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Abstract
Graft versus host disease (GVHD), mediated by donor T cells, is a significant source of morbidity
and mortality following allogeneic stem cell transplantation. Mesenchymal stem cells (MSC) can
successfully treat ongoing graft versus host disease, presumably due to their ability to suppress
donor T cell proliferation. Little is known about the potential of MSC to prevent GVHD. Here we
show that bone marrow-isolated MSC can suppress the development of GVHD if given after
donor T cell recognition of antigen. IFN-γ was required to initiate MSC efficacy. Recipients of
IFN-γ−/− T cells did not respond to MSC treatment and succumbed to GVHD. MSC, pre-treated
with IFN-γ, became immediately active and could suppress GVHD more efficiently than a
fivefold-greater number of MSC that were not activated. When given at the time of bone marrow
transplantation, activated MSC could prevent GVHD mortality (100% survival, p=0.006). MSC
activation was dependent on the magnitude of IFN-γ exposure, with increased IFN-γ exposure
leading to increased MSC suppression of GVHD. Activated MSC present a new strategy for
preventing GVHD using fewer MSC.
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Introduction
Allogeneic hematopoietic stem cell transplants have the potential to play a significant
curative role in the treatment of malignant and non-malignant hematopoietic disorders,
autoimmune diseases, and immunological deficiencies, and in the induction of
transplantation tolerance [1–10]. Widespread application of this therapeutic modality is
limited due to the morbidity and mortality of graft versus host disease (GVHD), which
affects 50% of stem cell transplant recipients [11–16]. While grafts highly matched to the
recipient, young donors, donor/recipient sex match, and post-transplant immunosuppression
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are strategies used to reduce the risk of GVHD [17], thus far, the greatest preventative
measure has been intentional underutilization of stem cell transplantation. Theoretically,
strategies aimed at preventing GVHD would target early initiating factors either during the
inflammatory milieu created in the wake of tissue damage from conditioning regimens
[18,19] or during T cell antigen recognition and proliferation [20,21]. Once the efferent
effector phase occurs, donor Tcell-mediated destruction of host tissues occurs and
preventive strategies are replaced with treatment regimens [19].

Mesenchymal stem cells (MSC) have been used in the efferent phase of GVHD to
successfully treat ongoing, acute, steroid-resistant GVHD [22,23]. In contrast, when given at
the time of BM transplant, for the prevention of GVHD, the incidence of grade III/IV
GVHD was not significantly improved [24], suggesting the absence of necessary initiating
factors for MSC activation and subsequent efficient suppression of donor-derived T cells.
MSC may require activating signals from robustly proliferating T cells to induce their
suppressive effects. MSC reliably suppress large scale T cell proliferation in response to
polyclonal stimulation in vitro [25–28]. In contrast, with allogeneic mixed lymphocyte
cultures of variable stimulation, MSC suppression is also variable; MSC do not completely
abrogate lymphocyte proliferative responses between all donor and recipient pairs
[26,27,29,30]. In addition, MSC do not suppress the modest T cell proliferative response to
recall antigens [31]. These findings suggest MSC may exert their optimal effects during the
events surrounding larger scale T cell activation and proliferation, such as that encountered
during steroid-resistant GVHD. Identification and simulation of the events that stimulate
MSC to suppress GVHD might aid in the development of a preventive GVHD strategy.

Murine experimental models used to dissect the mechanism of MSC effects in the course of
GVHD have yielded mixed results, with some studies showing MSC efficacy and others
finding no effect [32–35]. Several factors are likely to contribute to the variable results.
MSC tissue source, (i.e., BM, cord blood, adipose tissue), method of isolation to remove
myeloid precursors (several weeks [36] vs. rapid immunodepletion [37]) and timing of MSC
administration are potential variables that could explain these differences. Notably, such
variation has not been observed clinically, with MSC treatment of ongoing GVHD reported
to have significant efficacy. Interestingly, human MSC isolation can significantly differ
from murine MSC isolation. Human MSC can undergo culture for as few as 14 days prior to
administration [38]. It is possible that murine MSC might also be more consistently
efficacious if similar methods of isolation and culture were used.

