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Abstract
The categorical data set is an important data class in experimental biology and contains data
separable into several mutually exclusive categories. Unlike measurement of a continuous
variable, categorical data can not be analyzed with methods such as the student’s t-test. Thus,
these data require a different method of analysis to aid in interpretation. In this article, we will
review issues related to categorical data, such as how to plot them in a graph, how to integrate
results from different experiments, how to calculate the error bar/region, and how to perform
significance tests. In addition, we illustrate analysis of categorical data using experimental results
from developmental biology and virology studies.
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Introduction
Experimental data in biology typically fall into three major classes. Class I and Class II data
are quantitative in nature. Class I comes from the measurements of continuous variables; for
example, measuring the tumor volume in subcutaneous mouse xenografts, which can yield
numbers of any value such as 52.1 mm3 or 67.2 mm3. Class II comes from the measurement
of discrete variables; for example, counting the number of cilia in kidney tubules, which
yield whole numbers such as 52, 75, etc. For these kinds of data, one can calculate the
arithmetic mean and the variance of the sample, which can be used to estimate the mean and
variance of the population, and apply a student’s t-test when comparing with data from
another sample. This type of statistical analysis was recently reviewed by Cumming et al
(Cumming et al., 2007). Class III, the categorical frequency data set, is quite different. This
class deals with the qualitative attributes of objects. Categorical data represent the
distribution of samples into several mutually exclusive categories, which usually involves
counting how many objects are in each qualitative category. The sum of categorical data
typically equals 100%. For example, the percentage of female and male students in a class
could be 51% and 49%. Categorical data is commonly found in the study of genetics (Hartl
and Jones, 2005; Klug and Cummings, 2006). In fact, the categorical data Mendel generated
from his work on peas helped to define genetic inheritance. In developmental and cell
biology, categorical data are often acquired when analyzing mutant phenotypes or biological
situations. For example, oocytes are activated after in vitro injection of spermatozoa, and the
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proportion of activated oocytes can vary from 0 to 100%. Oocytes from different mutant
backgrounds may have different activation percentages. For example, you could have two
different alleles of a gene that affect oocyte activation. After analysis, you determine that
allele 1 produces 89% activated oocytes, while allele 2 produces 80%. When presenting
these results, you would like to know how accurately they reflect the true phenotype if you
were able to measure all the oocytes ever produced by these alleles. This can be calculated
and displayed with an error bar. Furthermore, the percentages of activated oocytes produced
by each allele are not equal, but they are close. How can we determine if this reflects real
differences between the two alleles, or just experimental variation? In other words, are the
differences statistically significant? The statistical methods used to analyze categorical data
are different than those typically employed for Class I or Class II data, although it should be
noted that the experimentalist can easily convert discrete data into categorical data and vice
versa depending on his/her interpretations and experimental questions. In this article we will
review approaches for presenting categorical data, methods to determine the error range or
confidence interval, and ways to compare two data sets and determine if they are statistically
different. In addition, we provide a new method of graphing and visualizing categorical data
that is particularly useful when analyzing categorical data with three or four categories.

1. How to analyze proportional data of two categories
Categorical data sets can be divided into two main classes. The first contains what is termed
ordinal variables or data that can be put into a ranked order. For example, in evaluating
customer service one could assign categories of excellent, good, fair and poor. These
categories have a natural order to them with excellent being the best or highest rank, and
poor being the least or lowest rank. In biology, categories to describe data that have a natural
order to them belong in this class. For example, in performing an siRNA experiment in
tissue culture cells, results could be grouped into categories based on the level of target
protein knock-down. Category labels could include complete knockdown, partial
knockdown, and no effect. The important characteristic to note is that the categories have a
natural rank order to them as partial knockdown is logically a state somewhere between no
knockdown and complete knockdown. Categories that can be ranked or ordered have a
relationship with each other and this affects the types of statistics that should be used for
analysis. Using incorrect statistical methods may prevent you from unveiling meaningful
trends in rank order data since the categories are mutually exclusive, but yet related. For
more information on statistics to use in analysis of rank order data, please see (Agresti,
1996).

