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Abstract
Motivation—Progress in systems biology depends on developing scalable informatics tools to
predictively model, visualize, and flexibly store information about complex biological systems.
Scalability of these tools, as well as their ability to integrate within larger frameworks of evolving
tools, is critical to address the multi-scale and size complexity of biological systems.

Results—Using current software technology, such as self-generation of database and object code
from UML schemas, facilitates rapid updating of a scalable expert assistance system for modeling
biological pathways. Distribution of key components along with connectivity to external data
sources and analysis tools is achieved via a web service interface.
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58.1 Introduction
Here, we describe Sigmoid, a generative, scalable software infrastructure for systems
biology designed to facilitate global modeling of biological systems. If deciphered as an
acronym, SIGMOID would translate to SIGnal MOdeling Interface and Database. Here, the
term Signal, in a biological sense, would be broadly interpreted. Sigmoid supports the
process of cycling between model building, hypothesis generation, biological
experimentation, and data gathering, by integrating the hypothesis and discovery phases of
the research process.

In Sigmoid, we address the problem of creating a scalable expert assistance system for
modeling biological pathways, using current software technology to decrease the difficulty
and cost of building the system. The reason for building such a system is to provide
computational support to biologists and computational scientists who need to create and
explore predictive dynamical models of complex biological systems such as metabolic, gene
regulation, or signal transduction pathways in living cells [1].
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58.1.1 Overview of the Software Infrastructure
The Sigmoid modeling system core consists of distributed modules implementing: (1)
pathway/cell model generation and simulation (Cellerator; [2]), (2) a pathway modeling
database (Sigmoid Proper), (3) a Web service-oriented middleware, (4) a World Wide Web
model browser, and (5) a graphical user interface (Sigmoid Model Explorer (SME)) friendly
to a biologist user. From there, other components have been integrated into the system such
as a parameter optimization module and functional connections to compatible external data
sources. These modules are organized in a classical three-tier architecture (Fig. 58.1). The
back end currently consists of the database, the simulator, and other model manipulators.
The GUI front end does not access the back-end modules directly but rather via a Web
service middleware module. The extra development overhead introduced by the middle
layer is more than compensated by the advantages in terms of distributed computing,
performance, flexibility, and scalability. With the exception of rapid model retrieval, the
middleware layer brokers all communications between the GUI and the back-end
components and also among the back-end components themselves. We have found that
storing binary instances of models in a database cache can provide significant improvements
in model retrieval times in comparison to full model reconstruction and retrieval through the
middleware layer. In the event that the rapid model retrieval interface is not accessible, the
system will shift access to the database through the middleware. This infrastructure was
created by a close collaboration between bioinformaticians and biologists by having the
design of many of the essential software objects and their relationships be visible as
implementation proceeded.

We have coordinated the development of various software modules in Sigmoid by using the
Universal Modeling Language (UML) to diagram the most important biological objects –
notably reactions and molecular reactants. This UML diagram is used as a template to
automatically generate several parts of Sigmoid, in particular a realization of the Sigmoid
pathway modeling database (in SQL) and the corresponding Java object hierarchy along
with support files for facilitating the object-relational mapping and end-user documentation.
Also the Graphical User Interface (GUI) relies heavily on the Java reflection utility to
automatically discover much of what it needs to know about the Sigmoid schema. Thus,
there is a guarantee that the software actually implements something very close to the UML
construction of biological objects. In addition, coding time for different modules of the
system is reduced.

To keep the infrastructure flexible and manageable as it grows, we have resorted to a
“generative” approach that seeks to partially automate the generation of both executable
code and mathematical models. We have applied this approach to as many of the modules in
Fig. 58.1 as possible, starting from high-level inputs such as UML diagrams and reaction
notations understandable to noncomputer scientists.

58.2 Methods
58.2.1 Model Generation and Simulation: xCellerator

In order to facilitate the modeling of biochemical reactions, a library of reusable reaction
models that can be expressed in a simple higher-level language that specifies the molecular
species and the type of reaction is required. Cellerator [2] code is implemented as a
Mathematica notebook and designed to facilitate biological modeling via automated
equation generation. Sigmoid now supports xCellerator [3], the most recent version of
Cellerator.