In these studies, we used a rapid immunodepletion method to isolate murine MSC, resulting
in dramatically shortened culture times and low passage cells. We tested the effect of these
MSC first for efficacy of GVHD treatment and observed their effect to be similar to clinical
observations, with lack of efficacy in prevention and improved survival when given during
ongoing GVHD. To further dissect the factors that might initiate MSC suppression of
GVHD, we localized their earliest time point of efficacy to occur following antigen
presentation. Since IFN-γ is produced by donor T cells in response to antigen recognition,
we tested whether it could initiate MSC efficacy in vivo and observed a dose-response
effect, with higher doses of IFN-γ being more effective than lower doses. These
observations suggest that IFN-γ serves as an initiating stimulus for MSC
immunosuppressive activity in vivo. MSC response to this pro-inflammatory cytokine is
differential, with three-log increases in IFN-γ required for maximal T cell suppression in
vivo. These observations indicate MSC exposure to concentrated amounts of IFN-γ can
stimulate MSC to prevent GVHD and provide the basis for a new potential strategy in
prevention of GVHD.
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Results
MSC treatment of GVHD

Murine MSC were isolated using rapid immunodepletion. This method was observed to
provide CD29+CD44+Sca1+ MSC in 14 days (Fig. 1), a time course which is similar to
isolation of human MSC [38]. By the third passage, 0.15 × 106–0.30 × 106 MSC per donor
mouse could be retrieved for transplantation experiments. This number of MSC exceeds the
numbers obtained from the classic method in which MSC are not devoid of myeloid cells
until passage six. This technique also avoided long-term exposure of primitive MSC to
mature myeloid lineages, which may enable murine MSC to become more
immunostimulatory than immunosuppressive in vivo [33]. Using previously reported
methods, these cells were observed to be capable of differentiating into adipogenic and
osteogenic tissues (data not shown) [27,39].

To establish whether MSC isolated in this manner proved efficacious in the treatment of
GVHD, 0.10 × 106 MSC were administered during various phases of GVHD. First, MSC
were administered on day 0 along with the BM graft and supplementary T cells to induce
GVHD (Fig. 2A). For this administration, MSC were co-cultured with the BM graft and
splenocytes for 2 h prior to administration. We hypothesized that cell contact between MSC
and GVHD-producing T cells prior to donor antigen recognition could suppress Tcell
activity and subsequent GVHD mortality. Preemptive cell contact of MSC with T cells did
not prove to be effective; there was no statistical improvement in GVHD-related mortality
when compared to control animals that received BM grafts and supplementary T cells.

During phase II of GVHD, donor T cells are exposed to host antigen and become active,
serving to both proliferate and recruit additional Tcells [40]. We tested whether MSC,
administered after donor antigen recognition, could mitigate GVHD mortality (Fig. 2B).
Antigen recognition and/or subsequent activation of T cells appeared to be required for MSC
efficacy as MSC given on day 2 increased survival from 10% to 60% (p<0.02). Following
MSC infusion, some of the animals that had developed signs of GVHD, such as ruffled fur
and alopecia, had improvement of these physical findings with many surviving animals
experiencing a complete reversal to normal-appearing fur.

MSC were tested for their ability to treat ongoing GVHD (administered on day 20) or
treatment of severe, pre-morbid GVHD (given on day 30). MSC administration increased
survival from 10% to 50% when given on day 20 (p<0.02, Fig. 2C), and to 20% for day 30
treated animals (p=0.08, n.s, Fig. 2D). These data show MSC isolated with rapid
immunodepletion are effective in preventing GVHD as well as treating ongoing GVHD. It is
important to note that MSC contaminated with >3% CD45+ cells and MSC of late passage
(greater than 6), had no significant effect on GVHD-related mortality (data not shown),
indicating that early passage and significant immunodepletion were required for MSC
suppression of GVHD.

MSC treatment is dose dependent
To further define the limits of MSC efficacy, we tested the effect of MSC dose on survival.
Following transplantation, either 0.1 × 106 MSC or a fivefold greater number (0.5 × 106)
were administered on either day 2 or day 20 (Fig. 3) and compared to transplanted animals
that did not receive MSC. There was no dose-response effect when a higher dose was
administered on day 2. Both 0.1 × 106 and 0.5 × 106 MSC significantly increased survival
(p=0.004), and the two survival curves were indistinguishable from each other (Fig. 3A).
These data indicated that higher doses, when given as a preventative measure, did not appear
to change the course of mortality. For animals receiving MSC on day 20, survival following
0.5 × 106 MSC significantly increased from 10% to 85%, (p=0.0006, Fig. 3B). Statistical
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comparison between low and high dose revealed a strong trend, suggesting a difference
between the two groups (p=0.07). Based on these data, it appeared that MSC behaved
differently when given for treatment than when given as a preventative measure. Since
higher numbers of T cells are likely to have undergone antigen recognition and proliferation
on day 20 when compared to day 2 [41], we hypothesized that the difference in MSC
behavior was due an increase in the magnitude of activating signals generated from the
increased antigen presentation and/or T cell proliferative activity.

