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Abstract

As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be
radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane
protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response
elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or
with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella
when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge
when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained
at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally
administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was
induced. Depletion of CD4+ T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection,
indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been
explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-
Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not
influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that
an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by
inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not
contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-
Brucella mucosal immunity.
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Introduction

Mucosal surfaces (e.g. gastrointestinal, respiratory and urogen-

ital tracts) are the initial sites of contact and entry for a vast

majority of pathogens; hence the induction of protective immunity

at these mucosal surfaces is usually an expected attribute in the

field of development of new vaccines [1]. Currently licensed

human or animal vaccines are generally administered by the

parenteral route; nevertheless parenterally-administered vaccines

are poor inducers of mucosal immune responses [1]. Alternatively,

mucosal-administered vaccines have the potential ability to induce

humoral and cell-mediated immune responses at mucosal sites and

at the systemic level, likewise [1]. This attribute of mucosal

vaccines together with their needle-less, noninvasive immunization

approach make them a very attractive vaccination choice.

Among oral delivery systems, plant-based edible vaccines are

endowed with all the attractive features of mucosal vaccines along

with other distinctiveness unique to plant expression systems, such

as the lack of requirement of fermentation and protein purification

processes, the cost-effective production because of the low energy

input and the low cost of supplies and the easy vaccine transport-

ation, preservation and delivery [2]. Moreover, edible vaccines

could be particularly suited for meat-markets-destined farm anim-

als, as repeated injections can deteriorate the carcass quality [3].
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Brucellosis is a world widespread zoonotic disease that is

transmitted from domestic animals to humans. It is mostly caused

by Brucella abortus and B. melitensis and is frequently acquired by

ingestion, inhalation, or direct contact of conjunctiva or skin-

lesions with infected animal products [4]. Bacteria spread from the

site of entry to different organs causing the acute disease symptoms

and developing localized foci of infection. There it survives

intracellularly in the mononuclear phagocytic system leading to

the chronic disease [5,6]. The human disease represents an

important cause of morbidity worldwide whereas animal brucel-

losis is associated with serious economical losses caused mainly by

abortion and infertility in ruminants [4]. While a human vaccine

would be valuable for individuals who may be occupationally

exposed to Brucella or consume unpasteurized dairy products from

areas in which brucellosis is endemic, human brucellosis incidence

can be reduced by control of the infection in domestic animals [7].

Thus, prevention of animal infection by vaccination is a key issue

[8,9]. Currently, there is no available vaccine against human

brucellosis and all commercially available animal vaccines are

based on live, attenuated strains of Brucella (B. abortus S19 and B.

abortus RB51 against bovine brucellosis and B. abortus Rev.1 for

sheep and goats) [9]. Despite their effectiveness, these vaccines

have disadvantages such as being infectious for humans,

interfering with diagnosis, resulting in abortions when adminis-

tered to pregnant animals and allowing the regional spread of

vaccine strain [9,10]. Thus, improved vaccines which combine

safety and efficacy to all species at risk need to be designed. As the

mucosal surfaces are the main sites of entry of Brucella to the body,

the development of a mucosal-administered vaccine for brucellosis

seems to be a rational option.

Throughout the last years we and others have made efforts to

develop improved vaccines against brucellosis, without the above

mentioned drawbacks [11–18]. Subunit vaccines, like recombinant

proteins, are promising vaccine candidates because they are safer,

well defined, not infectious and can not revert to virulent as live

attenuated vaccines.

It is well established that the production of interferon-gamma

(IFN-c) by T helper (Th) 1 cells as well as CD8+ T cell-mediated

responses are key mediators of protective immunity against Brucella

infections, whereas Th2 responses are minor contributors in host

resistance to this intracellular bacterium infection [19,20]. Up to

now, the function of Th17 cell responses in immunity to Brucella

organisms has been scarcely studied. Nevertheless, Th17 responses

have been shown to contribute to host defense against several

extracellular pathogens such as Klebsiella pneumoniae [21,22],

Citrobacter rodentium [23] and Candida albicans [24] as well as against

intracellular microorganisms such as Listeria monocytogenes, Salmonella

enterica or Mycobacterium tuberculosis [23,25].

