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Abstract
The year 2007 marks exactly two decades since HER2 was functionally implicated in the
pathogenesis of human breast cancer (Slamon et al. 1987). This finding established the HER2
oncogene hypothesis for the development of some human cancers. The subsequent two decades
have brought about an explosion of information about the biology of HER2 and the Human
Epidermal Growth Factor Receptor (HER) family. An abundance of experimental evidence now
solidly supports the HER2 oncogene hypothesis and etiologically links amplification of the HER2
gene locus with human cancer pathogenesis. The molecular mechanisms underlying HER2
tumorigenesis appear to be complex and a unified mechanistic model of HER2 induced
transformation has not emerged. Numerous hypotheses implicating diverse transforming pathways
have been proposed and are individually supported by experimental models and HER2 may indeed
induce cell transformation through multiple mechanisms. Here I review the evidence supporting
the oncogenic function of HER2, the mechanisms that are felt to mediate its oncogenic functions,
and the evidence that links the experimental evidence with human cancer pathogenesis.

INTRODUCTION
HER2 and neu are the human and rodent homologues of an oncogenic growth factor
receptor that were identified and named independently in the early 1980s from rodent and
human models, but soon found to be homologues of each other. The neu oncogene was
initially described as a transforming oncogene discovered in a carcinogen induced rat brain
tumor model (Shih et al. 1981). This gene was found to be homologous to the v-erbB (avian
erythroblastosis virus) viral oncogene and the cellular epidermal growth factor receptor
(EGFR) gene (Schechter et al. 1985; Schechter et al. 1984). In independent studies, an
EGFR-related gene was found to be amplified in a human breast cancer cell line and named
Human Epidermal Growth Factor Receptor-2 (HER2)(King et al. 1985). The HER2 protein
product was related to and had tyrosine kinase activity similar to EGFR (Akiyama et al.
1986). Subsequent cloning of two other related human genes and the post-genome
characterization of the human kinome completed the description of this family of four
members (Kraus et al. 1989; Plowman et al. 1993; Manning et al. 2002). These four
members are commonly referred to as EGFR (HER1, erbB1), HER2 (erbB2, HER2/neu),
HER3 (erbB3), and HER4 (erbB4).

The analysis of tumors from mouse models and from human cancer cells has led to the
description of numerous variants and mutants of HER2 and neu and adherence to
appropriate nomenclature is essential in order to avoid confusion. While ErbB2 is used to
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refer to the gene across both human and rodent species, HER2 is used in reference to the
human gene and gene product and neu is used in reference to its rodent counterparts. Table 1
lists the various HER2 and neu species that have been described in the literature and the
nomenclature and aliases that are often used to refer to them. Each of these species are
discussed in the sections below and Table 1 is provided for reference and to clarify the
distinctions between these variants.

THE SIGNALING FUNCTIONS OF HER PROTEINS
The HER family proteins are type I transmembrane growth factor receptors that function to
activate intracellular signaling pathways in response to extracellular signals. Their structure
consists of an extracellular ligand binding domain, a transmembrane domain, and an
intracellular tyrosine kinase domain (Figure 1). The function of this family is simplest in C.
Elegans where signaling is mediated by a single ligand and a single receptor and slightly
more complex in Drosophila where four ligands signal through a single receptor (Lacenere
and Sternberg 2000;Moghal and Sternberg 2003). The system is far more complicated in
mammalians where the functions of this family are performed by at least twelve ligands and
four receptors. Readers are referred to several recent excellent reviews of HER family
signaling and functions (Yarden and Sliwkowski 2001;Barnes and Kumar 2004;Mendelsohn
and Baselga 2000;Prenzel et al. 2001;Olayioye et al. 2000). While the reasons behind such
multiplicity in this system are not well understood, much is now known regarding the
molecular basis underlying their signaling activities. Upon ligand binding to their
extracellular domains, HER proteins undergo dimerization and transphosphorylation of their
intracellular domains. These phosphorylated tyrosine residues dock numerous intracellular
signaling molecules leading to activation of a plethora of downstream second messenger
pathways and crosstalk with other transmembrane signaling pathways leading to diverse
biological effects (reviewed in (Barnes and Kumar 2004;Prenzel et al. 2001;Bazley and
Gullick 2005;Yarden and Sliwkowski 2001)). The structural bases for receptor dimerization
have been coming to light in the past few years by crystollagraphic data. The extracellular
domain of HER proteins can exist in a closed inhibited or an open active conformation.
Ligand binding induces a conformational change in their extracellular domain that induces
the active conformation and promotes their dimerization and consequent
transphosphorylation (Burgess et al. 2003). Partner selection appears to be a key determinant
of signaling activity among HER proteins and their signaling functions follow a distinct
hierarchical order favoring heterodimers over homodimers. HER2 has the strongest catalytic
kinase activity and HER2-containing heterodimers have the strongest signaling functions
(Tzahar et al. 1996;Graus-Porta et al. 1997). The expansion of the HER family in
mammalian systems has been associated with functional differentiation necessitating
interdependence rather than promoting independent or redundant functions. This is
exemplified by HER2 and HER3 which are functionally incomplete receptor molecules.
Unlike the other members of the family, the extracellular domain of HER2 does not pivot
between active and inactive conformations and constitutively exists in an activated
conformation (Garrett et al. 2003;Cho et al. 2003). Consistent with its constitutively active
conformation, HER2 lacks ligand binding activity and its signaling function is engaged by
its ligand-bound heterodimeric partners (Sliwkowski 2003). On the other hand HER3, unlike
the other members, lacks ATP binding within its catalytic domain and is catalytically
inactive (Sierke et al. 1997). Consistent with this, the signaling functions of HER3 are
mediated entirely through the kinase activity of its heterodimeric partners (Kim et al. 1998).
Even chimeric kinase-active HER3 constructs fail to signal without hetero-partners
suggesting that HER3 even lacks the ability to homodimerize and is an obligate
heterodimerization partner (Berger et al. 2004). Although individually they are incomplete
signaling molecules, a large body of evidence not only establishes HER2 and HER3 as
obligate partners but their complex forms the most active signaling heterodimer of the
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family and essential for many biologic and developmental processes (Sliwkowski et al.
1994;Tzahar et al. 1996;Britsch et al. 1998;Vijapurkar et al. 2003;Goodearl et al.
2001;Vartanian et al. 2000;Keely and Barrett 1999;Horan et al. 1995;Wallasch et al. 1995b).