Tissues were analyzed from recipients who underwent treatment with MSC. On histological
examination of lung, spleen, colon, and skin, MSC treatment improved the severity of
GVHD scoring. Spleen and lung displayed the greatest findings, with both tissues observed
to appear normal after receiving 0.5 × 106 MSC (p<0.0007, and 0.03, respectively, Fig. 4).

IFN-γ is required for MSC reduction of GVHD mortality
Based on the hypothesis that antigen recognition and, potentially, Tcell proliferation were
required to initiate MSC activity, we tested the regulatory protein IFN-γ for its ability to
initiate suppressive activity in MSC. This protein was chosen for several reasons. First, IFN-
γ can be produced by both donor dendritic cells following antigen recognition and donor T
cells upon activation [42]. In response to high concentrations of IFN-γ, MSC are induced to
produce indoleamine 2,3-dioxygenase (IDO), the enzyme known to promote the
immunosuppressive barrier at the maternal-fetal interface [43]. Also, MSC treatment with
IFN-γ in vitro has been observed to enhance MSC production of several immunosuppressive
cytokines such as TGF-β [44]. We hypothesized that MSC would respond to the presence of
this immunoregulatory protein by being stimulated to suppress GVHD.

To determine whether IFN-γ played a role in MSC suppression of GVHD in vivo, donor
splenocytes, incapable of producing IFN-γ, were infused to induce GVHD. In this system,
the sources of IFN-γ were limited to the low numbers of antigen-presenting cells (APC)
within the BM and host hematopoietic cells. GHVD-related mortality was rapid and severe;
100% mortality occurred prior to day 30 (Fig. 5). Addition of MSC had no effect. These data
indicate that the absence of donor IFN-γ led to accelerated GVHD, which could not be
controlled by donor MSC.

MSC activation with IFN-γ
To further examine the ability of IFN-γ to initiate MSC suppression, we treated MSC with
three concentrations of IFN-γ (5, 50, or 500 U) prior to their administration on day 0. We
hypothesized that MSC were not effective on day 0 because they failed to receive a
sufficient IFN-γ stimulus. By pre-treating the MSC with IFN-γ, we believed it could be
possible to activate them for more efficient suppression of GVHD. When treated with either
of the lower doses of IFN-γ, MSC were ineffective in significantly preventing GVHD
mortality when compared to untreated MSC (Fig. 6A). In contrast, 500 U IFN-γ increased
survival to 100% (p=0.02) and this treatment was significantly better than MSC pre-
treatment with 5 U (p=0.006) or 50 U (p=0.005). These data suggested that MSC
suppression could be initiated with high dose but not low dose IFN-γ, thereby identifying a
threshold of MSC activation in response to the immunoregulatory protein.

Since suppression of T cells has also been observed by APC [45], we wished to exclude the
possibility that IFN-γ preferentially expanded an APC subpopulation (found to be less than
3%) within the MSC preparation. If this were the case, a phenotypic analysis of the MSC
following treatment with IFN-γ would show a distinct increase in the CD11b+, B220+ or
CD45+ population. MSC phenotype analyses were performed prior to each transplant
experiment with IFN-γ-treated MSC (>10 times). No significant increases in CD45, CD11b,
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CD44, CD29 or B220 were noted, indicating there was no enrichment of an additional
hematopoietic cell type to account for this effect (Fig. 6B). In response to IFN-γ treatment,
MSC increased expression of MHC class II, as has been previously described [46]. These
findings suggest MSC phenotype and function are modified in response to IFN-γ
concentration.

With the identification of a critical level of IFN-γ required for MSC activation, we next
analyzed the serum of transplant recipients to determine when such levels were observed in
vivo. Serum IFN-γ was measured by ELISA (in picograms) on days 0, 1, 2, 7, 14, 21, 30 and
was converted to units (conversion factor =10 U/pg, Fig. 6C). No serum IFN-γ was detected
on days 0 (at the time of transplant) or 1. A small increase on day 2 (2.7 ± 2.7 U) was
followed by a dramatic increase on day 7 (7232 ± 2340 U). By day 21, levels had decreased
to 207 ± 149 U, with 63 ± 63 U noted on day 30. These data suggest, following
transplantation, circulating IFN-γ at the time of transplant are not sufficient to activate MSC.
By day 30 there is also insufficient circulating IFN-γ for MSC activation, providing a
possible explanation for the lack of MSC efficacy when administered on day 30. To test
whether IFN-γ alone had an effect on GVHD, we treated three animals with 500 U IFN-γ
i.v. on day 0 in the absence of MSC. All three animals survived to day 50 (data not shown),
indicating a beneficial effect of this treatment on mortality; however, all three developed
severe GVHD with alopecia, weight loss, and scabbing, requiring euthanasia. These data
suggest that, while IFN-γ has a beneficial effect on GVHD mortality, activated MSC appear
to have superior efficacy, since treatment with activated MSC on day 0 prevented the
development of GVHD.