The success of a subunit vaccine is strongly associated with its

composition and its administration route. B. abortus 19 kDa outer

membrane protein (Omp19) is a lipoprotein and is expressed

broadly within the Brucella genus [26]. The expression of this

protein has been shown to be crucial for the induction of a

protective response by the vaccine strain B. abortus S19, since the

abrogation of its gene in this strain leads to the loss of its protective

ability in heifers [27], indicating that this protein would be a key

component of a subunit vaccine against brucellosis. Furthermore,

we have previously reported that recombinant Omp19 -when

administered with the mucosal adjuvant cholera toxin (CT)- is a

protective mucosal antigen that confers protection against an oral

challenge with virulent Brucella [16]. The ability of Omp19 when

given orally to mice with CT heightened our proposal of

developing an oral vaccine against Brucella spp. However the use

of adjuvants in oral administered vaccines involves some

drawbacks: i) CT is a potent experimental adjuvant but is also

toxic [28] ii) there are very few mucosal adjuvants to test and most

of them are based on bacterial toxins or their subunits [28,29]. A

putative approach to avoid the need of external adjuvants consists

in having the 2 factors required to elicit a protective response in

the same molecule: the protective epitopes and the adjuvant

activity. In the present work we evaluate if Omp19 from Brucella

spp. -as an edible plant-made vaccine against brucellosis- would

fulfill the above-mentioned requisites and, study the implicated

immune mechanisms elicited upon vaccination.

Results

Plant-made U-Omp19 elicits a protective response
against an oral Brucella challenge

The production of plant-derived vaccines is, in principle, almost

limitless and may require little or no downstream processing

[30,31]. An edible vaccine could be useful, for instance, for

administration to cattle. As lipidation is not a common

posttranslational modification in plants, we first studied whether

a plant-made vaccine based on unlipidated (U)-Omp19 expression

would be effective against brucellosis. For this purpose, we decided

to use in an initial instance a fast transient expression system to

obtain sufficient quantities for initial studies. Therefore, the gene

encoding unlipidated U-Omp19 was cloned into the magnifection

system [32] and expressed in Nicotiana benthamiana (tobacco) plants

(Figure 1).

Firstly, we decided to evaluate the protective efficacy of the

tobacco-made U-Omp19. To this aim, mice were immunized with

3 intragastric (i.g.) weekly doses of purified plant-made U-Omp19

(75 mg/dose) or with an equal amount of the purified recombinant

E. coli-made U-Omp19. As positive and negative controls, other

groups of mice were orally immunized with the attenuated vaccine

strain B. abortus RB51 or with PBS, respectively. We used B. abortus

RB51 as positive vaccine control since, until now, this has been the

only strain used by the oral route as a positive vaccine control

when animals were challenged with B. abortus 2308 [33].

Therefore, for comparison purposes with other published oral

Brucella vaccine candidates, we decided to conduct the oral

protection experiments using these particular strains as positive

control and challenge strains respectively. One month after the last

immunization all mice were challenged orally with virulent B.

abortus 2308 and 30 days later they were sacrificed to evaluate the

protection by counting the colony forming units (CFU) in their

spleens (Figure 2). The elicited protective response was evaluated

as the reduction in the splenic CFU (expressed in logarithms)

determined in vaccinated mice compared with those determined

in PBS-immunized mice. The purified plant-derived U-Omp19

elicited a significant protective immune response (1.26 units of

protection, P,0.01 vs. PBS) when orally given to mice without

adjuvant (Table 1). The protection level elicited by the plant-

derived U-Omp19 did not differ significantly from that elicited by

the recombinant E. coli-made U-Omp19 (1.26 units of protection

vs. 1.22 units of protection, P.0.05) (Table 1). These results

indicate that U-Omp19 is able to induce a protective immune

response when orally administered without adjuvants and also that

the purified recombinant plant-made U-Omp19 is as immuno-

genic as the recombinant E. coli-made U-Omp19. As this

experiment was conducted without the addition of any adjuvant,

it demonstrates that U-Omp19 is a self-sufficient antigen (Ag)

when synthesized in a plant system as well as when synthesized in

E. coli. Additionally, the protection levels evoked by U-Omp19

immunization did not differ significantly from the protection levels

elicited by the control vaccine strain B. abortus RB51 (1.76 units of

Omp19 Oral Vaccine against Brucellosis
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protection, P.0.05 vs. U-Omp19) (Table 1), suggesting that when

developing a plant-made vaccine against brucellosis this antigen

should be selected.

