus enhancement and external noise exclusion, support
perceptual learning in a range of tasks (Dosher and Lu, 2007; Dosher and Lu, 1998; 1999;
2005; Lu, Chu, and Dosher, 2006; Lu and Dosher, 2004).

Although practice-induced neuronal plasticity has been documented in auditory (Metherate
and Weinberger, 1990; Weinberger, Javid, and Lepan, 1993) and somato-sensory cortices
(Jenkins, Merzenich, Ochs, Allard, and Guic-Robles, 1990; Recanzone, Merzenich, and
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Schreiner, 1992), and in some visual fMRI studies (Schiltz et al., 1999; Schwartz et al.,
2002; Vaina, Belliveau, des Roziers, and Zeffiro, 1998), evidence for practice-induced
neuronal plasticity in early visual cortical areas is however modest (Crist et al., 2001; Ghose,
Yang, and Maunsell, 2002; Schoups, Vogels, Qian, and Orban, 2001; Yang and Maunsell,
2004), although neurons in V1 may exhibit task specific tuning (Li, Piech, and Gilbert,
2004) that seem to reflect selection of task-relevant stimulus features for a particular task
rather than persistent cross-task changes in neuronal tuning. Law and Gold (Law and Gold,
2008) found that perceptual learning in motion direction discrimination does not involve
neuronal response changes in the middle temporal area (MT), but rather in the lateral
intraparietal area (LIP), a brain area related to selective readout of MT neurons. They
conclude, “...[our] results suggest that the perceptual improvements corresponded to an
increasingly selective readout of highly sensitive MT neurons by a decision process,
represented in LIP, that instructed the behavioral response.” In sum, these reports found that
early visual representations showed either no change or modest changes in the slopes of
tuning functions following perceptual learning.

One critical difference between existing neurophysiological investigations of perceptual
learning contrasting cortical plasticity in auditory and somato-sensory domains, which
exhibit strong plasticity, and that in the visual domain, where evidence for early visual
plasticity is modest, lies in the animal specifies: non-primates are used in the auditory and
somato-sensory domains, whereas primates are used in the visual domain. It's possible that
primates exhibit less training-induced plasticity than non-primates in early visual areas
(Karmarkar and Dan, 2006; Yao, Shi, Han, Gao, and Dan, 2007).

Some recent evidence might suggest greater plasticity in early visual areas occurs in non-
primates. (Hua, Bao, Huang, Wang, Xu, Zhou, and Lu, 2010) examined the effects of
training in grating orientation identification on both perceptual and neuronal contrast
sensitivity functions of cats using combined psychophysical measurements with
extracellular single-unit recording under anesthetized preparations. Conditioning was used
to train cats to identify the orientation of a high contrast ±45° sinusoidal grating.
Subsequently, the same procedure was used to measure monocular contrast sensitivity
functions (CSF) in both eyes. The cats were then trained monocularly to perform a near-
threshold orientation identification task. After approximately forty days of training,
monocular CSFs were measured again, followed by extracellular recordings of single-unit
activities from the primary visual cortex (V1) of anesthetized cats. Contrast response
functions to the preferred stimuli were measured for isolated neurons. The combined
contrast sensitivities of individual neurons were then used to construct the neuronal CSFs for
neuronal populations that responded preferentially to the stimuli presented via trained or
untrained eyes (Figure 4).