Discussion
The purpose of these experiments was to identify potential factors that initiated MSC
suppressive behavior in vivo to develop a preventative strategy for GVHD. First, an
experimental model of MSC treatment of GVHD was established to closely mimic clinical
observations. Next, this model was applied in studies to identify factors that initiated and
optimized the efficacy of MSC. The model selected was based on a different and more rapid
method of MSC isolation, used primarily to closely match the conditions used during human
MSC isolation and culture. Notable differences with this method when compared to the
classic method of isolation described by Friedenstein [36] include the use of low-passage
MSC, diminished culture time prior to administration, and lack of prolonged MSC exposure
to myeloid cells. Using cells isolated in this manner, we observed that MSC significantly
reduced the mortality of GVHD as evidenced by survival data and supportive histological
analyses. These data correlate to findings reported in clinical studies [22,24,47]. MSC had
no significant efficacy when given at the time of transplant, on day 0, but significantly
improved GVHD mortality when given during ongoing GVHD, on day 20. Due to the
similarities between this model and clinical observations, we believe this model is useful in
studying clinical variables that cannot be easily or quickly undertaken with the clinical trials
currently underway.

The observations on the effect of timing of MSC administration led us to conclude that
factors required for initiation of MSC suppressive activity were not present prior to antigen
presentation. The pro-inflammatory milieu, which is induced as early as 4 h following total
body irradiation, is comprised of high serum levels of TNF-α, IL-1α, and IL-6 [48]. TNF-α
has been observed to induce immunosuppressive activity from MSC through the production
of COX-2 and PGE2. Comparison of TNF-α and IFN-γ treatment of MSC revealed that IFN-
γ treatment induced IDO as well as COX-2 and PGE2 production [49]. Heme-oxygenase 1 is
also observed in the pro-inflammatory milieu, and can be elicited by MSC in conditions of
hypoxia, also leading to T cell suppression [50]. TGF-β, also secreted by MSC, could also
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be instrumental in suppression [51]. Since MSC were not effective when given during this
pro-inflammatory milieu, it is possible that the amount of circulating TNF-α was not
sufficient to initiate MSC-induced suppression. Alternatively, it is possible that TGF-β, IDO,
or hemoxygenase-1, produced as a consequence of IFN-γ-stimulated MSC, may be a critical
component of the MSC effect and can only be elicited through sufficient IFN-γ stimulation.

Following analysis of recipient sera, we observed that serum levels may be sufficient to
stimulate MSC on day 7. This suggests that, in the mouse model, this time period is likely to
be effective for MSC activation. Correlation with IFN-γ serum levels in patients might be
used to guide the timing of MSC therapy. A lack of stimulating levels of IFN-γ was
observed on days 0–2. This could explain why there was no efficacy on day 0, but may not
fully explain the efficacy observed when MSC were administered on day 2. We speculate
that threshold levels were present in areas where newly activated dendritic and T cells were
producing high levels of IFN-γ locally, such as the spleen and lymph nodes. It has been
reported that following administration, T cells migrate to secondary lymphoid organs and
target organs that predominantly express certain chemokines and chemokine receptors, such
as MIP-1α, MIP-2, MCP-1, and MCP-3 [52]. MSC migration can also be enhanced by these
chemokines [53] and MSC chemokine receptor expression can be regulated by IFN-γ [54].
Taken together, it is possible that, following infusion, MSC migrated in response to tissue
chemokine expression, where local production of IFN-γ by activated dendritic cells and
donor T cells, during early GVHD (day 2), was sufficiently concentrated to provide MSC
activation. Following activation, MSC have the capability to inhibit both dendritic cell and
early T cell responses [55–58]. It is possible that part of the efficacy of day 2 administration
is due to the ability of MSC to dampen the escalation of GVHD by local control within both
the target organs as well as the lymphoid organs. Of all the tissues examined, splenic tissue
appeared to have some of the most significant improvement following MSC treatment. The
powerful and seemingly preferential effect of MSC observed on this lymphoid tissue, may
reflect the greater levels of locally produced IFN-γ during GVHD.