In order to evaluate if U-Omp19 would be also protective when

administered in the context of crude plant material mice were

immunized i.g. with freeze dried crude leaf material of transgenic

tobacco leaves expressing U-Omp19. The U-Omp19 content on

the crude leaf material was quantified by competitive ELISA

resulting in 7.5 mg of U-Omp19 per mg of crude leaf material

(data not shown). A group of mice was immunized orally with

U-Omp19 expressing crude leaf material (containing 75 mg of U-

Omp19) while another group of mice received crude leaf material

of wild type (wt) tobacco plants (that did not express U-Omp19).

Other group of mice was immunized with the same amount of

purified recombinant E. coli-made U-Omp19 as positive control

while another group was immunized with PBS alone as negative

control. The oral administration of crude leaf material from

tobacco plants expressing U-Omp19 was able to induce significant

levels of protection (1.45 units of protection, P,0.01 vs. PBS)

(Table 2). The protection level obtained was specific to the U-

Omp19 since crude leaf material from wt plants was not able to

induce any protection against the challenge (20.07 units of

protection, P.0.05 vs. PBS) (Table 2). Moreover, when U-

Omp19 was administered in the context of crude leaf material the

elicited protection level was comparable to that elicited by the

recombinant purified protein made in E. coli (1.45 units of

protection vs. 1.15 units of protection, respectively, P.0.05)

(Table 2). This result indicates that the plant material does not

modify the immunogenicity of U-Omp19. The fact that U-Omp19

is a self-sufficient Ag when synthesized in a plant system provides a

significant progress towards the development of an edible vaccine

which will not require the addition of any adjuvants for its

administration.

Oral administration of Omp19 elicits a protective
response against a Brucella challenge without the need
of external adjuvants or its lipid moiety

Bacterial lipoproteins are characterized by the presence of a

lipid moiety with immunostimulatory properties at their amino-

terminal end. This modification has been shown in many cases to

confer them the ability to elicit specific immune responses [34]. As

Omp19 has protective epitopes [16] and it is a bacterial

lipoprotein [26], we hypothesized that if present the lipid moiety

would increase the protective immune response in an adjuvant-

free formulation. For this reason, two versions of the E. coli-made

protein were used: the complete lipoprotein (L-Omp19) -which

includes its N-terminal triacylated cysteine- and the unlipidated

version (U-Omp19) obtained by cloning the protein lacking the

consensus sequence for bacterial lipidation [35]. BALB/c mice

were immunized with either L-Omp19 or U-Omp19 by the i.g.

route without the addition of external adjuvants. As controls others

groups of mice were immunized with PBS alone (negative control),

U-Omp19 with CT or with the vaccine strain B. abortus RB51

(positive controls). Immunization with L-Omp19 without the

addition of external adjuvants elicited a significant protective

response against an i.g. B. abortus 2308 challenge (1,03 units of

protection, P,0.05 vs. PBS) (Table 3). Yet, the protection levels

elicited by L-Omp19 were roughly similar to those elicited by U-

Omp19 (1.03 units of protection and 1.04 units of protection,

respectively; P.0.05), indicating that the lipid moiety does not

improve the protective response elicited by U-Omp19 when

administered i.g. -without adjuvants- to mice. Furthermore, the

addition of the CT adjuvant did not significantly improve the

protective immune response elicited by U-Omp19 (Table 3). As

expected the vaccine strain B. abortus RB51 elicited a significant

protective response (1.48 units of protection, P,0.01 vs. PBS). As

obtained with plant- or E. coli-made U-Omp19, the protection

levels afforded by i.g. immunization with E. coli-made L-Omp19 or

U-Omp19 were similar to those elicited by the attenuated vaccine

strain B. abortus RB51 (P.0.05) (Table 3).