Many models of molecular interactions have been implemented in xCellerator using
different formalisms, such as differential equations or stochastic molecular simulation

Compani et al. Page 2

Adv Exp Med Biol. Author manuscript; available in PMC 2011 January 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



formalism ranging from the law of mass action and simple Michaelis-Menten models to
more complex models of enzyme reactions (e.g., the Monod–Wyman–Changeaux or MWC
model for allosteric enzymes [4]) and gene regulation [5]. The list of reaction models
continues to expand along with the library of actual pathway models comprising sets of
coordinated reactions with parameters derived from the literature whenever possible. In
addition, an extended set of enzyme mechanism models for single and multi-substrate,
positively and negatively regulated, and allosteric enzymes, called kMech, has been written
for xCellerator and continues to develop [6]. Sigmoid currently supports all the available
xCellerator and kMech reaction models.

To illustrate xCellerator utility, consider the example of a three-stage catalytic model. This
reaction is a composite representation of three reversible reactions; substrate–enzyme
complex formation, the conversion of the substrate to product within the complex, and
subsequent disassociation of the enzyme–product complex into free enzyme and product.
When presented with the correct input notation, xCellerator will translate the symbolic
reaction to differential equations. The resulting differential equations and variable
definitions are passed to Mathematica where they are solved by the numeric solver function
(NDSolve) and time plots generated. See example in Fig. 58.2. The parameters for this
enzyme mechanism are stored in the Sigmoid Pathways Database. In short, xCellerator
converts symbolic reactions to mathematical equations and solves the corresponding
equations.

58.2.2 Sigmoid Pathway Database
The pathway model database is defined by a UML schema. Comprehensive UML class
diagrams of the Sigmoid Schema can be found at http://www.sigmoid.org. The schema is
organized into four main diagrams. The first diagram consists of the various top-level
container classes such as the Model Class and the Gene Ontology source class. The first
diagram also contains the parameter set hierarchy, classes for graphical layout in SME, and
various classes to handle units and measures. The three remaining diagrams consist,
respectively, of three major class hierarchies: Reactions, Reactants, and Knowledge Sources.
Reactions utilize Reactants for their products, substrates, and enzymes; Models are
composed of parameterized Reactions, and these three class hierarchies utilize Knowledge
Sources to reference external information about themselves.

While initial versions of the Sigmoid database were implemented by hand, we wished to
automatically transform the class descriptions contained in the high-level UML diagram of
this hierarchy into a set of instantiable objects upon which applications may be built. Our
current approach to the process of auto-generating software components from a master UML
diagram relies on the capabilities of several existing open-source projects [1]. These pre-
existing projects remove much of the core software development responsibilities and allow
us to focus on tying them together to produce the specific software products needed for our
own use. Object-relational database code autogeneration from UML is itself a contribution
of potentially general interest in database software engineering. The current version of
Sigmoid is implemented using PostgreSQL, the main Open Source database software.

An essential function of Sigmoid is to assist in the translation of biological knowledge into
mathematical form. The representation of Reactions in Sigmoid is aimed at this goal.
Sigmoid Reactions represent biochemical processes that transform molecular or other
biological objects that are represented as Sigmoid Reactants. A major design feature of
Sigmoid is to support translation of biology into mathematics. Reactions are defined in two
subhierarchies: Biological Reactions and Mathematical Reactions. The Biological Reaction
hierarchy is intended to provide biologically oriented users with symbolic representations of
a biochemical reaction or process. Attributes that represent the basic reactants with primary
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roles are included. The kinetics of the reaction are abstracted out and delegated to
Mathematical Reactions. Mathematical Reactions constitute a type hierarchy of
mathematical models of reactions or other processes in the Sigmoid schema. Such
representations include particular rate laws, as well as the translation of compound reactions
into a subnetwork of more elementary reactions, each of which has a more elementary
mathematical model. Most Mathematical Reactions currently have direct xCellerator/kMech
implementation functions associated with them. Numerical parameters associated with each
reaction are contained by reference, which enables key reaction parameters to be shared
within a Mathematical Reaction or across a full reaction network.