In this paper, we focus on statistics to analyze the second class of categorical data which
contains nominal variables, or data categories with no natural ordering. For example, the
gender of people has no natural ordering as it doesn’t matter if you list the number of
females in a class first or second in a table. The number of flies with red eyes compared to
those with white eyes from the same parents is another example of this type of categorical
data. We note that the difference between ranked and nominal categorical data can be a
matter of interpretation. For example, you could count the number of cells in a given
experiment that are in mitosis versus those in interphase. This would generate nominal data
because it doesn’t matter which set of data you list first or second. However if you
categorize the same cells in terms of their phase in the cell cycle (G1, S, G2, M), the
categories are now ranked because there is a logical order to cell cycle progression and
applying statistical methods for rank order data to this set may provide additional
information as to the relationships between the categories. However, the experimentalist
could still treat this data as nominal if he/she recognizes that some information could be lost.
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First, we will explain how to calculate the mean, the standard error (SE) and confidence
interval (CI) for nominal data with two categories.

1.1 Mean and Standard Error
The mean of your sample is the average and is used to estimate the population mean.
Standard error measures the spread of data around the mean and tells you how much
variation there is from the mean in your data set. A low standard error indicates that on
average your data points are very close to the calculated mean.

First let’s calculate the mean. Let’s say you get N independent samples from a large
population, and P out of N show phenotype I, while (N-P) show phenotype II. We expect the
proportion of the whole population showing phenotype I is p0 = P/N. The sampling
distribution of proportion p has the following attributes:

To calculate the standard error of this data set, you use the following equation:

From these equations one can tell that the SE decreases when N increases, indicating that
more samples (a higher N) will yield a result with smaller variation.

1.2 Confidence Interval
We obtained the mean for our sample with the formula above. But how can we determine
the percentage of the whole population that displays phenotype I? We can not know the
exact number unless we test the entire population. But with the results from a limited
sample, we can determine a range in which the “true” result would fall with a certain
confidence. This range is termed the confidence interval. For example, we can use statistical
methods to determine the interval around the sample mean where the actual mean of the
whole population displaying phenotype I is likely to reside with 95% confidence.

Since intensive computation is involved when calculating the exact CI based on binomial
distribution, several approximations have been developed to estimate this interval. Here we
introduce two methods:

Wald Method—The more straightforward approach is the simple asymptotic method
(Wald method), which uses normal approximation.

The critical value is a cutoff value in a statistical test used to decide whether or not to reject
a null hypothesis. In the equations above, z is the critical value from the standard normal
distribution with a given confidence level (CL): z is 1.64 for 90% CL; z is 1.96 for 95% CL;
z is 2.58 for 99% CL. The interval is symmetric around p0, with the range of z*σ(p)on each
side. However, this method can result in an aberration as sometimes it gives an interval with
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a boundary lower than 0 or higher than 1. This method is not typically suggested for
scientific literature, though it gives a rapid, rough estimate.

Wilson method (Wilson, 1927)—This method doesn’t cause an aberration and gives a
closer approximation of the exact CI compared with the Wald method (Newcombe, 1998),
and thus is recommended (Brown et al., 2001).

Here t = z*z/N, and z has the same value as in the Wald method above. The Wilson interval
is not symmetric around p0, and range is larger towards 50% while it is shorter away from
50% as shown in Fig.1. Additional recommended methods include the Clopper-Pearson
interval (the “exact” interval) or the Jefferys interval (Brown et al., 2001).

To illustrate the analysis of categorical data with two classes, we provide analysis of actual
experimental data from our laboratory. The zebrafish seahorse mutant causes cysts to form
in the pronephric tubules (Serluca et al., 2009). We identified 25 embryos out of 36 mutant
embryos with cysts at 2.5 days post fertilization, while 11 did not have detectable cysts. In
this case, P is 25 and N is 36. The expected proportion of embryos with cysts in a larger set
of mutant embryos is P/N or 69.44%; with a standard error of this estimate of 7.68%. The
calculated Clopper-Pearson interval for this data is (51.89%, 83.65%); the Wald interval is
(54.40%, 84.49%); and the Wilson interval is (53.14%, 82.00%). For each CI, the
confidence level (CL) is 95%. These results are shown in Fig.1 A.

In Fig.1 B, we use a hypothetical data set, where 18 embryos out of 19 develop cysts, to
better demonstrate the differences among these three methods and the aberration that can
occur using the Wald Method. For this data set, the expected proportion of embryos with
cysts in a larger set of mutant embryos is P/N or 94.74% (18/19); with a standard error of
this estimate of 5.12%. The calculated Clopper-Pearson interval is (73.97%, 99.87%); the
Wald interval is (84.70%, 104.78%); and the Wilson interval is (75.36%, 99.01%). For each
CI, the CL is 95%. Note that with this data set, the Wald interval has an aberration since the
upper range of values is above 100%.