Parenterally-administered U-Omp19 elicits protection
against a systemic Brucella challenge

In order to test other routes of immunization, we decided to

evaluate the protective and immune responses elicited by Omp19

when parenterally administered as an adjuvant-free formulation.

BALB/c mice were intraperitoneally (i.p.) immunized with either

E. coli-made U-Omp19 or E. coli-made L-Omp19 without

adjuvants. As negative control other group of mice was immunized

with PBS alone whereas as positive controls other groups of mice

received incomplete Freund’s adjuvant (IFA)-emulsified E. coli-

made U-Omp19 or the vaccine strain B. abortus S19. Afterward,

mice were challenged i.p. with B. abortus 544 strain and the elicited

protective response was evaluated. Omp19 was able to elicit a

significant protective immune response when given parenterally

without adjuvants (P,0.01 vs. PBS) (Table 4). This response was

Figure 1. Omp19 expression in plants. (A) SDS PAGE of different
fractions obtained from immobilized metal affinity chromatography. 1,
Marker; 2, crude extract; 3, flow through; 4, first wash; 5, second wash; 6,
eluate. Marker band sizes are indicated on the left in kDa. (B)
Immunoblot of plant extracts. Crude leave extracts were separated in
a 12% SDS-PAGE, transferred to a PVDF membrane and probed with
Omp19 antisera. 1: WT; 2,3,4: Crude protein extracts of leaf material
corresponding to 50 mg, 25 mg, and 12.5 mg of total protein,
respectively. 5: 1 mg purified Omp19.
doi:10.1371/journal.pone.0016203.g001
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Figure 2. Immunization and experimental design scheme. (A) In order to analyze the immune responses and the elicited protective responses
induced after oral immunization, mice were immunized i.g. on days 0, 7 and 14. For the protection experiments mice were challenged one month
after the last immunization with virulent bacteria and 30 days later were sacrificed to analyze the bacterial burden in the spleens. For the analysis of
the DTH response immunized mice were challenged with U-Omp19 3 weeks after the last immunization. Cytokine production by splenocytes was
determined one month after the last immunization. (B) In order to analyze the immune responses and the elicited protective responses after
parenteral immunization, mice were immunized i.p. on days 0 and 15. For the protection experiments mice were challenged one month after the last
immunization with virulent bacteria and 30 days later were sacrificed to analyze the bacterial burden in the spleens. For the analysis of the cytokine
production the spleens of immunized mice were obtained one month after the last immunization.
doi:10.1371/journal.pone.0016203.g002

Table 1. Protection against oral B. abortus challenge in BALB/
c mice immunized i.g. with E. coli- or N. benthamiana- derived
purified U-Omp19 without adjuvants.

Vaccine (n = 5) Source

Log10
a CFU of B.

abortus 2308 at
spleen (mean ± SD)

Units of
protection

U-Omp19 N. benthamiana 4.3060.52 b 1.26

U-Omp19 E. coli 4.3460.12 b 1.22

B. abortus RB51 --- 3.8060.40 b 1.76

PBS --- 5.5660.07 c 0

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD
per group.

bSignificantly different from PBS-immunized mice P,0.01 estimated by
Dunnett’s test.

cSignificantly different from B. abortus RB51 immunized mice P,0.01 estimated
by Dunnett’s test.

doi:10.1371/journal.pone.0016203.t001

Table 2. Oral administration of U-Omp19 expressing crude
leaf material without adjuvant induces protection against oral
B. abortus challenge in BALB/c mice.