This way, the Sigmoid architecture can offer explicit support for the translation of biological
processes into mathematical process models. Each type of biological reaction may, in
principle, be translated into several alternative mathematical reaction models, and each
mathematical reaction model can serve as the translation of several different biological
reactions. An example of the importance of many-to-many reaction translations is shown in
Fig. 58.3.

58.2.3 Sigmoid Web Middleware for Distributed Computing and Web Services
A new distributed Web middleware layer was built which accesses the Sigmoid database
and translates reaction sets into the input language of the xCellerator cell model generator. It
then calls xCellerator with requests for model generation and simulation and receives output
plots in response. All these functions are exposed as Web services available to Java
application programs and/or other clients. In addition to load balance and security
management, the middleware provides a gateway between the front end and the back end of
the architecture, allowing each one to evolve independently as long as the interface to the
middleware is properly maintained. Furthermore, the middleware allows scalability in terms
of the number of users who can be served simultaneously simply by increasing the
computational and database server resources [1].

58.2.4 The Graphical User Interface: Sigmoid Model Explorer User Interface
The last component of the system to be initiated, and the most recent to achieve functional
maturity, is the SME Web-compatible Graphical User Interface. The GUI allows the user to
visualize, design, edit, and store pathway models, parameters, and initial conditions and their
properties, to simulate the models by calling the simulator through the middleware, and to
view and compare the properties of simulated models by viewing the temporal evolution of
the concentration of chemical species under different conditions. The GUI runs from any
Web browser as a Webstart or as a local client program.

Recent enhancements to SME are: (1) For model creation: there exists a new mechanism to
create biological models completely from within SME and save them locally or commit
them to the database. To facilitate the construction of more complex biological processes,
one to many mathematical reactions can be assigned to each biological reaction. Also, there
are utilities to facilitate the use of webpages as source of information for data input and
perform queries to the Gene Ontology database from within SME. Gene Ontology entities
can be either used to tag Sigmoid objects or instantiated directly as Sigmoid objects, i.e.,
Reactants or Biological reactions. (2) Numerous enhanced display features. (3) Model
translation: SME can preform local translation of Sigmoid models to xCellerator code and
perform translation of SBML 1.0 to Mathematica code. (4) Model simulation: SME supports
simulation through a local Mathematica license using the JLink library as well as through
the remote server, and there is an option to retrieve and display the output graphs for
intermediate complexes generated by xCellerator/kMech reaction types. (5) Connectivity:
SME now supports the Web Services Description Language (WSDL), which is an XML
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grammar for describing network services. Supporting WSDL expedites adoption of
supplementary datasets and functionalities from other systems that support this standard.

58.3 Results
58.3.1 Sigmoid Database Population

The generative version of Sigmoid has been successfully populated with over 20 published
models that range from simple molecular interactions to complex cell-fate decision
networks. A majority of the models in the database focus on virtual representation of
intracellular pathways that include examples in signaling, metabolism, the cell cycle, and
gene regulation. Large-scale models of the signaling pathways include the mammalian
Epidermal Growth Factor Receptor (EGFR) pathway [7] and the yeast pheromone response
pathway [8], while other models represent common aspects of metabolism that include the
anabolic Calvin cycle in plants [9], two models of branched chain amino acid biosynthesis in
bacteria [10,11], and catabolic glycolysis [12]. Furthermore, a simple model of the circadian
clock [13] and two models of intracellular calcium flux [14] demonstrate oscillating outputs.
Separate models of the NFkB [15], calcineurin [16], and the p53 [17] regulatory networks
demonstrate how transcription factors and their ability to activate or inhibit gene expression
are regulated. Lastly, some models in the database represent diverse processes, including the
mechanism of degradation of enzymes during industrial food processing [18] and the cell-
fate decisions of protists in the presence of far-red light under starvation conditions [19].