The HER proteins are widely expressed and functonally important in non-hematopoeitic
tissues (Press et al. 1990; Real et al. 1986). They are each essential in mammalian
development and gene disruption models in mice reveal that they are critically involved in
the development of multiple organ systems including the brain, skin, lung, and
gastrointestinal tract (Miettinen et al. 1995; Sibilia and Wagner 1995; Morris et al. 1999;
Sibilia et al. 1998; Threadgill et al. 1995; Lee et al. 1995; Gassmann et al. 1995;
Riethmacher et al. 1997; Britsch et al. 1998; Erickson et al. 1997). Their functional
importance in adult mammary gland development escapes anlaysis in these germline
deletion models due to embryonic lethality but is nicely demonstrated by alternative models
that inactivate EGFR or HER2 in pubertal mammary tissue (Andrechek et al. 2005; Xie et
al. 1997).

THE TRANSFORMING POTENTIAL OF HER2 AND NEU
Transformation by neu

The data supporting the transforming potential of human HER2 and rodent neu is
irrefutable. The rodent neu oncogene was initially identified in a screen for oncogenes using
a rat carcinogen-induced tumor model and shown to transform NIH3T3 cells (Shih et al.
1981; Schechter et al. 1984). The neu oncogene also transforms mammary epithelial cells in
vitro (Brandt et al. 2001). After cloning of the normal c-neu allele, it was determined that
transforming function in the neu oncogene was conferred by a point mutation within the
transmembrane domain resulting in a V664E mutated protein named neuT (Bargmann et al.
1986)(figure 1, region C). The V664E mutation promotes receptor dimerization and
enhanced tyrosine kinase activity (Weiner et al. 1989b). Numerous mouse transgenic models
have confirmed the role of this oncogene in tumorigenesis. The activated neu oncogene
(neuT) expressed in mice mammary tissue (MMTV-neuT mice) induces adenocarcinomas.
This appears as a single step whole gland transformation or in a more typical stochastic
tumor formation in different backgrounds (Muller et al. 1988; Bouchard et al. 1989). The c-
neu protooncogene overexpressed in mammary tissue of mice (MMTV-neu mice) also
induces tumor formation, although in the majority of tumors this occurs after acquisition of
deletion mutations within the extracellular juxtamembrane region which promote
dimerization and enhanced kinase activity (figure 1, region A)(Guy et al. 1992; Siegel and
Muller 1996; Siegel et al. 1994). The development of tumors in MMTV-neu transgenic mice
likely involves the acquisition of additional genetic abnormalities since these tumors
frequently have LOH at specific genomic loci (Cool and Jolicoeur 1999; Ritland et al.
1997). In particular, the inactivation of p53 is descriptively and etiologically linked with neu
induced mouse mammary tumors (Li et al. 1997). Additional transgenic models demonstrate
that overexpression or activation of neu is tumorigenic in other tissues as well, including
skin, biliary tract, and prostate (Table 2). The tumorigenic function of activated neu has also
been confirmed in two rat models by luminal retroviral infection (Wang et al. 1991). The
transforming functions of neu require its tyrosine kinase activity as demonstrated by kinase-
inactivating mutational studies (Weiner et al. 1989a). The rodent data amounts to a body of
highly consistent and indisputable evidence that activation of neu is tumorigenic. The
MMTV-neu mice have become the workhorse model of HER2 tumorigenesis in vivo.

Transformation by HER2
The data with regards to human HER2 is also compelling however there appears to be
significant differences between the rodent and human genes. While rodent neu appears to
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require mutational activation for tumorigenicity, human HER2 appears to hold tumorigenic
potential through overexpression alone. An engineered mutation within the transmembrane
region of HER2 (figure 1, region C) does increase its kinase and transforming activities
similar to neu, however this mutation does not appear to occur spontaneously (Segatto et al.
1988). Overexpression of HER2 in NIH3T3 or NR6 mouse fibroblasts induces cell
transformation and tumorigenic growth (Di Fiore et al. 1987;Hudziak et al. 1987;Chazin et
al. 1992). Overexpression of HER2 in MCF-7 breast cancer cells increases their
invasiveness and tumorigenicity (Benz et al. 1992). Overexpression of HER2 in human
mammary epithelial cells induces proliferative advantage, transformed characteristics,
tumorigenic growth, and in 3D models induces proliferative and anti-apoptotic changes that
mimick early stages of epithelial cell transformation (Muthuswamy et al. 2001;Woods
Ignatoski et al. 2003). Transgenic expression of the human HER2 cDNA in mouse
mammary breast tissue induces metastatic mammary tumors similar to neu (Finkle et al.
2004). However in this cross-species MMTV-HER2 transgenic model, the resulting mouse
tumors have frequent deletion mutations within the extracellular domain of the HER2
transgene similar to that seen with MMTV-neu mice. However neither mutations within the
transmembrane domain (analogous to neuT, see figure 1 region C) or the extracellular
domain (analogous to neu8142/neu8342, figure 1 region A) of HER2 have ever been
reported in naturally occuring human cancers and despite these experimentally acquired
mutations, human breast cancers appear to be always characterized by overexpression of
wildtype HER2. Interesting theories regarding this discrepancy have been proposed and are
reviewed below in the section concerning ΔHER2.

HER2 overexpression in human cancer
The relevance of the experimental data to human disease is supported by a substantial body
of clinical data. Overexpression of the HER2 protein, either through gene amplification or
through transcriptional deregulation is seen in approximately 25-30% of breast and ovarian
cancers and confers worse biological behavior (Slamon et al. 1989). Initial conflicting
reports regarding the prognostic relevance of HER2 were resolved with improved
methodologies and the overwhelming data now confirms this initial landmark genetic-
biologic finding (nicely reviewed in (Ross et al. 2003)). Breast cancers can have up to 25-50
copies of the HER2 gene and up to 40-100 fold increase in HER2 protein expression
resulting in up to 2 million receptors expressed at the tumor cell surface (Kallioniemi et al.
1992; Lohrisch and Piccart 2001; Venter et al. 1987) (Figure 2). Evidence suggests that
HER2 amplification is an early event in human breast tumorigenesis. HER2 amplification is
seen in nearly half of all in situ ductal carcinomas without any evidence of invasive disease
(Liu et al. 1992; Park et al. 2006). HER2 status is maintained during progression to invasive
disease, nodal metastasis and distant metastasis (Park et al. 2006; Latta et al. 2002; Carlsson
et al. 2004; Tsuda et al. 2001). Therefore although HER2 amplified breast cancers appear to
have a higher propensity for progression and worse prognosis compared to non-amplified
breast cancers, the amplification is an early event and defines a subtype of breast cancer not
a later stage of it. This is further underscored by gene expression profiling studies that show
that HER2 amplified breast cancers comprise a specific disease subset with a unique
molecular portrait and this portrait is maintained during progression to metatatic disease
(Perou et al. 2000; Weigelt et al. 2005). HER2 amplified breast cancers have biologic
characteristics that distinguish them from other types of breast cancers. These include
increased sensitivity to certain cytotoxic chemotherapeutic agents, resistance to certain
hormonal agents, and increased propensity to metastasize to the brain (Ross et al. 2003;
Gabos et al. 2006). HER2 overexpression and amplification is also seen in subsets of gastric,
esophageal, and endometrial cancers, also associated with worse disease (Morrison et al.
2006; Yano et al. 2006; Mimura et al. 2005) and also seen rarely in cancers of the
oropharynx, lung, and bladder (Khan et al. 2002; Hirsch et al. 2002; Latif et al. 2003). The
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etiologic role of HER2 overexpression in diseases other than breast cancer remain to be
defined.