MSC administered on day 30 had no efficacy when compared to day 2 or day 20. This
observation may be due to two factors: the overwhelming increase in the number of donor T
cells for which the number of MSC were insufficient and/or the corresponding drop in the
levels of IFN-β. Despite such increased numbers of T cells, T cell production of IFN-γ has
been observed to decrease during ongoing GVHD [59]. We also observed low serum levels
of IFN-γ at this time. It is possible that MSC administered on day 30 failed to receive
sufficient IFN-γ, either through the circulation or through local production. The lack of
available IFN-γ for MSC may have limited their ability to produce significant amounts of
immunosuppressive molecules such as IDO, IL-10, TGF-β. All of these have been observed
to have a dose-response relationship with IFN-γ treatment of MSC [43,44]. Our in vivo
observations are very similar to those observed in vitro; using this model, our data show
MSC-induced suppression of GVHD is dependent on the magnitude of IFN-γ stimulus.

Addition of a fivefold higher number of MSC (0.5 × 106) improved survival to 85% when
MSC were administered on day 20. When MSC were administered on day 2, survival
remained at 60% despite the higher dose. We hypothesized that MSC given on day 2 failed
to receive sufficient amounts of IFN-γ to become activated. Following activation of MSC,
0.1 × 106 MSC administered on day 2 improved survival to 100%. This observation suggests
that the efficacy of MSC can be manipulated by IFN-γ activation. Since IFN-γ production
can vary during the course of GVHD, the efficacy of MSC may also vary unreliably, with
some treatments not attaining full immunosuppressive potential. Depending on the number
of activated T cells, the ratio of T cells to MSC, and the available IFN-γ, it is possible that
lack of optimization of these three factors could result in MSC therapy which is only
marginally beneficial. In clinical trial, some patients, who received MSC treatment of
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ongoing GVHD, had no beneficial effect [23]. It is possible that activated MSC may provide
a more uniform control of GVHD, since initiation of MSC-induced suppression in vitro can
provide both an immediate and a consistent effect. The potential of activated MSC might
also provide potential savings in both cost and ease in obtaining sufficient numbers of MSC
for patients, since high efficacy can be achieved without dose escalation.

One of the strategies cited for control and/or prevention of GVHD has been to induce a shift
from Th1 to Th2 cytokines [60]. As IFN-γ is a known stimulant of Th1 cytokine production,
a potential harmful side effect from IFN-γ-stimulated MSC treatment might be the release
Th1 cytokines, IL-2, GM-CSF, and TNF-α [61]. In our preliminary studies, analysis of day 1
and day 6 supernatants from MSC exposed or not exposed to 500 U/mL IFN-γ (Biosource,
20-plex cytokine detection kit, Invitrogen) showed undetectable amounts of TNF-α and GM-
CSF and only modest increases in IL-2 (50–80 pg/mL; manuscript in preparation) in IFN-γ-
activated MSC. Untreated MSC had undetectable amounts of all three Th1 cytokines.
Interestingly, IFN-γ had no effect on inducing IL-10 production but significantly increased
TGF-β (p=0.001; manuscript in preparation). TGF-β has been implicated in T cell
suppression by MSC [51]. These early data suggest that in response to IFN-γ, MSC increase
suppression and limit Th1 responses, possibly due to their role in dampening destructive
pro-inflammatory states in preparation for healing and regeneration [62].

With the incidence of GVHD exceeding 50%, and success in GVHD prevention being
limited, new strategies in preventing GVHD and its significant morbidity and mortality are
needed. Prevention of GVHD with activated MSC may play a role in broadening the
therapeutic potential of allogeneic stem cell transplantation.

Animals
Male BALB/c (H-2Kd) and female C57BL/6 (H-2Kb) mice were purchased from Fredericks
NCI (Frederick, MD) or Charles River (Wilmington, MA). Male C.129S7(B6)-Ifngtm1Ts/J
(IFN-γ-deficient) mice were purchased from Jackson Laboratories (Bar Harbor, ME). All
mice were housed in an AAALAC-accredited animal facility in microisolator cages
equipped with autoclaved food and acidified water and were treated under conditions
approved by the Animal Care Committee at the University of Illinois at Chicago (UIC).

Conditioning
Recipient mice were age matched (10–12 weeks) for each set of experiments and were
exposed to lethal radiation 24 h prior to administration of donor BM and splenocytes.
Irradiation was performed at the Department of Radiation Oncology at UIC after recipients
were placed in a Lucite retainer for immobilization. The retainer was placed in a water
equivalent phantom (box) 30 × 30 × 14.5 cc to ensure dose homogeneity during irradiation.
Radiation was delivered via two portals (left and right) using a 6 MV photon beam from a
Clinac 2100EX (Varian Medical Systems, Palo Alto, CA) linear accelerator. A total of 1000
cGy at a dose rate of 100 cGy/min was delivered to the prescription point situated in the
middle of the box. Across the box the delivered dose was homogeneous within ±10%. The
dose delivered to the animal was verified using ThermoLuminiscent Dosemeters (Harshaw/
Bicron, Solon, OH) with agreement between measured and expected dose within ±3.0%.