It is worth mentioning that the SE of categorical data decreases dramatically as the sample
size increases. For example, if we found 50 embryos out of 100 with cysts, then the result is
50%, with a SE of 5%. If we found 500 embryos out of 1000 with cysts, then the result is
50%, with a SE of 1.58%. The SE is related to the width of the CI. The larger N is, the
smaller the SE is and the narrower the CI is.

To facilitate the computation of confidence intervals for proportional data with two
categories, we have designed a website to perform the calculation and plot the Wilson CI in
a graph: https://webscript.princeton.edu/~rburdine/stat/2categories. The Clopper-Pearson
interval can be calculated through this website: http://statpages.org/confint.html

1.3 Statistical significance
In order to tell whether the difference between two sets of results is significant or not, one
typically uses the student’s t-test for continuous and discrete variables. However, categorical
data requires an alternative method. Pearson’s chi-square test (Pearson, 1900) for the
goodness of fit has been widely used in classical genetics studies (Hartl and Jones, 2005;
Klug and Cummings, 2006). Here we introduce this method to determine significance of
categorical data. .
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In the experiments mentioned above, we counted 25 out of 36 seahorse mutant embryos
with cysts. We designed a morpholino antisense oligo against the seahorse gene, which
binds to seahorse mRNA and blocks its splicing and thus protein production. In the
morpholino injected embryos, 90 out of 127 showed cysts (Serluca et al., 2009). We assume
that seahorse morpholino injected embryos display a similar phenotype when compared to
seahorse mutant embryos. Thus, the null hypothesis is these two groups behaved similarly in
terms of cyst formation. To determine whether the null hypothesis is true, we first place the
data into the so-called 2 by 2 contingency table as in Table1.

We put the raw data (11, 25, 37, and 90) into the corresponding cells under observed results.
Note here we must use the actual counts and not the percentages. Then we calculate the total
sum of each row and column. The expected value is calculated by multiplying the sums in
the row and column where the cell resides, and dividing by the total number of embryos
from each category, which is 163 in this example (11+25+37+90=163). For example, the
cell of seahorse mutants with cysts has number 25, and the total number of that row is 36
while the total number of that column is 115. Thus, the expected counts of seahorse mutants
with cysts are 36*115/163 = 25.40. Once the expected results have been calculated, we can
use these values to calculate the chi-square value of the sample, which is a measure of the
likelihood that the two experimental data sets exhibit similar phenotypes. A higher chi-
square value suggests that there is a lower likelihood that the two data sets exhibit similar
phenotype.

The chi-square is defined as:

Σ is the sign of summary. i stands for each cell we have. Oi is the observed value in that cell,
and in this case, is the number of samples falling into each of the two categories. Ei is the
expected value in that cell. For example, for the cell of seahorse mutants with cysts, the
observed value is 25, while the expected value is 25.40.

From our example above we can calculate the chi-square value as follows:

Similar to the t-test, we will compare the computed chi-square value for our data with the
critical value under a given CL and degree of freedom (provided in Table 4). In the example
above, we have two experimental conditions and two categories of phenotype, thus we have
a 2 by 2 table of results. The degree of freedom is obtained by multiplying (number of rows
minus 1) and (number of columns minus 1) of the table. In this case it is (2-1)*(2-1) = 1. If
we have a result table of 3 rows and 4 columns, the degree of freedom would be (3-1)*(4-1)
= 6. If we choose to determine the 95% CL, then the critical value is 3.841 (Table 4). Since
the chi-square we calculated is 0.027, which is far smaller than 3.841, the two sets of data do
not show a statistically significant difference. Thus, we cannot reject the hypothesis that the
morpholino injected embryos displayed similar defects compared to seahorse mutants in
terms of cyst formation. This result is consistent with the fact that the phenotypes of the two
populations are similar.
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As mentioned in section 1.2, the confidence interval is affected by the sample size. If we
look at the calculation to determine the Wilson interval, one can see that given the same CL
and percentage data, the larger N is, the smaller the confidence interval is. Accordingly,
when we compare groups to look for differences, the sample size also matters. How big a
sample size you need for a given experiment, however, is difficult to determine without
prior knowledge of the results. In experiments where the phenotypic expression is variable, a
higher N value can reveal the difference between groups while a smaller N might not. For
example, we count 20 samples from mutant A and 6 out of the 20 show phenotype I. Then
we count 20 samples from mutant B and 8 out of the 20 show phenotype I. Although 30%
(mutant A) is different from 40% (mutant B), since the N value is low, the chi-square value
is only 0.44, and thus, the p value is about 0.51. As a result, we can not reject the hypothesis
that these two mutants are actually similar with regards to phenotype I. However, if we
count 200 samples of A and 60 show phenotype I, and we count 200 samples of B and 80
show phenotype I, the conclusion will be different. Although samples from A and B still
show 30% and 40% expression of phenotype I respectively, the chi-square value is 4.396
and the p value is less than 0.05. Thus, the difference between the two groups is significant.