Vaccine (n = 5)
Log10

a CFU of B. abortus
2308 at spleen (mean ± SD)

Units of
protection

N. benthamiana– U-Omp19 4.0760.36 b 1.45

N. benthamiana –wt 5.5960.04 c 20.07

U-Omp19 purified from E. coli 4.3760.21 b 1.15

PBS 5.5260.09 c 0

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD
per group.

bSignificantly different from PBS-immunized mice P,0.01 estimated by
Dunnett’s test.

cSignificantly different from U-Omp19 immunized mice P,0.01 estimated by
Dunnett’s test.

doi:10.1371/journal.pone.0016203.t002
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independent of the protein lipidation, since there were no

significant differences between the protective response elicited by

U-Omp19 and L-Omp19 (1.84 or 1.56 units of protection

respectively, P.0.05) (Table 4). Moreover, the protective

response elicited by U-Omp19 immunization did not differ from

that induced by the vaccine strain B. abortus S19 (1.84 vs. 2.27 units

of protection, P.0.05) and the administration of the protein

emulsified with IFA did not improve the elicited protective

immune response (1.80 units of protection, P.0.05 vs. unadju-

vanted U-Omp19) (Table 4).

The fact that E. coli-made U-Omp19 induced similar levels of

protection to those elicited by the plant-derived U-Omp19 ensures

that the observed self-adjuvanticity is not a result of an E. coli-

derived contaminant. To confirm this fact, the protective capacity

of U-Omp19 was evaluated in Toll like receptor 4 knock

out (TLR42/2) mice. TLR42/2 or wt C56BL/6 mice were

immunized with E. coli-made U-Omp19 or PBS and the elicited

protective response was evaluated. U-Omp19 elicited a significant

protective response (P,0.01 vs. PBS) either in wt or TLR4-

deficient mice (Table 5), indicating that this receptor is not

involved in the protective response induced by U-Omp19 and that

the protein is protective in a more resistant mouse strain: C57BL/

6 [36].

The lipid moiety of Omp19 improves the elicited humoral
immune response after oral or systemic immunization

To further characterize the immune response elicited by the

administration of unadjuvanted Omp19 we first evaluated the

elicited specific humoral response in immunized mice. The kinetics

of specific serum immunoglobulin (Ig) G antibodies production in

immunized mice was determined. Immunization with E. coli-made

L-Omp19 induced a mild specific humoral response when

administered i.g., with maximal peak of titers arising 45 days

after the first immunization, whereas E. coli-made U-Omp19

induced almost undetectable titers of specific IgG (Figure 3A),

while no specific anti-Omp19 IgA was detected in feces from any

orally immunized mice (data not shown). When the humoral

immune responses elicited by i.p. immunization with E. coli-made

U-Omp19- or L-Omp19 were evaluated, a similar result to orally

immunized mice was obtained. The protein portion of Omp19

elicited a slightly undetectable specific humoral immune response

whereas the lipidated protein elicited elevated anti-Omp19 IgG

titers (Figure 3B). This result indicates that the lipid moiety could

improve the humoral immune response against Omp19 but this

improvement does not have any effect on the protection levels

(Tables 3 and 4). These results are in agreement to the already

described poor contribution of the humoral immune response in

the protective responses against smooth strains of Brucella spp. [37].

The protein portion of Omp19 elicits a specific Th1-Th17
immune response when orally delivered without
adjuvant and a specific Th1 immune response when
administered by the systemic route

In order to characterize the cellular immune response induced

in vivo after oral U-Omp19 immunization, the delayed type

hypersensitivity (DTH) response was determined in immunized

mice. After an intradermal U-Omp19-challenge a significant

DTH response (P,0.05 vs. PBS-immunized mice) was observed in

i.g. E. coli-made U-Omp19-immunized mice (Figure 4). To

further characterize the elicited cellular immune response we tried

to emulate the in vivo situation where T cells are confronted with

the whole Brucella, therefore we decided to use for the recall

experiments a hot saline extract of Brucella (HS) that contains the

bacterial proteins including native Omp19 [26]. Spleen cells from

immunized mice were cultured ex vivo with HS or with complete

culture medium alone (RPMI) as control. When splenocytes from

i.g. U-Omp19-immunized mice were stimulated in vitro with HS

they produced significant amounts of the cytokines IFN-c and IL-

17 (P,0.05 vs. PBS-immunized mice in response to the same

stimulus, Figure 5A and B, respectively). On the contrary, the

same splenocytes did not produce IL-2, IL-4 or IL-10 after HS in

vitro stimulation (data not shown).