BM, MSC, and splenocyte preparation
Following euthanasia, the BM contents of the femurs and tibia of donor BALB/c mice were
flushed through a 40-μm filter (Becton Dickinson, Franklin Lakes, NJ) into a 50-mL tube
(Corning, Corning, NY) containing MSC media (40% alpha Modified Eagle Medium
(αMEM, Invitrogen, Rockville, MD), 40% F-12 nutrient mixture (Invitrogen), 10% FBS
(Valley Biomedical, Winchester, VA), and 1% antibiotic-anti-mycotic solution (Invitrogen).
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Splenocytes were flushed from spleens and filtered through a 40-μm filter (BD) into a 50-
mL tube (Corning). BM cells and splenocytes were counted and resuspended in HBSS
(Invitrogen) to the appropriate dose and administered to recipient mice retro orbitally on day
0 (day after irradiation) in a total volume of 200 μL per recipient.

To obtain MSC, BM cells were plated at a density of 20 × 106/9.6 cm2 in MSC media at
37°C in 5% C02 as previously described [63–65]. The nonadherent population was removed
after 72 h and the adherent cells were washed with fresh media and cultured for 7 additional
days. The resulting adherent cells were harvested by incubating with 0.25% trypsin
(Invitrogen) for 6 min at 37°C followed by gentle scraping. Cells were then incubated with
biotinylated antibodies to mouse CD11b (10 μg/mL, e-biosciences, San Diego, CA) and
CD45 (10 μg/mL, e-biosciences) for 30 min at 4°C. Positive cells were discarded after
binding with MACS anti-biotin beads and cohering to a magnetic column (Miltenyi Biotec,
Auburn, CA). Negative cells were placed back into culture in Nunclon SoLo 185-cm2 flasks
(Nalge Nunc International, Rochester, NY) at a density of 1 × 106 cells/flask. A
homogenous cell population was obtained immediately following immunodepletion. The
uniform phenotype was confirmed, based on the expression of CD29, CD44, and Sca1, and
the absence of hematopoietic (CD45, CD14, CD11b) markers. All antibodies were
purchased from ebiosciences. The proportion of CD45+ cells in the MSC preparations used
in the various experiments never exceeded 3% CD45+ cells. Prior to transplantation, cells
had been passaged one to four times. MSC primed with IFN-γ were plated at a density of
0.116 × 106 per 9.6 cm2 well in 6-well plates. This density is the equivalent to 1 × 106/185-
cm2 flask. The 4 mL of MSC media in each well was supplemented with 500 U/mL
recombinant murine IFN-γ (PeproTech, Rocky Hill, NJ). On the day of transplantation (day
0), MSC were counted and resuspended at the appropriate dose in 100 μL HBSS per
recipient in a 1-mL syringe (BD). MSC were injected retro-orbitally on either day 2, 20 or
30 post irradiation. When co-administered with BM and splenocytes on day 0, the total
volume remained 200 μL.

Flow cytometry
MSC were characterized by flow cytometry (Cytomics FC 500, Beckman Coulter, Miami,
FL). Briefly, MSC were resuspended at 1 × 106 cells/mL in FACS buffer (PBS (Invitrogen)
with 2% FBS (Valley Biomedical, Winchester, VA) and 0.1% sodium azide (Sigma, St.
Louis, MO)). Following Fc block (BD Pharmingen, San Jose, CA) at 1 μg/106 cells for 15
min at 4°C, cells were stained with the following PE- or FITC-conjugated antibodies: H2kd
(SF1–1,1, BD), I-Ad (AMS-32.1, BD), CD2 (RM2–5, BD), CD3 (17A2, BD), CD4 (GK1.5,
BD), CD8a (53–6.7, ebiosciences), CD11b (M1/70, ebiosciences), CD14 (rmC5–3, BD),
CD44 (IM7, ebiosciences), CD45 (30-F11, BD), B220 (RA3–6B2, BD), Sca-1 (E13–161.7,
BD), c-Kit (2B8, ebiosciences), Thy-1 (30-H12, BD), IFN-γ beta receptor (Abcam,
Cambridge, MA), and appropriate isotype controls (ebiosciences or Abcam). Cells were also
stained with a primary purified anti-CD29 antibody (BD) at a concentration of 1 μg/106cells,
washed with FACS buffer, and then stained with a secondary PE F(ab′)2 fragment donkey
anti-rat IgG (Jackson ImmunoResearch, West Grove, PA) at 0.5 μg/106 cells. Flow analysis
was performed following the acquisition of 10 000 events. MSC purity was verified within 2
days of transplantation. MSC were stained with FITC-conjugated CD11b and CD45 as
above.