HER2 kinase domain mutations in human tumors
Large scale resequencing efforts have only begun to screen human tumors for somatic
mutations. Somatic mutations within the HER2 kinase domain have been described in a
small subset of lung cancers, predominantly in Asian populations, and very rarely in gastric,
colorectal, and breast cancers (figure 1 region D)(Stephens et al. 2004;Shigematsu et al.
2005;Lee et al. 2006). Much less is currently known about the biology of these rare HER2
mutations. At least one of these mutations has been shown to enhance HER2 kinase activity
and increase its transforming efficiency (Wang et al. 2006). Although numerous mouse
models have established the tumorigenic potential of neu through overexpression, HER2
mutation in lung cancers is not known to be associated with overexpression or gene
amplification. As such, a tumorigenic function of this mutated HER2 cannot be presumed
and awaits the appropriate transgenic mouse models for analysis. In breast tissue, activated
neu is not by itself transforming and requires amplification and overexpression to induce
tumorigenesis (Andrechek et al. 2000). Much of the data discussed in this review pertains to
the overexpression model of HER2 transformation. Our understanding of the biology of
kinase-domain mutated HER2 is still in its infancy and ongoing studies in this area will
undoubtedly shed further light on the biological characteristics of this HER2 mutant, its role
in tumorigenesis, and its similarities or differences with overexpressed HER2.

HER2 polymorphism in humans
Although somatic mutations in the transmembrane domain of HER2 analgous to the neu
oncogene have not been seen in human tumors, polymorphism in the transmembrane domain
of HER2 (figure1 region C) has been described. In particular, the I665V variant of HER2
has increased potential for dimerization and signaling (Fleishman et al. 2002). This has led
some investigators to propose that the I665V allele of HER2 may confer increased
susceptibility to breast cancer. Although an initial large study indeed found such an
association with breast cancer risk, several subsequent studies have shown conflicting
results with the majority of them showing no risk associated with the I665 genotype (Xie et
al. 2000;Benusiglio et al. 2005;Montgomery et al. 2003). The preponderance of evidence at
this time does not appear to support an association between HER2 polymorphism and breast
cancer risk, although this continues to be debated.

MECHANISMS OF HER2-MEDIATED TUMORIGENESIS
The evidence that increased expression and activity of neu or HER2 induces cell
transformation and tumorigenesis is overwhelming and was reviewed above. The data
regarding the pathways that mediate, that are required for, and that cooperate with HER2
induced transformation are much more diverse and most likely HER2 induces
transformation through a number of signaling pathways. The relative contribution of these
pathways to tumorigenesis are difficult to know. The mechanisms and pathways for which
there is significant evidence are reviewed below and are schematically depicted in Figure 3.

Overactivity vs overexpression
In the simplest mechanistic model, HER2 induces transformation through increased kinase
activity and overphosphorylation of itself and cellular substrates. In this model, the sole
consequence of overexpression is to increased cellular HER2 activity. But a limitation of
this model has been that it fails to explain why in human cancers HER2 activity is always
elevated through overexpression and mutational activation of HER2, analogous to rodent
neuT, is never seen in human breast cancers. One explanation that has been offered is that
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neu can be activated through a single base pair mutation whereas the analogous activation of
HER2 requires a two base pair mutation, making this much less likely to occur
spontaneously in the human gene. However a more plausible explanation has been that
increased expression of HER2 is an essential aspect of its transforming function. This
presents a more complex model of transformation, but there is substantial evidence to
support it. While high level expression of neu or neuT is tumorigenic in transgenic models,
converting the endogenous neu to neuT by knock-in methodology leads to architectural
distortion but is insufficient to induce tumorigenesis (Andrechek et al. 2000). These mice do
eventually develop tumors with long latency, however these tumors are characterized by
amplification and overexpression of the mutant neu allele supporting the hypothesis that
overexpression is mechanistically required for transformation by HER2. A number of
mechanistic models are able to propose how overexpression of HER2 can disrupt signaling
and promote tumorigenic functions. Overexpression of HER2 can change the composition of
HER family dimers, significantly increasing HER2-containing heterodimers and HER2
homodimers. Evidence discussed below suggests these increases can deregulate cell polarity
and cell adhesion. In addition, evidence discussed below also shows that HER2-containing
dimers have prolonged signaling activity and evade signal attenuation increasing signaling
potency. Increased total expression of HER2 carries with it an increase in expression of
subsets of HER2 including nuclear HER2 and the rare ΔHER2 isoform, and the increase in
each of these may be functionally relevant to cell transformation. These are also discussed
individually below.

The recent discovery that rare types of lung cancers have HER2 kinase domain mutations
that confer increased kinase activity without overexpression may be inconsistent with the
overexpression model. But it is too soon to challenge this model since very little is yet
known about the biology of the kinase domain mutated HER2. Studies forthcoming in the
coming years will determine whether this HER2 mutant is transforming without
overexpression and establish its role in the evolution of lung cancer. A unified model of
HER2 transformation that also explains why HER2 is deregulated through overexpression in
breast and ovarian cancers but through mutation in lung cancers is impossible to propose at
this time and must await a much better understanding of its biology in lung cancers.