Hua et al (2010) found that (1) training improved perceptual contrast sensitivity, with some
degree of specificity for the training spatial frequency and training eye, (2) training also
improved the contrast sensitivity of V1 neurons responding preferentially to the trained
spatial frequency, (3) perceptual and neuronal CSFs were highly correlated both before and
after training, and (4) a systematic analysis of the parameters of the neuronal contrast
response functions indicated that the learning-induced plasticity was caused by increased
contrast-gain of the neurons associated with training. The increased contrast-gain resulted in
a parallel leftward shift of the neuronal contrast response functions, consistent with
decreased post-synaptic polarization (Carandini and Ferster, 1997; Ohzawa, Sclar, and
Freeman, 1985; Sanchez-Vives, Nowak, and McCormick, 2000a; b; Sclar, Lennie, and
DePriest, 1989).
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In addition to the difference in animal species, the Hua et al (2010) study differs from
previous neurophysiological studies on perceptual learning in two other ways: (1) previous
electrophysiological studies exploring training-induced visual cortical plasticity generally
used orientation threshold as the dependent measure. Hua et al (2010) used contrast
thresholds as the dependent measure. It is possible that different neural networks might be
involved in orientation discrimination and contrast detection. (2) Hua et al (2010) recorded
the response of V1 neurons in anesthetized and paralysed cats, whereas previous studies
made recordings in awake-behaving monkeys. Compared to studies on anesthetized cats,
recordings from early visual cortical areas of wake monkeys may include substantial top-
down influences from higher visual cortical areas (Gazzaley, Cooney, McEvoy, Knight, and
D'Esposito, 2005; Li et al., 2004; Watanabe, Harner, Miyauchi, Sasaki, Nielsen, Palomo,
and Mukai, 1998). New studies are necessary to further investigate all these factors.

4. The role of attention and feedback
Although earlier studies (Ahissar, Laiwand, Kozminsky, and Hochstein, 1998; Schoups et
al., 2001; Shiu and Pashler, 1992) found that subjects can only learn the feature they paid
attention to, recent studies by Watanabe and colleagues (Seitz and Watanabe, 2003;
Watanabe, Nanez, Koyama, Mukai, Liederman, and Sasaki, 2002; Watanabe, Nanez, and
Sasaki, 2001) found that attention to a feature is not necessary for perceptual learning of the
feature to occur if the feature is irrelevant to the primary task performed by the subject.
Recent studies suggest that the performance improvement from task-irrelevant learning can
be enhanced by attending to the feature (Gutnisky, Hansen, Iliescu, and Dragoi, 2009).

Another important topic in perceptual learning concerns the role of feedback. The empirical
pattern of results is quite complex (see Dosher & Lu, 2009, for a review). Whereas most
perceptual learning studies employed trial-by-trial feedback, several studies documented
significant perceptual learning with block, partial, or even no feedback, and no perceptual
learning with false, random, manipulated block, and reversed feedback (Herzog and Fahle,
1997). Shibata, Yamagishi, Ishii, and Kawato (2009) showed that arbitrary block-feedback
facilitated perceptual learning if it is more positive than the observer's actual performance.
At high training accuracies, training with and without feedback generated essentially the
same learning curves (Liu, Lu, and Dosher, 2010b), and significant learning was found in
low training accuracy trials when they were mixed with high accuracy trials (Liu, Lu, and
Dosher, 2009; Petrov, Dosher, and Lu, 2006). Liu, Lu, and Dosher (2010a) conducted a
computational analysis of the complex pattern of empirical results on the role of feedback
with the augmented Hebbian reweighting model (Petrov, Dosher & Lu, 2005), including a
study that showed significant perceptual learning with block, partial, or even no feedback,
and no perceptual learning with false, random, manipulated block, and reversed feedback
(Herzog & Fahle, 1997), another study (Shibata et al, 2009) that showed that arbitrary block-
feedback facilitated perceptual learning if it is more positive than the observer's actual
performance, and the interaction between feedback and training accuracy (Liu, Lu &
Dosher, 2010b). The simulation results are both qualitatively and quantitatively consistent
with the data reported in the literature.

5. Computational Models
One major open question is whether perceptual learning reflects representation enhancement
in early sensory areas or reweighting of sensory representation in the decision process.
Petrov, Dosher, and Lu (2005) introduced a task analysis framework to evaluate the
diagnostic value of experimental designs for discriminating reweighting and representational
enhancement in perceptual learning. A systematic review of the literature suggests that the
two potential forms of plasticity – reweighting versus representational change – make
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similar predictions about specificity in most of the existing studies that had previously been
cited as evidence for representational enhancement.