Finally, computational models of the mitogen-activated protein kinase (MAPK) cascade are
also present in the Sigmoid database. Several models derived from [20] examine the same
MAPK cascade with two separate mechanisms, mass action and Michaelis-Menten, for each
of the phosphorylation and dephosphorylation events. For each of these mechanisms, the
models increase in complexity as the site and order of phosphorylation are taken into
account in the set of reactions. In contrast to these models, Huang_1996_MAPK and its
xCellerator notebook “MAPK cascade: Huang and Ferrell 1996,” present the celebrated
(1996) model that demonstrates the connection between a nonprocessive, two-collision dual-
phosphorylation mechanism of kinase activation and an ultrasensitive, switch-like response.
The model Bardwell_ 2007_MAPK_Variable Feedback and the corresponding notebook
“MAPK Cascade with Variable Feedback” extend this model to include a simple feedback
phosphorylation of an upstream kinase by the MAPK (Fig. 58.4). The effects of the
feedback loop on the system depend upon the nature of the feedback: if feedback
phosphorylation increases the activity of the upstream kinase (positive feedback), a bistable,
all-or-none response may result [21]. In contrast, if feedback phosphorylation decreases the
activity of the upstream kinase (negative feedback), then the result may be damped or
sustained oscillation of the activity of the kinases in the cascade [22]. The notebook contains
examples of parameter values that will generate either of these outcomes, illustrating how
complex, diverse, and biologically useful behaviors can emerge from the combination of an
ultrasensitive cascade architecture and a simple feedback loop.

Since the flexible but comprehensive schema of the Sigmoid database allows us to easily
leverage other databases, we are developing “populator” programs which capture
community input from diverse sources and make it available to a biologist end-user in an
integrated manner. For example, without much effort we were able to populate Sigmoid with
the yeast GOnet database [23], which contains information about yeast ORFs and their
annotations, gene ontology (GO), and protein–protein interactions. The GOnet database
itself is periodically updated and integrates information from three different sources: (1)
ORFs (description, mutant phenotype, gene product, etc.) from the Saccharomyces Genome
DataBase (SGD); (2) GO term annotation from the Gene Ontology Consortium arranged in
the three categories of Molecular Function, Biological Process, and Cellular Component;
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and (3) genetic and physical interactions information from the General Repository for
Interaction Datasets (GRID).

58.3.2 Parameter Optimization
A Simulated Annealing Optimizer [24] has been integrated into Sigmoid through the web
services interface. It uses a global optimization technique and Lam–Delosme schedule to
make the optimization process faster and more efficient when compared with other general
schedules available [25]. It aims to reverse engineer model parameters (e.g., kinetic rate
constants) given both the model structure (represented as ordinary differential equations)
and empirical system dynamics as expressed by time series experimental data.

58.3.3 Parameter Analysis
The Parameter Analysis routine in Sigmoid allows one to quickly sample the parameter
space of a particular model and quantify the diversity of model outputs resulting from
variation of the parameters in specified ranges. First, free parameters are defined within the
model that will be part of the analysis. Then, a simulation function is defined that accepts a
particular parameter variation and returns the model's output. Users have options to select
Sigmoid output functions, such as the temporal sequence of a particular state variable. The
output variation is measured using preset or user-defined metrics aimed at focusing on
particular aspects of output behavior. For example, one can measure the difference between
the obtained output and some reference time state or determine the time points at which the
output might have peaks or troughs in an oscillatory response. The value of the metric might
reflect on how sensitive a certain model is to simultaneous variation of any number of
parameters, from one to all. This information can then be used in investigation of robustness
of the model and the corresponding biological process. The values of the varied parameters,
model output, and resulting metrics are stored in a database table using Mathematica's
Database Link package. Using a database provides a convenient method for storing the vast
amounts of tabular data and allows for rapid remote access. Since model evaluations are
independent, the procedure is easily parallelized. The same notebook can run on multiple
computers simultaneously, as long as all can connect to the same database. Lastly,
Mathematica's powerful visualization and analysis features can be used to observe
correlations between parameter values and associated metrics. (See Fig. 58.5.)