Deregulation of HER family signaling dynamics
At the lateral level HER2 overexpression causes increased HER2 heterodimerization with
EGFR and HER3 (Hendriks et al. 2003a; Karunagaran et al. 1996)(figure 3). This interferes
with the endocytic regulation of EGFR. EGFR is unique among the HER family in that it
undergoes endocytic degradation after ligand mediated activation and homodimerization, in
contrast to the other members of the family which undergo endocytic recycling (Baulida et
al. 1996). EGFR-HER2 heterodimers similarly evade endocytic degradation in favor of the
recycling pathway and have increased signaling duration and potency (Lenferink et al. 1998;
Waterman et al. 1998). Therefore HER2 overexpression results in increased EGFR
membrane expression and activity (Huang et al. 1999; Wang et al. 1999; Hendriks et al.
2003b). But it seems unlikely that HER2 requires EGFR for its transforming function since
HER2 also transforms NR6 fibroblasts which lack EGFR expression (Chazin et al. 1992).
The analogous dispensibility of EGFR in epithelial models of HER2 transformation has not
been specifically demonstrated. Overall, compared with other members of the family, HER2
is least subject to inactivating mechanisms and its recruitment into heterodimeric signaling
complexes leads to prolonged signaling. As such, HER2 overexpressing cells have
significantly prolonged activation of downstream MAPK and c-jun following stimulation
with EGFR or HER3 ligands compared with low HER2 cells (Karunagaran et al. 1996).
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Signaling through HER3 and downstream PI3K/Akt
The functional role of HER3 is much better established. HER3 is widely expressed in breast
cancers (Lemoine et al. 1992). Heregulin regulates HER2 through coexpressed HER3
(Wallasch et al. 1995b). HER2 and HER3 cooperatively induce transformation and in fact
HER3 is an obligate partner in HER2 induced transformation (Holbro et al. 2003; Alimandi
et al. 1995). Tumors from MMTV-neu mice have increased HER3 expression and
phosphorylation and elevated HER3 expression is similarly seen in HER2 overexpressing
human tumors (Siegel et al. 1999). The most important oncogenic signaling function of the
HER2-HER3 complex appears to be activation of the PI3K/Akt pathway (figure 3). HER2
lacks binding sites for the p85 subunit of PI3K whereas HER3 has seven p85 binding
phosphotyrosine containing motifs (Prigent and Gullick 1994; Soltoff et al. 1994; Schulze et
al. 2005). Growth factor mediated activation of PI3K and Akt by HER2 is mediated
specifically through phosphorylation of HER3 (Soltoff et al. 1994; Hellyer et al. 2001; Fedi
et al. 1994). Cell transformation by overexpressed HER2 is also associated with increased
HER3 phosphorylation and activation of PI3K/Akt signaling (Holbro et al. 2003; Alimandi
et al. 1995; Ram and Ethier 1996; Tokunaga et al. 2006; Wallasch et al. 1995a). Tumors
from MMTV-neu mice also have activation of PI3K signaling (Amundadottir and Leder
1998). This is corroborated by clinical studies which show the frequent activation of Akt in
HER2 overexpressing tumors (Tokunaga et al. 2006; Zhou et al. 2004). The existing data
strongly suggests that the transactivation of HER3 and downstream PI3K/Akt seems to be a
critical tumorigenic function of overexpressed HER2. This is consistent with numerous
other lines of evidence that highlight a central role for Akt in tumorigenesis. Akt functions
in the crossroads of multiple signal transduction pathways that regulate numerous cellular
functions critically important for cancer cells including cell proliferation and survival, cell
size and response to nutrient availability, glucose metabolism, epithelial-mesenchymal
transition and cell invasiveness, genome stability, and angiogenesis. The critical function of
Akt in cancer is now widely recognized but will not be discussed in this review. Readers are
referred to a number of excellent recent reviews of this topic ((Vivanco and Sawyers 2002;
Luo et al. 2003; Paez and Sellers 2003; Testa and Bellacosa 2001) and the entire Oncogene
vol 24; issue 50 (11/14/2005)). The abundance of data reviewed above suggests that HER2
induced tumors activate Akt through HER3 and PI3K.

Alternative HER2 transcript
The fact that deletion mutations in the extracellular region of the receptor seen in neu
overexpressing mouse mammary tumors are not seen in human tumors has produced a
dilemma and an interesting hypothesis to resolve it. A naturally occuring but rare human
HER2 RNA transcript has been cloned that is alternatively spliced and lacks a single 48bp
coding exon resulting in the in-frame deletion of 16 amino acids from the juxtamembrane
region overlapping with the area of deletion mutations seen in neu induced tumors. This
alternative HER2 protein, named ΔHER2, has increased ligand-independent signaling
activity and increased transforming potency similar to the mutated neu gene (Kwong and
Hung 1998; Siegel et al. 1999). This deletion removes cysteine residues in neu and in HER2,
disrupting the disulfide bond structure of the proteins and leaving unpaired cysteine residues
available for intermolecular bonding. Experimental models have confirmed that ΔHER2 has
increased transforming activity compared with wtHER2 in several models, including in vitro
and transgenic models, and ΔHER2 has significantly higher dimerization promoted by
intermolecular disulfide-bond stabilization, and significantly increased tyrosine
phosphorylation compared with wtHER2 (Kwong and Hung 1998; Siegel et al. 1999;
Castiglioni et al. 2006). Although the activated ΔHER2 transcript is a normal byproduct of
HER2 transcription, its significant increase in HER2 amplified tumors has been proposed as
a mechanism underlying HER2 tumorigenesis. ΔHER2 transcripts have been detected in a
majority of breast tumors and normal breast tissue and cell lines and reported by two groups
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to comprise 4-9% of total HER2 transcripts (Siegel et al. 1999; Castiglioni et al. 2006). This
hypothesis of HER2 induced tumorigenesis implies that the presence of the naturally
occuring ΔHER2 obviates the need for human HER2 to undergo mutational activation. The
human MMTV-human HER2 mouse transgenic model is seemingly consistent with this. In
this model, mouse mammary tumors are induced by overexpression of the human HER2
cDNA, which does not have a ΔHER2 transcriptional by product associated with it (Finkle
et al. 2004). Interestingly, the majority of tumors in this model have acquired deletion
mutations of the juxtamembrane region of the human HER2 transgene similar to the neu
transgenic model. This is consistent with the hypothesis that there is a selection pressure for
this mechanism of activation, whether it is through gene mutation or whether it is through
increased expression of ΔHER2. More definitive proof of the causative role of ΔHER2
awaits the development of experimental reagents that selectively target and inactivate the
ΔHER2 isoform.