The chi-square test is very useful in comparing categorical data, but it has some limitations.
First, the data sets being compared must be independent, and each set must not affect the
others. In other words, each category must be mutually exclusive, and data can only be
placed in one category and not in another. Seahorse mutants either have kidney cysts, or
they don’t. Secondly, when using a 2 by 2 table, the counts in every cell should be at least 5
(Norman and Streiner, 2000). If a smaller number of samples is involved, the Yates’
correction or Fisher’s exact test is recommended instead (Norman and Streiner, 2000).
Alternatively, with the emerging power of fast computing, one can use Fisher’ s exact test to
compute the p-value of a 2 by 2 table online (http://statpages.org/ctab2×2.html)

2. How to analyze proportional data of three categories
In biology, experiments can generate data that can be distributed into more than two
categories. For example, you could determine the number of different eye colors that exist in
a class of students. The categories might be blue, brown, green, and other. When analyzing
categorical data with more than two categories, similar statistical methods are used
(described above). However, determining how to best display data of multiple categories can
be difficult. It is important to display your data in a way that is accessible to your readers
and easy to interpret.

2.1 How to present three component categorical data in a bar graph or ternary diagram
Experimental biologists typically use some form of bar graph to show percentage categorical
data. For example, in an experiment of 100 samples from a population, 53 show phenotype
A, 16 show phenotype B, and 31 show phenotype C. Traditionally, the result could be
shown as in Fig.2a.

However, when you need to compare multiple experiments across categories, bar graphs can
become cluttered and complicated (Fig.2b, 2c). Alternatively, a ternary diagram can help to
visualize the data in a more direct way. Fig.2d shows the same result as in Fig.2b, 2c, with
ternary diagram. One can easily compare the results from many populations within the
diagram. Ternary diagrams have been used in the current studies of genomics and
bioinformatics (Raymond et al., 2003; Steinke et al., 2006; White et al., 2007). Here we
introduce a similar diagram to developmental biologists in order to represent and analyze the
relative percentage proportional data of three categorical components. It is required that the
sum of the three percentages be a constant, in this case, 100%. Fig.3 shows ternary diagram
plots and how to interpret them. The diagrams graphically depict the percentages by plotting
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a point (M) within an equilateral triangle. First we determine how much of M is due to the
percentage of samples with phenotype A (Fig.3a). A line is drawn from M parallel to BC,
which crosses line CA at point D (line MD). Then we calculate the length ratio of line
segments CD/CA. This ratio equals the percentage of samples with phenotype A that point
M represents. Using the percentage abundance scale (the group of lines parallel to BC,
divide CA into several segments of the same length), we can estimate M represents 53% of
the samples are of phenotype A. As we can see, every point along a line parallel to BC
shares the same percentage of phenotype A, and the closer a points locates to A, the higher
percentage of A it represents. Thus, all the points on line BC represent 0% of A, while point
A represents 100% of samples with phenotype A. Similarly, in order to get the percentage of
B that M represent, we draw line ME parallel to CA, which crosses CA at point E. Then the
ratio of AE/AB is the percentage of B that M represents (Fig.3b). Similarly, points on line
AC shows 0% B, while point B means 100% of B. Fig.3c shows the calculation for C%
(which is the ratio of BF/BC) and Fig.3d shows all the percentages together. The sum of
ratios CD/CA, AE/AB and BF/BC is 100%.

Using a ternary diagram, one can easily plot proportional data of three categories and
visualize the difference between data sets. For example, we have analyzed two alleles of the
zebrafish pkd2 mutant cup; cuptc321 and cupty30b. These two alleles seem to behave
differently in how they affect left-right patterning as visualized by the placement of organs.
In these mutants, the positioning of the heart, liver and pancreas can be divided into 3
mutually exclusive categories: situs solitus (ss; correct pattern), situs inversus (si; reversed
pattern), and heterotaxia (ht; any pattern not ss or si) (Schottenfeld et al., 2007). In 97
mutant embryos from cuptc321, the percentages of ss, si and ht are 35.0%, 33.0% and 32.0%
respectively. In 98 mutant embryos from cupty30b, the percentages of ss, si and ht are 37.8%,
45.9.0% and 16.3% respectively (Table 2). These results are displayed with a bar graph (Fig.
4a) or a ternary diagram (Fig.4b). There are two advantages that a ternary diagram has over
a bar graph as seen in this example. First, the presentation of results is clearer when a lot of
results are displayed together. Imagine we want to compare the left-right patterning
phenotypes from 10 different mutant alleles. We would need draw to draw 30 bins in a bar
graph, while we only need 10 dots in a ternary diagram. Secondly, we can present the error
region of our results, which can only be done accurately with ternary diagrams. Although
error bars can be used in a bar graph when presenting data of two categories, they cannot be
used accurately to describe the error region associated with data of three categories in a bar
graph.