In the case of systemic immunizations, splenocytes from i.p. E.

coli-made U-Omp19-immunized mice secreted significantly higher

amounts of IFN-c in response to HS than splenocytes from PBS-

immunized mice in response to the same stimulus (P,0.05)

(Figure 5C). However, HS in vitro stimulation did not stimulate

the production of IL-2, IL-4, IL-10 or IL-17 by the splenocytes of

either i.p. U-Omp19- or PBS-immunized mice (data not shown

and Figure 5D). All together these results indicate that U-Omp19

has the capacity to elicit a significant cellular mixed Th1-Th17

Table 3. Protection against oral B. abortus infection in BALB/c
mice vaccinated orally with L-Omp19 or U-Omp19 without
adjuvants or with U-Omp19+CT.

Vaccine (n = 5) Adjuvant
Log10

a CFU of B. abortus
2308 at spleen (mean ± SD)

Units of
protection

L-Omp19 None 4.3660.07 c 1.03

U-Omp19 CT 4.1360.31 b 1.26

U-Omp19 None 4.3560.19 b 1.04

B. abortus RB51 None 3.9160.64 b 1.48

PBS None 5.3960.16 d 0

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD
per group.

bSignificantly different from PBS-immunized mice P,0.01 estimated by
Dunnett’s test.

cSignificantly different from PBS-immunized mice P,0.05 estimated by
Dunnett’s test.

dSignificantly different from B. abortus RB51 immunized mice P,0.01 estimated
by Dunnett’s test.

doi:10.1371/journal.pone.0016203.t003

Table 4. Parenteral L-Omp19 or U-Omp19 inoculation
without adjuvant induce protection against B. abortus
infection in BALB/c mice.

Vaccine (n = 5) Adjuvant
Log10

a CFU of B. abortus
544 at spleen (mean ± SD)

Units of
protection

L-Omp19 None 4.7260.62 b, d 1.56

U-Omp19 None 4.4460.26 b 1.84

U-Omp19 IFA 4.4860.13 b 1.80

B. abortus S19 None 4.0160.27 b 2.27

PBS None 6.2860.13 c 0

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD
per group.

bSignificantly different from PBS-immunized mice P,0.01 estimated by
Dunnett’s test.

cSignificantly different from B. abortus S19 immunized mice P,0.01 estimated
by Dunnett’s test.

dSignificantly different from B. abortus S19 immunized mice P,0.05 estimated
by Dunnett’s test.

doi:10.1371/journal.pone.0016203.t004
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immune response without the need of adjuvant’s help when

administered by the oral route and a specific Th1 immune

response when administered i.p. to mice.

U-Omp19 activates dendritic cells in vivo
The initiation of an immune response mainly involves the

capture and processing of an antigen by dendritic cells (DC) that

are activated by local stimuli. After activation they migrate to

lymphoid organs and up-regulate the expression of various co-

stimulatory molecules improving the antigen specific adaptive

immune response [38]. The addition of an adjuvant into a subunit

vaccine formulation has usually the purpose of activating DC at

the site of inoculation and thereby inducing a strong and effective

specific immune response against the co-administered antigen

[39]. The fact that U-Omp19 did not require the addition of

adjuvants for the induction of effective protective responses

prompted us to analyze if the administration of U-Omp19 has

an effect on the maturation status of DC in vivo. BALB/c mice

were intravenously (i.v.) injected with E. coli-made U-Omp19 and

20 h later the maturation status of their splenic DC was assessed

by flow cytometry. As controls other groups of mice received by

the same route: i) proteinase K-digested U-Omp19 control, ii) PBS

alone (basal control) or iii) E. coli LPS (full-maturation control).

The maturation status of splenic DC was evaluated analyzing the

surface expression of co-stimulatory molecules on CD11c+ cells.