Role of Src kinases
Since HER family proteins signal predominantly through the recruitment of proteins to their
tyrosine phosphorylated residues, their transforming functions could be in large part
mediated through these interacting proteins, in particular SH2 domain containing proteins.
Evidence suggests that src kinase are important second messengers of HER2. Src kinases are
potently transforming and tumorigenic when constitutively activated, and their activation is
seen in many human tumor types, including breast cancers with or without HER2
overexpression (Reissig et al. 2001; Ottenhoff-Kalff et al. 1992; Belsches-Jablonski et al.
2001). An association between src activation and HER2 overexpression has been reported in
pre-invasive carcinomas of the breast (Wilson et al. 2006). Mammary tumors that arise in
MMTV-neu transgenic mice have activation of c-src and c-yes (Muthuswamy et al. 1994;
Muthuswamy and Muller 1995a). In vitro models corroborate a direct link between src and
HER2. Transformation of mammary epithelial cells by HER2, but not by H-Ras, results in
the activation of c-src (Sheffield 1998). Therefore it seems plausible that src functions
downstream of oncogenic HER2. But a clear mechanistic model of how HER2 activates src
and proof that this activation is essential for tumorigenesis has not yet emerged. Src directly
interacts with HER2 within the HER2 catalytic domain (Muthuswamy and Muller 1995b;
Belsches-Jablonski et al. 2001; Kim et al. 2005). It has been suggested that HER2 activates
src through increasing its expression and stability, or by directly phosphorylating src on
tyr215 in its SH2 domain (Tan et al. 2005a; Vadlamudi et al. 2003). Inhibition of src kinases
in HER2 overexpressing tumors cells using src-selective tyrosine kinase inhibitors has
produced different phenotypes including the selective inhibition of invasive and
prometastatic characteristics in one report and total growth inhibition and apoptosis in
another report (Tan et al. 2005b; Belsches-Jablonski et al. 2001). A specific function in
promoting migration, invasion, and metastasis would be highly consistent with the known
functions of src in regulating focal adhesions and integrin signaling, and regulation of the
actin cytoskeleton. Consistent with this, HER2 mediated activation of c-src in epithelial cells
results in loss of polarity, disruption of cell-cell adhesions, and anchorage independent
growth (Kim et al. 2005; Sheffield 1998). In contrast to a downstream function of c-src,
recent reports show c-src can also function upstream of HER2. C-src enhances HER2-HER3
dimerization and increases their auto- and transphosphorylations and signaling activities
(Ishizawar et al. 2006). C-src also phosphorylates HER2 at tyr877 within the activation loop
of the kinase domain and increases the kinase activity of HER2 (Xu et al. 2007). These data
imply that, in addition to functioning downstream, src kinases may also function upstream or
midstream of the transforming functions of HER2 (figure 3). A multi-level involvement of
src kinases would make them critical enhancers of HER2 driven tumorigenesis. Genetic
crosses to prove an essential role of src in neu induced mammary tumorigenesis have been
difficult to do due to the poor health and survival of src null mice.
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Disruption of cell adhesion and cell polarity
A hallmark of many epithelial cancers is the loss of cell polarity and cell adhesion. Recent
evidence demonstrates that deregulated HER2 signaling can disrupt cell polarity and cell
adhesion. HER2, by virtue of its interaction with ERBIN (ErbB2 interacting protein),
normally localizes to the basolateral surface of epithelial cells where it likely mediates
crosstalk with ligand secreting stromal cells (Borg et al. 2000; Shelly et al. 2003; De Potter
et al. 1989). The experimental homodimerization and activation of HER2 leads to disruption
of tight junctions, loss of cell polarity, and proliferative disarray in breast epithelial cell
acinar structures, although the basal membrane is preserved and invasive features are not
induced (Muthuswamy et al. 2001). Activated HER2 disrupts apical-basal polarity through
its interaction with components of the Par polarity complex including PAR6 (partition
protein 6) and aPKC (atypical protein kinase C) (Aranda et al. 2006). On the other hand, the
experimental heterodimerization of HER2 with EGFR promotes the invasive phenotype
mediated through pathways including PI3K, Ras, and PLCγ (phospholipase Cγ) (Zhan et al.
2006). These studies were done using engineered synthetic ligand-activated constructs that
can discriminate between the functions of homodimers and heterodimers of HER2 in cells
grown in 3D models (Muthuswamy et al. 1999). It is inferred from these studies that
overexpressed HER2 in cancers, through increased HER2 homodimers and HER2-EGFR
heterodimers mediates the loss of polarity and deregulated cell adhesion typical of epithelial
cancers (figure 3).

Promoting the invasive phenotype
Multiple downstream signals may be mediating the invasive phenotype associated with
HER2 overexpression in tumor cells. Downstream signals that have been implicated in the
invasive phenotype include activation of PI3K (Ignatoski et al. 2000), PKC-α and src (830},
FAK (Benlimame et al. 2005; Ignatoski et al. 2000), downregulation of α4 integrin (Woods
Ignatoski et al. 2003), induction of β4 integrin (Gambaletta et al. 2000), and TGF-β (Seton-
Rogers et al. 2004). The functional significance of β4 integrin in particular has recently been
established in genetic models. HER2 physically interacts with β4 integrin (Falcioni et al.
1997) and tumors arising in MMTV-neu mice have delayed onset and reduced invasion and
metastases if β4 integrin signaling is disrupted genetically (Guo et al. 2006). Furthermore,
ex-vivo studies demonstrated that the proliferative phenotype of neu is mediated through c-
jun and the disruption of cell adhesions is mediated through STAT3.

Cell cycle deregulation
Deregulation of cell cycle control, in particular G1/S checkpoint control, leads to
uncontrolled proliferation and is a hallmark of many cancers. The two cell cycle regulators
that have emerged as downstream targets of oncogenic HER2 are cyclin D1 and p27 (figure
3).

HER2 overexpression in breast epithelial cells deregulates G1/S control through
upregulation of cyclin D1, E and cdk6, and degradation of p27 (Timms et al. 2002). Human
tumor studies have only compared cyclin D1 expression among different breast cancers and
have found no significant increase in cyclin D1 expression in HER2 overexpressing tumors
compared to their non-overexpressing counterparts (Ahnstrom et al. 2005; Yang et al. 2004;
Loden et al. 2003). It remains possible that cyclin D1 is widely overexpressed in breast
cancers and it occurs through other pathways in tumors without HER2 overexpression.
Consistent with this, a necessary but not rate-limiting role of cyclin D1 for HER2-induced
tumorigenesis has been shown in transgenic models. MMTV-neu mice have almost
complete protection from tumor formation in a cyclin D1-null background (Lee et al. 2000;
Yu et al. 2001). With prolonged intervals hyperplastic lesions eventually develop due to
cyclin E compensation (Bowe et al. 2002). Consistent with the requisite role of cyclin D1,
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its catalytic partner cdk4 is also required for tumorigenesis in MMTV-neu mice (Reddy et
al. 2005). Other lines of evidence also corroborate the hypothesis that HER2 induces
transformation through increased cyclin D1/cdk4 activity. Expression of the cyclin D1/cdk4
inhibitor p16 in breast tissue also protects against tumors in MMTV-neu mice (Yang et al.
2004).