2.2 How to draw the error bar/region on your categorical data
We previously discussed how to calculate the error bar for proportional data with two
categories. However, with three categories plotted in a ternary diagram, we cannot draw an
error bar because the display is two dimensional and the bar is one dimensional. Thus, we
need a two dimensional error region. Similar to the confidence interval in the previous
section, the error region defines where the true result resides at a given CL. If we use
statistical methods to draw a region of 95% CL around the point representing our result in
the diagram, this method will give us the region containing the true result with 95%
probability. Although this region can be accurately calculated, intensive computational
power is required especially when the sample is large. Watson and Nguyen have suggested
using the chi-square method to approximate this value (Watson and Nguyen, 1985).

Here is an example: In Human cytomegalovirus infected cells, three types of enveloped
particles can be seen in the cytoplasm: virions, non infectious enveloped particles (NIEPs)
and dense bodies (DBs). Among 357 virus particles examined in BADwt virus–infected
cells, 120 were virions, 150 were NIEPs and 87 were DBs, or 33.5%, 42% and 24.5%
respectively (Feng et al., 2006). How can we draw the error region for this result in a ternary
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diagram at a given CI (for example 95%)? In our plot we denote A as virions, B as NIEPs
and C as DBs. First we plot point M in diagram (Fig.5a) to represent our result, 33.5% A,
42% B and 24.5% C. Then we look at every point in the diagram to see whether it is in the
95% confidence region of M. For example, point L represents 32% A, 45% B and 23% C in
the diagram. If we assume the true result is L, then we can draw the region of which the
experimental results would fall into with 95% probability if we count 357 samples from a
population with distribution L. This can be done accurately by computing the trinomial
distribution, but here we use chi-square test to approximate and improve the efficiency. Our
results from this calculation define the region within the green boundary shown in Fig.5a.
Since point M resides inside the green line, point L is in the error region of M at 95% CL.
Now let’s look at point K, which represents 25% A, 40% B and 35% C. The blue line is the
boundary of the 95% confidence region of which the experimental results would fall into
with 95% probability if we count 357 samples from a population with distribution K. Since
point M is outside the blue line, point K is not in the error region of M at 95% CL. In
general, for a given point X, representing xa of A, xb of B and (100%-xa-xb) of C in a
population, we use the following formula to approximately determine whether M is inside
the error region of X at 95% CL. Again, we are utilizing the chi-square method.

N=357, OA=120, OB=150 and OC=87. We are comparing two sets of proportional data, each
with 3 categories. Thus, the degree of freedom is (2-1)*(3-1) = 2. The critical value of chi-
square distribution with 2 degrees of freedom at 95% CL is 5.991 (Table 4). If χ2 is less than
5.991, then the 95% error region of point X includes M, and thus X is inside the error region
of M at 95% CL. In the case of M and L, with the sample size of 357, M (33.5% A, 42% B,
24.5% C) is the observed value, while L (32% A, 45% B, 23% C) is the expected value. So
OA= 120, OB=150, OC=87; EA=114, EB=161, EC=82.

For the chi-square value of M and K (25% A, 40% B 35% C), we have OA= 120, OB=150,
OC=87; EA=89, EB=143, EC=125.

Because χ2 (M,L) < 5.991 while χ2 (M,K) >5.991, L is inside the error region of M while K
is not. In order to draw the boundary of the error region of point M, we need to draw the
curve with (xa, xb, 100%-xa-xb) defined by χ2 = 5.991. The analytical solution to this
equation can be complicated. Therefore, we have designed a web-based program to calculate
the error region for a ternary plot. We tested 20,000 points inside the diagram to evaluate the
χ2, and then draw the boundary along those points whose χ2 values are less than 5.991 as
shown in Fig.5b.

Using this algorithm of chi-square distribution, we constructed the following website to plot
three component categorical data in a ternary diagram and automatically draw the error
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region at CL of 90%, 95% or 99%:
https://webscript.princeton.edu/~rburdine/stat/three_categories

With this website, after drawing the error region, one can use the mouse cursor to track the
boundary of the region and read out the corresponding percentage values in the table below
the plotting graph.