A number of models have been proposed in perceptual learning (Herzog and Fahle, 1998;
Petrov, Dosher, and Lu, 2006; Petrov, Dosher, and Lu, 2005; Vaina, Sundareswaran, and
Harris, 1995; Vallabha and McClelland, 2007; Weiss, Edelman, and Fahle, 1993; Zhaoping,
Herzog, and Dayan, 2003) (see Tsodyks & Gilbert, 2004, for a review). All these models
assume an appropriate stimulus representation and postulate incremental learning; none
proposes systematic changes in representation. Based on the results from the task analysis
and neurophysiology, Petrov et al (2005, 2006) implemented the reweighting hypothesis
outlined in Dosher and Lu (1998) in a multi-channel Augmented Hebbian Reweighting
Model (AHRM) (Figure 5). The AHRM consists of four units: representation units that
encode input images as activation patterns, a task-specific decision unit that receives
weighted inputs from the representation units, an adaptive bias unit that accumulates a
running average of the response frequencies and works to balance the frequency of the two
responses, and a feedback unit that makes use of external feedback when (and if) it is
presented. Learning in the model occurs exclusively through incremental Hebbian
modification of the weights between representation units and the decision unit; while the
early processing pathway that constructs representations from the retinal image remains
fixed throughout training. The AHRM has been very successful in modelling a wide range
of phenomena in perceptual learning, including complex patterns of perceptual learning in
an orientation discrimination experiment under destabilizing non-stationary manipulations
both with and without trial-to-trial feedback (Petrov et al., 2005; Petrov et al., 2006), a large
number of data patterns in external noise studies of perceptual learning (Lu, Liu, and
Dosher, 2010), and the complex patterns of results on the role of feedback in perceptual
learning (Liu et al., 2010a).

6. Applications
The remarkable levels of neural plasticity and neurogenesis in the adult nervous system
(Bruel-Jungerman, Davis, and Laroche, 2007; Gould, 2007; Johansson, 2007; Kramer and
Erickson, 2007) have led to the test and development of visual rehabilitation programs based
on perceptual learning. Here we discuss one example application of perceptual learning in
treating amblyopia.

Amblyopia is a developmental spatial vision impairment that cannot be corrected by
refractive means. It affects about 3% of the population (Ciuffreda, Levi, and Selenow, 1991;
McKee, Levi, and Movshon, 2003; Simmers, Ledgeway, Hess, and McGraw, 2003).
Conventional wisdom on visual development suggests that spatial vision becomes hard-
wired after a critical period, usually around 6-8 years of age (Berardi, Pizzorusso, Ratto, and
Maffei, 2003); The amblyopic visual system is generally thought to be fully (though
erroneously) developed by age eight and therefore no longer subject to therapeutic
modifications. In clinical practice, only infant and young child amblyopes are treated, while
patients older than eight years are left untreated (Greenwald and Parks, 1999).

Exploiting neural plasticity in the adult visual system, several laboratories have
demonstrated that perceptual training can be used in the adult amblyopic visual system for
visual rehabilitation (Chung, Li, and Levi, 2006; Levi and Polat, 1996; Li and Levi, 2004;
Li, Levi, and Klein, 2004a; Li, Provost, and Levi, 2007; Polat, Ma-Naim, Belkin, and Sagi,
2004; Zhou, Huang, Xu, Tao, Qiu, Li, and Lu, 2006). One critical concern is the efficiency
of such treatment. Because the hallmark of perceptual learning in the normal visual system
is its specificity to the characteristics of the training stimulus (Fahle, 2002), there is a
question about generalizability of such training. If perceptual learning in the amblyopic
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visual system were also highly specific to the characteristics of the training stimuli and task,
perceptual learning as a therapy for amblyopia would not be very effective in improving
general spatial vision. At a minimum, multiple training stimuli and tasks would need to be
used to cover the range of stimuli and tasks important for daily visual functions.