After U-Omp19 administration the expression of CD40, CD80

and CD86 molecules was up-regulated on splenic DC when

compared to their basal expression levels on splenic DC from PBS-

injected-mice (Figure 6A, B and C, respectively). Conversely,

after being fully-digested with proteinase K, the U-Omp19 ability

to stimulate DC in vivo was completely abrogated. On the contrary,

the same protein digestion treatment did not affect the activity of

E. coli LPS which, as expected, up-regulated the expression of the

studied co-stimulatory molecules (Figure 6 and data not
shown). These results indicate that U-Omp19 is endowed with

Table 5. Protection against B. abortus in C57BL/6 wt or TLR42/2 mice immunized with U-Omp19 without adjuvants.

Strain (n = 5): wt TLR42/2

Vaccine Adjuvant
Log10

a CFU of B. abortus 2308 at
spleen (mean ± SD) Units of protection

Log10
a CFU of B. abortus 2308

at spleen (mean ± SD) Units of protection

U-Omp19 None 4.6060.34 b 1.12 4.2360.20 c 1.03

PBS None 5.7260.06 0 5.2660.54 0

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD per group.
bSignificantly different from wt PBS-immunized mice P,0.01 estimated by Student’s test.
cSignificantly different from TLR42/2 PBS-immunized mice P,0.01 estimated by Student’s test.
doi:10.1371/journal.pone.0016203.t005

Figure 3. Kinetic of the specific humoral responses elicited after
administration of adjuvant-free Omp19. BALB/c mice were
immunized i.g. (A) or i.p. (B) with L-Omp19 (N) or U-Omp19 (#) without
adjuvants as indicated in materials and methods and the kinetic of the
Omp19 specific humoral response elicited after immunizations was
determined. Serum samples were obtained at the indicated time after the
first immunization. Omp19-specific IgG Ab titers were determined by
ELISA. Each point represents the mean 6 S.E.M of the Ab titer from 5 mice
per group. (w) and (w w) significantly different from the U-Omp19
immunized group, (P,0.05) and (P,0.01), respectively. This experiment
was conducted three times with similar results.
doi:10.1371/journal.pone.0016203.g003

Figure 4. Specific DTH response elicited after i.g. administra-
tion of adjuvant-free Omp19. Three weeks after the last i.g.
immunization mice were intradermally challenged with U-Omp19 in
their left footpad and an equal volume of saline into their right footpad.
DTH response was measured at 72 h following injection of antigen.
Each bar represents the mean increase in the footpad thickness 6 SEM
from 5 mice per group. (w) Significantly different from the mean
increase thickness measured in PBS immunized mice (P,0.05).These
experiments were conducted three times with similar results.
doi:10.1371/journal.pone.0016203.g004
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in vivo DC-stimulating activity. This DC-stimulatory activity might

explain, at least in part, the lack of need of adjuvants to induce a

U-Omp19-specific and effective immune response when the

protein moiety is given to mice alone.

IL-17 plays a key role in the protective immune response
elicited by the unadjuvanted oral administration of U-
Omp19

The role of CD4+ T cells and the cytokine IFN-c in protective

responses against Brucella has been well established. Nevertheless,

the impact of IL-17 on Brucella infection, as well as its role on

vaccine-induced protective responses has never been evaluated.

Having in mind that animals immunized by the oral route with U-

Omp19 induced a Th17 immune response in vitro we decided to

investigate the role of IL-17 and CD4+ T cells in the elicited

protective response against Brucella after oral immunizations with

U-Omp19. Different groups of mice were orally immunized with

E. coli-made U-Omp19 or PBS and received different treatments

before or after the oral challenge with B. abortus 2308. In order to

abolish the CD4+ T cells primed by the immunizations, one

group of U-Omp19 immunized mice was treated with anti-CD4

monoclonal antibody (mAb) prior to the challenge. This treatment

eliminated all the mature CD4+ T cells at the time of challenge.