GVHD scoring
Mice were weighed twice weekly and monitored daily for survival and clinical evidence of
GVHD (ruffled fur, cachexia, alopecia, and diarrhea). Control mice receiving no MSC and
recipients of either 105 or 5 × 105 MSC administered on day 2 were killed on day 20 for
histological examination. Lung, colon, spleen, and skin were excised, sectioned, stained with
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hematoxylin and eosin, and examined and scored by two independent pathologists blinded to
treatment groups. GVHD was scored on a scale from 0 (none) to 4.0 based on the scales
reported by Ferrara (skin) [66], Grass (liver, spleen) [67], and Hill (colon) [68]. The scales
for each tissue are defined as follows: for lung, 0=normal; 0.5=minimal perivascular cuffing;
1.0=perivascular cuffing, 1–2 cells in thickness, involving up to 15% of vessels;
1.5=perivascular cuffing, 1–2 cells in thickness, involving up to 15% of vessels and
infiltration into parenchyma proper; 2.0=perivascular cuffing, 2–3 cells in thickness,
involving up to 15% of vessels and infiltration into parenchyma proper; 2.5=perivascular
cuffing, 2–3 cells in thickness, involving 25–50% of vessels and infiltration into
parenchyma proper; 3.0=perivascular cuffing, 4–5 cells in thickness, involving 25–50% of
vessels, and infiltration into parenchyma proper; 3.5=perivascular cuffing, 6–7 cells in
thickness, involving greater than 50% of vessels, peribronchiolar cuffing (4–5 cells), and
infiltration into parenchyma proper with severe disruption of structure, 4.0=perivascular
cuffing, 6 to 7 cells in thickness, involving greater than 50% of vessels, peribronchiolar
cuffing (>6 cells), and infiltration into parenchyma proper with severe disruption of
structure; for colon, 0=normal; 0.5=occasional necrotic crypt cell, minimal infiltration in
lamina propria and submucosa (colon); 1.0=necrotic cells in up to 15% of crypts, minor
infiltration of up to 20% of lamina propria (1–2 cell thickness in intermucosal areas and
submucosa; 1.5=necrotic cells in up to 15% of crypts, minor infiltration of less than or equal
to one third of the lamina propria (1–2 cell thickness in intermucosal areas and submucosa);
2.0=necrotic cells in ≤25% of crypts, infiltration of less than or equal to one third of the
lamina propria (3 cell thickness in intermucosal areas and submucosa); 2.5=necrotic cells in
25–50% of crypts, infiltration of less than or equal to one third of lamina propria (3–4 cell
thickness in intermucosal areas and submucosa); 3.0=necrotic cells in greater than 50% of
crypts, infiltration of lamina propria (5–6 cell thickness in intermucosal areas and
submucosa) with loss of ≤25% of goblet cells; 3.5=necrotic cells in greater than 50% of
crypts, infiltration of lamina propria resulting in displacement of ≤50% of mucosa with loss
of 50% of goblet cells; 4.0=necrotic cells in greater than 50% of crypts, infiltration of lamina
propria resulting in displacement of greater than 50% of mucosa with loss of 75–100% of
goblet cells; for spleen, 0=normal; 1.0=necrotic/apoptotic cells, up to 10 cells/mm2 of tissue;
1.5=necrotic/apoptotic cells, up to 10 cells/mm2 of tissue and occasional hemolysis;
2.0=necrotic/apoptotic cells, ≤20 cells/mm2 of tissue, and occasional hemolysis with
abnormal architecture; 2.5= necrotic/apoptotic cells, ≤20 cells/mm2 of tissue, and hemolysis
in ≤25% of the tissue with abnormal architecture; 3.0=necrotic/apoptotic cells, ≤40 cells/
mm2 of tissue, hemolysis in 25–50% of tissue with abnormal architecture and areas of
leukopenia involving ≤25% of tissue, formation of fibrous bands; 3.5= necrotic/apoptotic
cells, up to 40 cells/mm2 of tissue, hemolysis evident in greater than 50% of tissue with
abnormal architecture and areas of leukopenia involving 25–50% of tissue, formation of
fibrous bands; 4.0=large areas of necrosis and hemolysis evident in greater than 50% of
tissue with abnormal architecture and large areas of leukopenia involving greater than 50%
of tissue; for skin, 0=normal; 1.0=basal keratinocyte ballooning; 2.0=sebaceous and adnexal
infiltrate; 3.0=loss of epidermis.