58.4 Conclusions
We have described the Sigmoid intelligent software infrastructure for systems biology. A
version of each of the main components is available today, and there are clear signs that the
infrastructure can already be used to yield biologically relevant results. Since Sigmoid is
based upon a computer algebra representation tool, it stands poised to serve as a formidable
engine in model analysis. For instance, the Escherichia coli metabolic pathway model
correctly predicts the effect of certain mutations, and the MAP Kinase cascade model shows
that, depending on the parameter sets and initial conditions chosen, it can generate a switch-
like or graded input–output relationship, or even produce oscillatory behavior.

Development and expansion of Sigmoid continues at all levels. As the mediator of the user
experience with Sigmoid, the GUI and web interface are bound to attract the largest number
of feature requests from users. Because the overall architecture is now functional, many of
these requests can be met at reasonable levels of effort and cost. Depending on their
accessibility to software agents, an opportunity exists to import relevant data from other
sources such as KEGG, Systems Biology Workbench, SiBML/GeneNet, SabioRK,
Biomodels etc. There is also a need for new reaction types in xCellerator to deal with
various kinds of (nontranscriptional) feedback. Other reaction types already in xCellerator
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and kMech (such as various enzymatic models, GMWC, GRN, etc.) will need to be exposed
for further pathway modeling. An essential aspect of the scale-up of Sigmoid will be expert
curation of the allowed and suggested mappings from biological reaction mechanisms to
mathematical reaction models.

Sigmoid capitalizes on the robust mathematical software tools and the problem-solving
environment that Mathematica offers (along with the xCellerator/kMech packages designed
to facilitate biological modeling via automated equation generation). Sigmoid implements
the web services framework [1] to create a truly distributed system. This flexible, scalable
architecture offers powerful modularity that, in conjunction with the generative nature of the
Sigmoid coding cycle, allows for manageable, cost-effective adoption of new system
components (new simulation engines, analysis tools, and data structures) while opening the
ability to play within yet larger bioinformatics frameworks.
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Fig 58.1.
Sigmoid three-tier architecture. Separation of modules into a communicating distributed
system increases scalability of the architecture. Our simulator is the xCellerator model
generator/simulator; the database is Sigmoid (autogenerated from a UML schema); user
interface is the Sigmoid Model Explorer (SME)
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Fig 58.2.
Sigmoid Three Stage Catalytic model. From Top to bottom. xCellerator input notation,
reaction cartoon, resulting differential equations and an example of numerical output
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Fig 58.3.
Simplified version of the Sigmoid Schema Reaction hierarchy. (a) There may exist one to
many relations between a particular biological reaction and potential functions
(Mathematical Reactions) that may be assigned to model the kinetics of the interaction. For
instance, numerous mathematical functions can be assigned to model a catalytic process. (b)
In reverse, the functional application of a particular set of differential equations may be
conserved over a variety of biological phenomena, so there also may be one to many
associations between a particular mathematical function (Reaction) and the biological
scenarios it may be applied to. For instance, a hill equation may provide useful in modeling
a catalytic reaction, transcriptional regulation, or even a transport process
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Fig 58.4.
Sigmoid Model Explorer showing portion of MAPK pathway. (a) Global Network View; (b)
TreeView of compositional hierarchy; (c) network layout visualization; (d) parameter-
editing panel; (e) output plot preview panel. Along the top are various action buttons for
saving and running the model, and for switching the main panel to view output plots. User
can select reaction icons.
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Fig 58.5.
Sensitivity of model output to parameter variations is handled by a set of operations
integrated into the Sigmoid environment. These functions or their user-defined variants can
allow fast and efficient generation of a set of solutions corresponding to variation of any
parameter number from one to all and storage of these solutions in a database that can be
queried to form various metrics of model performance. The results can be used to analyze
the robustness of various models of a specific biochemical system of interest
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