HER2 regulates p27 through multiple mechanisms that regulate its localization and its
proteolysis. Akt is activated in HER2 amplified breast cancers (reviewed above) and
activated Akt phosphorylates p27 inhibiting its function by excluding it from the nucleus
(Viglietto et al. 2002; Liang et al. 2002; Shin et al. 2002). Several clinical studies have also
established that HER2 overexpressing breast cancers have reduced p27 expression compared
to other types of breast cancers (Loden et al. 2003; Spataro et al. 2003; Newman et al. 2001).
HER2 mediates p27 degradation likely through mechanisms that involve MAPK (Lenferink
et al. 2001; Yang et al. 2000; Donovan et al. 2001). Consistent with a functional role for
p27, HER2 induced cell transformation can be inhibited by forced expression of p27 (Yang
et al. 2001). The cell cycle function of oncogenic HER2 is likely mediated specifically
through its regulation of cyclin D1 and p27 since other G1/S defects such as loss of p16 or
Rb are not seen in HER2 amplified breast cancers, whereas they are common in other types
of breast cancer (Yang et al. 2004).

The role of transmembrane mucins
While in the simplest scenario, HER family receptor interactions are driven by their
affinities for eachother, there is evidence that other transmembrane proteins can facilitate
their interactions. HER2 stably interacts with the membrane mucin Muc4. The interaction is
mediated through one of two EGF-like domains in ASPG-1, the membrane associated
subunit of Muc4 and may play a role in regulating the polar localization of HER2
(Carraway, III et al. 1999; Ramsauer et al. 2003). The experimental induction of Muc4
expression in cells lacking Muc4 leads to increase cell surface retention of HER2 and HER3
and increased HER2-HER3 signaling activity (Funes et al. 2006)(figure 3). The evidence
that Muc4 potentiates HER2 signaling has led to the hypothesis that it may promote HER2
tumorigenic signaling even in tumors that do not overexpress HER2. Consistent with this
hypothesis, increased expression of Muc4 is associated with worse prognosis in several
types of cancer (Tsutsumida et al. 2006; Tamada et al. 2006; Saitou et al. 2005; Shibahara et
al. 2004). Further analysis of this hypothesis awaits models that more definitively
demonstrate the role of Muc4 in promoting tumorigenic HER2 function.

The role of HER2 neighbors
While all the experimental preclinical models are generated by specific overexpression of
the singular HER2 gene, the overexpression of HER2 in naturally occuring breast cancers is
almost always due to amplification of a segment of chromosome 17 at 17q12-q21 that
contains many genes in addition to HER2. Therefore the human disease involves a more
complex genetic basis than the experimental models provide. The effort to identify the genes
co-amplified with HER2 in human breast cancer have been greatly facilitated by modern
techniques and access to the human genome database. The structure of the HER2 amplicon
has now been characterized using a variety of techniques including southern blotting, FISH,
and CGH, as well as looking for highly expressed neighboring genes by RT-PCR and
microarray expression analyses ((Luoh 2002; Kauraniemi et al. 2001) and reviewed in
(Kauraniemi and Kallioniemi 2006)). The HER2 amplicon is relatively small and fairly
constant among many breast tumors and spans a minimal region of approximately 280kb
centered around the HER2 locus (Kauraniemi et al. 2003)(figure 4). This region contains 10
transcribed genes, of which six are overexpresssed in tumors as a result of amplification of
the region, suggesting that they may be the biologically relevant genes. These include
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HER2, GRB7, MLN64, PNMT, MGC9753, and MGC14832. GRB7 is an SH2-containing
adaptor protein and is functionaly linked with HER2 as it is known to bind phosphorylated
HER2 and mediate aspects of cell migration (Janes et al. 1997). MLN64 is a late endosomal
membrane protein that binds sterols and is felt to be involved in cholesterol transport (Alpy
and Tomasetto 2006). PNMT (phenylethanolamine N-methyltransferase) is a catecholamine
biosynthetic enzyme and is unlikely to be important for HER2 tumorigenesis. The functions
of the hypothetical proteins MGC9753 and MGC14832 are currently unknown. In the mouse
knock-in model of HER2 tumorigenesis which occurs through spontaneous gene
amplification, the mouse tumor HER2 amplicon is highly similar to the human breast cancer
amplicon and contains the same genes, consistent with the hypothesis that genes in addition
to HER2 are selected for in the amplification event (Hodgson et al. 2005). Studies to
determine the functional relevance of these genes in HER2 driven tumorigenesis are
ongoing.

HER2 linked genomic abnormalities
In addition to the genes directly located within the 17q12 HER2 amplicon, HER2 amplified
breast cancers often have numerous other genomic alterations that are characteristic of this
tumor type and much less common in breast tumors without HER2 amplification. These
include amplifications in 17q22-24, just distal to the HER2 amplicon as well as
amplifications in 20q and deletions in 18q (Isola et al. 1999). These areas may also contain
genes that through gain or loss of function could cooperate to establish the biology of HER2
amplified tumors. The topoisomerase IIa (TOP2A) gene on 17q21 is frequently co-amplified
with HER2 and may explain why HER2 overrexpressing breast cancers are particularly
sensitive to treatment with topoisomerase inhibitors (Mano et al. 2006).

Of particular interest, the PTPN1 gene encoding protein tyrosine phosphatase 1B (PTP1B)
on 20q13 is often amplified in HER2 amplified breast cancers (Tanner et al. 1996).
Although tyrosine phosphatases frequently play negative feedback roles in growth factor
receptor signaling, the frequent amplification and overexpression of PTPN1 in HER2
amplified tumors has led to the hypothesis that it may have a tumor promoting function in
these tumors. Consistent with this hypothesis, tumor formation in MMTV-neu mice is
significantly delayed or prevented in the PTPN1-null background (tires-Alj and Neel 2007).
The molecular mechanisms mediating the supportive tumorigenic role of PTP1B remain to
be worked out.