Quantification of serum IFN-γ
Twenty B6 recipients underwent irradiation followed BALB/c BM transplant with accessory
splenocytes as described above. Three to five recipients underwent serum sampling for each
time point, on days 0, 1, 2, 7, 14, 20, and 30. Sera were cryopreserved and batch analyzed
using Quantikine Mouse IFN-y Immunoassasy by R&D Systems (Minneapolis, MN; Cat no.
MIFOO) according to the manufacturer’s instructions. A Multiskan Ascent (Labsystems)
plate reader provided OD read at 450 nm with 540 nm wavelength correction. Data were
expressed as means with SD.
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Statistical analysis
Treatment group sizes were designed based on an alpha of 0.05 and a power of 0.80. Each
experiment was repeated at least three times with a minimum of n=10 per group, unless
otherwise stated. Kaplan Meier curves (log rank test) were used to compare survival
between treatment groups. ANOVA was used to compare GVHD scoring between groups.
In all statistical analyses, a p value of 0.05 was deemed significant.
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Figure 1.
MSC phenotype following rapid immunodepletion. When compared to isotype control,
MSC stained positive for MHC class I (H-2kd), the VLA complex marker CD29, the cell
adhesion receptor CD44, and the hematopoietic stem cell marker Sca-1. MSC stained
negative for MHC class II (I-Ad), macrophage cell surface markers (CD11b, CD14), B cell
marker (B220), lymphocytes (CD2, CD3, CD4, and CD8a), and the hematopoietic stem cell
markers Thy-1 and c-kit. Histograms represent consistent findings of more than 30
independent experiments.
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Figure 2.
The effect of timing of MSC administration on 40-day survival following induction of
GVHD. Following lethal irradiation, B6 recipients underwent transplantation with
allogeneic BALB BMC and splenocytes on day 0 (control, dashed line) resulting in 30%
survival, (experiment repeated six times). In experimental groups (solid line), BALB MSC
were administered on days 0 (A), 2 (B), 20 (C) or 30 (D). MSC administered on days 2 and
20 significantly increased survival by 10–60% and 10–50%, respectively (p<0.05). n=10 for
each experimental group.
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Figure 3.
Effect of MSC dose escalation. Low (0.1 × 106) and high (0.5 × 106) doses of MSC were
administered on day 2 (A, n=10) or day 20 (B, n=10). Both low and high doses led to a
significant improved survival when given on either days 2 or 20. High dose MSC given on
day 20 significantly increased survival to 85% (p=0.006).
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Figure 4.
GVHD scores of lung, colon, spleen, and skin. Recipients of 0.5 × 106 (high) or 0.1 × 106

(low) MSC and control recipients were killed for histological examination. Sections taken
from lung, colon, and spleen were scored on a scale of 1–4 with 4 being the most severe
changes consisting of tissue destruction observed in GVHD. Skin was scored on a scale of
1–3, with 3 being the most severe. This experiment was repeated three times (n=3 per
group).
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Figure 5.
Requirement of IFN-γ for MSC mitigation of GVHD. Splenocytes from IFN-γ knockout
mice were used to induce GVHD (solid line, n=10). Addition of 0.1 × 106 MSC on day 2
failed to affect survival (dashed line), indicating MSC required IFN-γ to initiate their
suppressive effects.
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Figure 6.
Activation of MSC with IFN-γ. Either untreated (A, dashed gray line, n=10) or IFN-γ-
treated BALB MSC were administered on day 0. MSC treated with 5 U (solid gray line,
n=10) or 50 U (dashed black, n=10) IFN-γ showed no effect on GVHD-related mortality
when compared to untreated MSC. MSC treated with 500 U (solid black line, n=10) were
significantly more effective than untreated MSC (p=0.006) and MSC treated with lower
doses of IFN-γ. IFN-γ treatment appeared to have a direct effect on MSC (B), increasing
expression of MHC class II. No detection of CD45 or CD11b populations were noted after
IFN-γ treatment (gray line) when compared to pre-treatment (black line), indicating that
IFN-γ treatment did not expand an immunoregulatory dendritic cell population, (experiment
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performed >10 times prior to each transplant). Following transplantation and the
development of GVHD, circulating IFN-γ measured in the serum by ELISA (C) surpassed
500 U by day 7 with a gradual drop below 500 by days 21 and 30, suggesting there was
sufficient circulating IFN-γ to activate MSC by day 7, but not after day 30, (each time print
represents analysis of three to five recipients measured in duplicate).
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