For proportional data with four categories, the data should be plotted in a three dimensional
space. Instead of in a unilateral triangle, we use a pyramid plot and error region will be a 3
dimensional cloud. However, in order to illustrate the result in a two dimensional webpage,
we project the data to the four sides of a pyramid, respectively. For each set of four
categorical data, we have four ternary diagrams to illustrate the error region. A data point is
considered to reside inside the confidence region in a pyramid plot if and only if this point is
within the confidence region in all of the 4 triangle projections from the pyramid plot.

https://webscript.princeton.edu/~rburdine/stat/four_categories

2.3 How to determine whether one set of data is significantly different from another
Statistical significance is very useful in comparing two sets of data, to judge whether or not
they are different from each other. As mentioned above, the error regions drawn in a ternary
diagram can be used to visualize differences between data sets; alternatively, the chi-square
test can also be used to judge the significance.

In the example of Human cytomegalovirus infected cells, 3 types of particles can be seen in
the cytoplasm, virions, NIEPs and DBs. Among 357 virus particles examined in BADwt
virus–infected cells, 120 were virions, 150 were NIEPs and 87 were DBs. Among 320 virus
particles examined in BADinUS24 virus–infected cells, 91 were virions, 154 were NIEPs
and 75 were DBs (Feng et al., 2006). Figure 6a illustrates the two data sets plotted in the
ternary diagram with their error region of 95% CL, according to the procedures mentioned
above. Since the two data points (red dot and green dot) reside within each other’s error
region of 95% CL, we can not reject the hypothesis that the two different viruses affect
virion particle formation in a similar way. Thus, the particle phenotypes of these two viruses
are similar. On the other hand, if we analyze another virus mutant, and find out among 210
particles, 30 are virions, 40 are NIEPs and 140 are DBs. This data point (Fig.6a blue dot)
does not reside within the wildtype virus error region of 95% CL, and there is no overlap
between the two error regions (blue circle and red circle), we can reject the hypothesis that
the two viruses affect virion formation in a similar way with 95% CL and state that they
have different effects.

However, when the error regions overlap, the conclusion is less clear. In the example of
pkd2 mutant embryos we used before, there are two alleles, tc321 and ty30b. Given the data
presented (Schottenfeld et al., 2007), we ask whether or not these two alleles affect left-right
organ patterning in different ways (Table 2). Similarly, we plot the result in Figure 6b.
However, the pattern is different from Figure 6a. In this case, neither of the points resides
within the other’s error region of 95% CL, but the error regions overlap. The location of the
data points seems to indicate that these alleles affect organ patterning differently, but since
there is some overlap in their error regions, we should return to the chi-square test to be sure.

First we assume they are not different, in other words, they are just two sets of samples from
the same population. This is our null hypothesis (H0). Now we calculate the chi-square value
of our data and compare it with 5.991 (the critical value of chi-square distribution of 2
degrees of freedom at 95% CI) as mentioned above. If the value is greater than 5.991, this
suggests the likelihood that the two sets of experimental data are chosen from the
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populations with the same distribution is less than 5%. Thus, we would conclude that these
two alleles behave differently in affecting left-right patterning with statistical significance.
On the other hand, if the chi-square value of the data is less than 5.991, we can not reject H0,
that is to say, we can not claim they are different in affecting left-right patterning.

First we calculate the χ2 value. Since we start with the null hypothesis, we need to calculate
the percentages of the whole population. As discussed in part 2, the percentages of ss, si and
ht in the whole population (our best estimation from the two data sets) would be:

These are our expected values for the whole population under the hypothesis that the two
data sets are drawn from the populations with the same left-right patterning distribution.
Then we calculate the expected results in each experiment given these percentages. In other
words, given the percentages of 36.4% ss, 39.5% si and 24.1% ht, what do we expect to
observe in an experiment of 97 samples and what do we expect with 98 samples in another
experiment?