TRANSCRIPTIONAL TARGETS OF HER2
While the function of HER proteins as transmembrane growth factor receptors is well
understood and innumerable lines of evidence are consistent with its growth factor signaling
function, a nuclear function as a transcription factor has also been proposed. In early two-
hybrid screens for Neu interacting proteins, the cytoplasmic domain of Neu used as a bait
was unexpectedly found to have transcriptional transactivating activity (Xie and Hung
1994). Consistent with a transcriptional function, a small percentage of cellular HER2 is
seen in nuclei and DNA binding and transcriptional activation of at least one promoter has
been reported (Wang et al. 2004). A transcriptional function inherent in HER2 significantly
widens the realm of mechanisms by which overexpressed HER2 can mediate tumorigenic
functions. The transcriptional function of HER2 is clearly not the principal mechanism
underlying its transforming functions, since kinase function is essential for neu induced
transformation (Weiner et al. 1989a). But transcriptional targets may be enhancing its
tranforming functions. So far the COX-2 gene has been reported as a direct target of HER2.
However the upregulation (and downregulation) of numerous other genes has been
described in HER2 amplified tumors and in fact these tumors have a gene expression profile
unique to HER2 amplified breast cancers (Perou et al. 2000). Many of these genes are likely
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consequences of HER2 overexpression, although some may be directly driven by HER2
transcriptional function. The pathways which current evidence suggests are functionally
relevant are reviewed below. The role of many other genes remains to be defined.

Induction of COX-2
The inducible prostaglandin synthase cyclooxygenase-2 (COX-2) is overexpressed in HER2
amplified breast cancers (Subbaramaiah et al. 2002). HER2 directly regulates COX-2
expression through transcriptional induction (Vadlamudi et al. 1999; Wang et al. 2004).
COX-2 knockout mice are impaired in their ability to support MMTV-neu induced
mammary tumorigenesis (Howe et al. 2005). Interestingly, this phenotype seems to be
related to impaired angiogenic signaling. Whether this is due to defective tumor cell
angiogenic signaling or host angiogenic signaling is not currently defined. As such, the role
of tumor COX-2 in HER2-induced transformation remains to be defined.

Induction of CXCR4
HER2 induces the expression of the chemokine receptor CXCR4 in transfection models and
indeed increased expression of CXCR4 is seen in HER2 overexpressing breast cancers (Li et
al. 2004). Chemokine receptors have been functionally linked with the metastatic properties
of breast cancers (Muller et al. 2001) leading to the hypothesis that the prometastatic
properties of HER2 overexpressing tumors may be mediated through the increased
expression of relevant chemokine receptors. Consistent with this hypothesis, the increased
migratory activity induced by the experimental overexpression of HER2 can be suppressed
by anti-CXCR4 antibodies (Li et al. 2004).

Induction of ETS
ETS (E26 transformation specific) transcription factors are almost universally overexpressed
in HER2 amplified breast cancers and they are also overexpressed and are essential in
MMTV-neu induced mammary tumorigenesis (Shepherd et al. 2001; Neve et al. 2002).
HER2 overexpression specifically leads to the bimodal activation of the ETS transcription
factor ER81 (Goel and Janknecht 2003) which mediates the induction of expression of the
catalytic subunit of telomerase (Goueli and Janknecht 2004).

Other downstream or cooperating pathways
HER2 overexpression leads to increased expression of hypoxia inducible factor 1α (HIF-1α)
through Akt leading to increased expression of VEGF and increased surface expression of
fibronectin receptors (Laughner et al. 2001; Li et al. 2005; Spangenberg et al. 2006). VEGF
expression is also induced by HER2 overexpression through a HIF-1α independent
mechanism (Loureiro et al. 2005).

Numerous other pathways have been implicated in HER2-mediated transformation, although
they are much less well characterized. HER2 overexpressing breast cancers are
characterized by increased expression of MMP-2 (matrix metalloproteinase -2) and MMP-9
(matrix metalloproteinase 9) (Pellikainen et al. 2004). HER2 overactivity also promotes the
activation of the nuclear factor kappa-B (NF-kB) anti-apoptotic pathway (Makino et al.
2004). Involvement of myc downstream of HER2 has been proposed although it remains to
be defined and may be complex (Hynes and Lane 2001).

TUMOR DEPENDENCE ON HER2
While the tumorigenic potential of HER2 overexpression has been clearly demonstrated in
numerous model systems (see above), its suitability as a drug target depends on whether
clinically advanced tumors continue to dependent on HER2 for survival and progression.
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This dependency, recently described as oncogene-addiction, implies that such cancers can be
effectively treated and possibly cured with drugs that inactivate the oncogene product
(Weinstein 2002). Alternatively, genomic instability can lead to the mutational activation of
additional pathways that could compensate for the pharmacologic inactivation of the tumor-
initiating oncogene making such an oncogene less effective as a drug target.

HER2 knockdown models
Since the identification of HER2 as an oncogene in human tumors, numerous approaches
have been undertaken to demonstrate the dependence of HER2 overexpressing tumors on
HER2. A number of studies using antisense, ribozyme, or siRNA methodologies to suppress
HER2 expression in human cancer cell lines consistently show that HER2 overexpressing
tumor cells are dependent on HER2 and undergo growth inhibition and apoptosis in cell
culture, or tumor regression in vivo, in the absence of HER2 expression, while tumor types
that do not overexpress HER2 are not sensitive to HER2 knockdown (Colomer et al. 1994;
Juhl et al. 1997; Roh et al. 2000; Faltus et al. 2004; Choudhury et al. 2004).A kinase-dead
mutant of activated HER2 competes with and reverses the transformed phenotype induced
by activated HER2 (Messerle et al. 1994). Intracellularly expressed single chain antibodies
that target and inactivate HER2 revert HER2 induced transformation or induce apoptotic cell
death in HER2 overexpressing tumor cells (Beerli et al. 1994; Deshane et al. 1996).

HER2 withdrawal models
Tetracycline inducible systems offer even more elegant models for analysis of oncogene
addiction. NIH3T3 cells transformed by tetracycline regulated overexpression of HER2
revert from the transformed phenotype and their mouse implanted tumors regress when
HER2 expression is withdrawn (Baasner et al. 1996; Schiffer et al. 2003). Tetracycline
induced expression of activated HER2 in squamous epithelia of mice results in severe
hyperplastic abnormalities of squamous epithelial tissues, which reverse upon withdrawal of
the HER2 transgene expression (Xie et al. 1999). Tumors in MMTV-neuT mice are also
dependent on continued oncogene expression. In the MMTV-rtTA/TetO-NeuNT
bitransgenic variant of this model regulated by doxycycline, when expression of the neuT
oncogene is induced in the mammary tissue of adult mice, this leads to the formation of
multiple mammary tumors and lung metastases, and the entire primary tumor and metastatic
disease fully regresses when neuT expression is withdrawn (Moody et al. 2002).

Each of these models is subject to specific criticisms. For example the antisense or siRNA
approaches have non-specific effects, the NIH3T3 fibroblast models are not representative
of what is principally an epithelial oncogene in humans, and the transgenic models may be
too simplistic and understate the genetic complexity of the human disease. But taken in
aggregate, the existing data from all the different models and approaches is highly consistent
and collectively makes a highly compelling case that HER2 induced tumors are addicted to
HER2. This has made HER2 one of the most sought after targets in cancer drug
development.