To evaluate and compare the generalizability of perceptual learning in amblyopic and
normal vision, (Huang, Zhou, and Lu, 2008) estimated the bandwidth of perceptual learning
in both normals and amblyopes. They found that the bandwidth of perceptual learning was
drastically different (p<0.01): For the amblyopic observers, the average full bandwidth was
4.04 0.63 octaves; the average full bandwidth was only 1.40 0.30 octaves for the normal
observers (Figure 6). The estimated 4.04 octaves bandwidth of perceptual learning implies
that the impact of perceptual learning generalizes across spatial frequency channels in
amblyopic eyes. Such a broad bandwidth of perceptual learning may underlie the improved
visual acuity in the amblyopic eyes following training, a task that involves a wide range of
spatial frequencies.

7. Conclusion
The susceptibility of the adult visual system to training suggests that the perceptual system
is not static even in adulthood. We cannot fully understand perception without
understanding perceptual learning. Research on perceptual learning is of theoretical
significance in illuminating plasticity in adult perceptual systems, and in understanding the
limitations in the information processing of the human observer. It is of practical
significance as a potential method for the development of perceptual expertise in normal
populations and for the non-invasive amelioration of deficits in challenged populations by
training.
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Figure 1.
Effect of switching from vertical to horizontal verniers (or vice versa) after block 20.
Averaged results of 12 naïve subjects; 6 started with horizontal verneiers, and the others
stated with vertical verniers. There is no transfer of learning. (After Poggio, Fahle, &
Edelman, 1992).
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Figure 2.
The perceptual template model (PTM) and the signatures of three mechanisms of perceptual
learning. (After (Dosher and Lu, 1998)).
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Figure 3.
A perceptual learning task using the external noise paradigm. (A) Spatial layout of the task,
including the peripheral orientation discrimination Gabor stimulus, and a central letter
stimulus for a secondary task. (B) Contrast threshold (Gabor signal contrast corresponding
to the criterion accuracy) as a function of the external noise in the stimulus. Threshold is a
systematic function of criterion, external noise, and practice (data from Dosher & Lu, 1998).
(C) Examples of a signal of constant contrast embedded in increasing amounts of external
noise.

Lu et al. Page 13

Neurobiol Learn Mem. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Contrast sensitivity functions in the trained and untrained eyes before and after training for
cat1 (A) and cat2 (B). Smooth curves represent the best fitting Gauss functions. The green
arrows indicate the trained spatial frequency, and the error bars represent 1 SD. (CD) TC-
contrast sensitivity functions of V1 neurons recorded from cat1 (C) and cat2 (D). (EF) C50-
contrast sensitivity functions of V1 neurons recorded from cat1 (E) and cat2 (F). Green
arrows indicate the trained spatial frequency. All values are displayed as mean ± SEM.
(After Hua et al, 2010).
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Figure 5.
Augmented Hebbian Reweighting Model (AHRM, Petrov, Dosher & Lu, 2005, 2006) passes
stimulus images through a representational system of orientation and spatial-frequency
tuned units, with non-linearities and spatial pooling. These activations, along with inputs to
a bias and feedback unit are weighted by the task-specific weighting system to yield a
decision. The AHRM has predicted the dynamics of learning in non-stationary training, the
various roles of feedback in learning, and performance in external noise paradigms. (After
Petrov et al, 2005).
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Figure 6.
Average contrast sensitivity improvements as functions of spatial frequency for the
amblyopic (a) and first control groups (b). The magnitudes of contrast sensitivity
improvements were normalized to that at the training spatial frequency; Spatial frequencies
were normalized to the training frequency. Blue arrows indicate the average training spatial
frequency. Data were weighted by their standard deviation. Only observers with significant
contrast sensitivity improvements during training are included. Error bars indicate SEM.
(After Huang et al, 2008).
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