Expected data in tc321 (97 samples):

Expected data in ty30b (98 samples):

Now we summarize the chi-square values from all 6 cells in the table. Note, this method is
mathematically equivalent to the method we used for two categories above. The chi-square
value is:

Since the chi-square value is larger than the critical value, it is not likely that two data sets
are drawn from the population of the same left-right patterning distribution with 95% CL.
Thus we reject the null hypothesis, and claim that the two alleles probably affect left-right
patterning in different ways. To further illustrate this point, you can calculate the chi-square
value in the virus example. In that case, the degree of freedom is 2, so the critical value of
95% CL is 5.991. The chi-square value between two virus infections is 2.91, and it is less
than the critical value. So the chi-square test gives the same result as the ternary diagram,
though since the ternary diagram is clear, one does not have to compute the chi-square value
for this set.
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Using Microsoft Excel, we can calculate the p_value for our data with the function
CHIDIST(chi-square value, degrees of freedom). In a table of j rows and k columns, the
degree of freedom is (j-1)*(k-1). So Table 2 has 2 degrees of freedom. We can calculate p =
CHIDIST(7.14, 2)= 0.028. Since 0.028 is less than 0.05, we consider this to be statistically
significant. By convention, a p_value less than 0.05 is considered statistically significant.
Thus, if the two alleles of cup do have the same left-right patterning distribution, the chance
that such an event could occur is less than 1 in 20.

The chi-square test is not limited to a 2 by 3 table as mentioned here. However, the critical
chi-square value is affected by the CI depending on different degrees of freedom (so it is not
always 5.991). One can look for the critical value in Table 4. For a quick guide, at 95% CI,
the critical value is 3.842 for one degree of freedom, 7.815 for three degrees of freedom and
9.489 for four degrees of freedom. One thing worth mentioning is that the chi-square test
also has its limitations as mentioned in part I. If more than 20% of the expected values in the
cells of a data table are less than 5, instead of chi-square, Fisher’s exact test should be used
(Norman and Streiner, 2000).

The excel file which will automatically perform the chi-square test can be downloaded at:
http://www.princeton.edu/~rburdine/stat/chi_square_test.xls

3. How to combine data from different experiments
Finally, we wish to emphasize how to properly combine data from different experiments.
Let’s say you perform two experiments with two different samples from the same population
and each experiment gave a set of proportional data. Based on these two results, what is our
best estimate about the proportional distribution of the whole population if we could
measure all of them? For example, we discovered a new mutant with left-right patterning
defects and analyzed it as described above for cup. We analyzed 20 (N1) mutant embryos in
the first experiment, and found the number of ss, si and ht were 3 (A1), 8 (B1), and 9 (C1)
respectively. Therefore, the percentage of ss, si and ht are 15%, 40% and 45%. In the next
experiment, we analyzed another 80 (N2) embryos from the same parents, and found the
number of ss, si and ht were 40 (A2), 22 (B2), and 18 (C2), respectively. Thus, the
percentage of ss, si and ht are 50%, 27.5% and 22.5%. What should we report as the overall
ratio of ss, si and ht in the whole population of this mutant based on our observations? Can
we calculate the percentages in each experiment and then average them? No! Taking the
average of the percentages eliminates the difference of sample size between the two
experiments. To be correct, the percentages of ss, si and ht in the whole population should
be reported as:

The results are different from the arithmetic average of the percentages from the two
experiments as you can see by using the incorrect method:

It can be proven that, in general, if we have done the experiments m times, and each time we
have Ni sample, of which we observed Ai of phenotype P, Bi of phenotype Q, Ci of
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phenotype R, …(Ai, Bi, Ci… are the numbers of counts, not the percentages.) Then the best
estimate of the whole population should be:

However, to be cautious one should first apply a chi-square test to the individual results
from different experimental repeats before combining all of the data together. If some
repeats show results which are statistically significant from others, the researcher may need
to carefully look at the conditions of each experimental repeat, and/or reconsider the
hypothesis.

4. Websites to facilitate the analysis of categorical data
Plot data with two categories and draw the Wilson CI:

https://webscript.princeton.edu/~rburdine/stat/2categories

Calculate the Clopper-Pearson interval for data with two categories:

http://statpages.org/confint.html

Calculate the p-value of a 2 by 2 table with Fisher’ s exact test:

http://statpages.org/ctab2×2.html

Plot data with three categories and draw the Wilson CI:

https://webscript.princeton.edu/~rburdine/stat/three_categories

Plot data with four categories and draw the Wilson CI:

https://webscript.princeton.edu/~rburdine/stat/four_categories

Excel file to calculate chi-square value:

http://www.princeton.edu/~rburdine/stat/chi_square_test.xls

5. R packages for Websites
R is a programming language for statistical computing (http://www.r-project.org/). Many
calculations mentioned here can also be executed by installing R and some relative
packages, for example, to compute the Wald interval, Wilson interval, etc. For readers who
are familiar with R/Bioconductor, please refer to this online file
http://cran.r-project.org/web/packages/MKmisc/MKmisc.pdf for more details.
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Fig.1. Comparison of Confidence Interval (CI) with three different method
a. Comparison of 95% confidence interval estimates calculated using Clopper-Pearson
interval, Wald interval and Wilson interval for the seahorse mutant data set. Standard error
(SE) for this data set is also shown. The y-axis denotes the proportion of mutant embryos
with kidney cysts at 2.5 days. Our experimental result is 69.44%, indicated by the blue dots.
On the x-axis, column 1 displays the SE, column 2 displays the calculated Clopper-Pearson
interval, column 3 displays the calculated Wald interval and column 4 displays the
calculated Wilson interval. Note that the upper parts of the error bars in column 2 and 4 are
shorter than the lower parts, while they are of equal length in 1 and 3.
b. A hypothetical data set with the proportion of embryos having cysts as 94.74%. The
difference between the lengths of the upper and lower parts of the error bars in column 2 and
4 is more obvious than in A. Note the aberration in the Wald interval which states the result
could be greater than 100%.
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Fig.2. Presenting categorical data with traditional bar graphs and a ternary diagram
a. Clustered bar graph showing the distribution of phenotype A, B and C in samples from
population 1(pop1).
b. Clustered bar graph to show the distributions of phenotype A, B and C of samples from 5
different populations, named pop1 through pop5.
c. Stacked bar graph to display the same data sets as in b.
d. Ternary diagram to display the same data sets as in b and c. Each dot represents the
unique distribution of phenotypes from each population, marked as pop1 through pop5.
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Fig.3. Interpretation of a ternary diagram
a. Line MD is parallel to BC, and crosses line CA at point D. The ratio of line segments CD/
CA equals the percentage of samples with phenotype A that point M represents. Every point
along a line parallel to BC shares the same percentage of phenotype A, and the closer a
points locates to A, the higher percentage of A it represents. Thus, all the points on line BC
represent 0% of A, while point A represents 100% of samples with phenotype A.
b. Line ME is parallel to CA, and crosses CA at point E. Then the ratio of AE/AB is the
percentage of B that M represents. Similarly, points on line AC shows 0% B, while point B
means 100% of B.
c. Line MF is parallel to AB, and crosses BC at point F. Then the ratio of BF/BC is the
percentage of C that M represents. Similarly, points on line AC shows 0% B, while point B
means 100% of B.
d. All the percentages are shown together. The sum of ratios CD/CA, AE/AB and BF/BC is
100%.
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Fig.4. Comparison of bar graph and ternary diagram
a. Bar graph
b. Ternary diagram
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Fig.5. Calculation of error region from a given data set with 95% CL
M, the red dot, is the point of the result, representing 33.5% A, 42% B, and 24.5% C from
357 samples.
a. Point L represents 32% A, 45% B and 23% C, and green line is the boundary of 95% error
region centered in L with 357 samples. Point K represents 25% A, 40% B and 35% C, and
blue line is the boundary of 95% error region centered in K with 357 samples. Since blue
line does not surround point M, point K is not in the error region of M at 95% CL.
b. With the method illustrated in Fig.5a, the error region of M at 95% CL is calculated and
drawn with a red boundary. Thus any data we obtain from similar experiments counting
virions should fall within this boundary with 95% possibility.
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Fig.6. Using ternary diagram to determine the difference between data set
a. Comparison of wild type virus (red point represents the categorical data, while red circle
represents the error region of 95% CL) with mutant virus (green point represents the
categorical data, while green circle represents the error region of 95% CL), and a
hypothetical data set (blue point represents the categorical data, while blue circle represents
the error region of 95% CL). Note: the red point resides within the green circle and the green
point resides with the red circle. The red point does not reside within the blue circle and the
blue point does not reside with the red circle
b. Comparison of two alleles of pkd2 mutants. tc321 is in red, and ty30b is in green. Error
region is drawn of 95% CL. Note: neither of the two points resides within the other one’s
error region, but there is overlap between the two circles.
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Table 1

How to compute the expected value from experimental result

Observed results no cysts cysts formed Total

seahorse mutant 11 25 36

morpholino injected 37 90 127

Total* 48 115 163

Expected results no cysts cysts formed Total

seahorse mutant 10.60 25.40 36

morpholino injected 37.40 89.60 127

Total* 48 115 163

*
Row 2,3,4 are experimental data, with row 4 the sum of row 2 and 3. Row 6,7,8 are expected values calculated from the experimental data, with

row 8 the sum of row 6 and7.
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Table 2

The phenotypes of two cup alleles

allele n ss (%) si (%) ht (%)

tc321 97
34 32 31

(35.0%) (33.0%) (32.0%)

ty30b 98
37 45 16

(37.8%) (45.9%) (16.3%)
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