CONCLUSION
Numerous experimental models now solidly support the hypothesis that HER2
overexpression promotes tumorigenesis and the finding of HER2 amplification and
overexpression in many human breast cancers and its link with the biology of this disease
now clearly implicate this oncogene in the pathogenesis of this type of human cancer.
Numerous well supported experimental models implicate diverse mechanisms involved in
HER2 mediated tumorigenesis and a unified mechanistic model cannot currently be
proposed. It is possible that the position of HER2 in the signaling web places it in control of
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numerous pathways that can contribute to malignant progression such that the amplification
of HER2 as a single event can substitute for several events in the multi-step model of
carcinogenesis. Indeed HER2 amplified breast cancers occur at an earlier age than other
types of breast cancers consistent with a fast-track route to oncogenesis in these cancers
(Crowe et al. 2006; Swede et al. 2001). The highly oncogene-addicted nature of these
cancers also attests to a HER2 function that is not easily supplanted, possibly due to its
multiple oncogenic roles. The critical driving role of HER2 in human cancers, and the large
number of patients affected by this type of cancer has made HER2 an ideal target for the
development of rationally designed anti-cancer drugs.
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Figure 1.
Structure of the HER2 and Neu proteins. The domain structure is shown on the left
consisting of two ligand binding regions (LD1 & LD2), two cysteine-rich regions (CR1 &
CR2), a short transmembrane domain (TM), a catalytic tyrosine kinase domain (TK), and a
carboxy terminal tail (CT). Numerous sites of tyrosine phosphorylation wiithin the TK and
CT domains are indicated by circled P.The letters on the right point to specific areas that are
altered or mutated in certain naturally occuring or experimentally induced cancers discussed
in the text. A) site of somatic mutations found in tumors arising in MMTV-neu mice. B) site
of the 48bp deletion in the naturally occuring human ΔHER2 isoform. C) site of the
mutation in the neuT oncogene initially discovered in a rat carcinogen induced tumor model
and subsequently used in numerous in vitro and transgenic experimental models. D) site of
mutations found in rare cases of human lung cancers.
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Figure 2.
FISH analysis of HER2 amplification. A human breast cancer specimen hybridized with a
HER2 gene probe (in green) and a chromosome 17 centromeric probe (in red) showing
significantly increased HER2 gene copy number compared with the chromosome 17 control.
(Hicks and Tubbs 2005) Reprinted from Human Pathology 36, p256, Copyright 2005, with
permission from Elsevier.
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Figure 3.
Schematic of the signaling abnormalities resulting from HER2 overexpression that are felt to
contribute to tumorigenesis. HER2 overexpression results in increased HER2 containing
dimers of all kinds. Increased HER2-EGFR dimers drive proliferative and invasive
functions. Increased HER2 homodimers disrupt cell polarity. Increased HER2-HER3 dimers
drive proliferative, survival, invasive, and metabolic functions. Increased HER2 expression
results in an increase in the rare ΔHER2 isoform with more potent signaling
characteristics.Several transcription factors are induced in HER2 overexpressingcells
resulting in a plethora of gene expression changes.
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Figure 4.
Structure of the HER2 amplicon in human breast cancer. Schematic and table listing of the
genes surrounding the HER2/ERBB2 locus at 17q12-q21 that are frequently co-amplified
with HER2/ERBB2. Specific cancers often have larger amplicons including genes outside of
this region. But amplicon mapping studies identify the above minimal common region of
amplification. Reprint from Endocrine-Related Cancer 13, p39-49, copyright 2006 with
permission from Society for Endocrinology and A. Kallioniemi.
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TABLE 1

Common nomenclature of HER2 rodent and human variants

Name, aliases Description Site mutated
(figure 1) Where found

neu, c-neu, wtneu,
neu proto-oncogene rodent cellular homolog of HER2 - in rat and mouse cells

neuT, neuNT, neu oncogene,
neuV664E

rat neu containing a transmembrane domain
mutation,
has potent transforming activity

C
disovered in a rat carcinogenesis model,
used as a
potent experimental oncogene

neu8142, neu8342 rat neu containing deletion mutations in the
extracellular domain A found in tumors from MMTV-c-neu

transgenic mice

HER2, ErbB2, c-ErbB2 human cellular HER2 - in human cells

HER2V659E engineered transforming mutant of human HER2,
analogous to neuT C never found in nature, engineered for

experiments

ΔHER2 isoform of human HER2 missing one exon B
normally occuring minor isoform found
wherever
HER2 is expressed

HER2YVMA
HER2 with a kinase domain mutation and
increased
kinase activity

D found in some lung cancers
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TABLE 2

Reported mouse transgenic models of HER2/neu

Reference Promoter Gene Phenotype

(Muller et al. 1988) MMTV neuT transgene early, multiple mammary tumors by 3 months, short
survival

(Bouchard et al. 1989) MMTV neuT transgene mammary tumors stochastically, 5-10 months

(Guy et al. 1992) MMTV c-neu transgene mammary tumors stochastically, 4-12 months, frequent
lung metastases

(Andrechek et al. 2000) endogenous neuT knock-in late mammary tumors, 12-17 months, with transgene
amplification

(Weinstein et al. 2000) murine neu c-neu transgene abnormal involution, focal mammary abnormalities in
multiparous females, 1-2 years

(Weinstein et al. 2000) murine neu neuT transgene abnormal involution, some late mammary tumors in
multiparous females, 14 months

(Finkle et al. 2004) MMTV human HER2 transgene multiple mammary tumors, 7 months, some lung mets

(Moody et al. 2002) MMTV-rtTA / TetO neuT transgene rapid mammary tumors within 6 weeks and frequent
lung mets, regress without dox

(Xie et al. 1998) human Keratin 14 neuT transgene severe hyperplastic lesions of skin, hair follicles,
esophagus, perinatal lethal

(Bol et al. 1998) bovine keratin 5 neuT transgene severe hyperplastic lesions of skin, esophagus,
papillomas, early death

(Kiguchi et al. 2000; Kiguchi
et al. 2001) bovine keratin 5 c-neu transgene hyperplasia, allopecia, papillomas, skin carcinomas,

biliary carcinomas, survive 6-12 months

(Xie et al. 1999) K14-rtTA-TetRE neuT transgene rapid dox induction of hyperplastic lesions in skin, hair
follicels, esophagus, regress without dox

(Li et al. 2006) probasin neuT transgene prostatic intraepithelial neoplasia and invasive prostate
cancer, 1-2 years
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