Other groups of mice were treated with anti-IL-17 mAb

immediately after the challenge and every 6 days until their

sacrifice. One month after the oral Brucella challenge all mice were

sacrificed and the elicited protective response was evaluated. The

ability of U-Omp19 to elicit a protective response when orally

administered was lost when the mature CD4+ T cell population

was depleted in vivo prior to the challenge (0.32 units of protection,

P.0.05 vs. PBS) (Table 6). At the same time, U-Omp19

immunized-mice treated with an irrelevant isotype matched

mAb exhibited a significant level of protection (1.14 units of

protection, P,0.01 vs. PBS) (Table 6). The protection level

elicited in the latter group was statistically higher than the one

induced by the CD4+ T cell-depleted group (P,0.01) indicating

that the CD4+ T cell population induced after U-Omp19

vaccination has a main role in eliciting oral immune protection

(Table 6).

In the same way, neutralization of IL-17 significantly reduced

the elicited protective response (0.47 units of protection, P.0.05

vs. PBS and P,0.05 vs. U-Omp19 immunized mice treated with

an isotype matched irrelevant antibody) (Table 6). On the

Figure 5. Cellular immune responses elicited after i.g. or i.p. administration of adjuvant-free Omp19. Mice were immunized with U-
Omp19 or PBS i.g. (A–B) or i.p. (C–D) as indicated in materials and methods and in Figure 1. Specific production of IFN-c (A and C) and IL-17 (B and
D) by splenocytes of i.g. or i.p. U-Omp19 immunized mice was evaluated 30 days after the last immunization. Spleen cells (46106 cells/ml) were
cultured with HS (20 mg/ml) or complete medium alone (RPMI) for 72 h. Each sample was assayed in duplicate wells. Cytokines in culture
supernatants were measured by sandwich ELISA. Data represent the mean 6 SEM from each group of five mice. (w) Significantly different from the
cytokine level induced by the same stimulus in PBS immunized mice (P,0.05). These experiments were conducted three times with similar results.
doi:10.1371/journal.pone.0016203.g005
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Figure 6. In vivo activation of DCs after U-Omp19 injection. U-Omp19 either untreated or digested with proteinase K, E. coli LPS or PBS alone
was injected i.v. to BALB/c mice. Splenic CD11c+ DCs were analyzed for their activation status 20 h after injection by assessing the surface expression
of (A) CD40, (B) CD80 and (C) CD86 molecules by flow cytometry. This experiment was conducted three times with similar results. Histograms display
results from one representative experiment.
doi:10.1371/journal.pone.0016203.g006

Table 6. Protective responses against oral Brucella infection elicited by U-Omp19 oral vaccination are mediated by CD4+ T cells
and IL-17.

Vaccine (n = 5) Treatment Log10
a CFU of B. abortus 2308 at spleen (mean ± SD) Units of protection

U-Omp19 Isotype Control 4.3660.21 b 1.14

U-Omp19 Anti - CD4 5.1860.41 c 0.32

U-Omp19 Anti - IL-17 5.0360.58 d 0.47

PBS Isotype Control 5.5060.09 c 0

PBS Anti - IL-17 5.6660.30 c 20.16

aThe content of bacteria in spleens is represented as the mean log10 CFU 6 SD per group.
bSignificantly different from PBS-immunized mice P,0.01 estimated by Dunnett’s test.
cSignificantly different from U-Omp19 immunized (Isotype Control-treated) mice P,0.01 estimated by Dunnett’s test.
dSignificantly different from U-Omp19 immunized (Isotype Control-treated) mice P,0.05 estimated by Dunnett’s test.
doi:10.1371/journal.pone.0016203.t006
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contrary, IL-17 neutralization during the infection did not

influence at all the persistence and multiplication of this bacteria

in PBS-immunized mice, since at the moment of the sacrifice the

bacterial burden was not different between PBS-immunized mice

treated with anti-IL-17 and an isotype matched irrelevant

antibody (P.0.05) (Table 6). These findings provide in vivo

evidence that IL-17 plays a crucial role in the adaptive immune

response against an oral infection with the intracellular bacteria B.

abortus.

Discussion

A great deal of effort has been directed toward the replacement

of existing whole cell or formalin-inactivated vaccines with subunit

vaccines that may be safer and more effective than existing

vaccines [40]. In addition, other efforts are directed at developing

alternatives to traditional vaccine delivery, including mucosal

(oral) delivery of plant-derived vaccines [31]. As Brucella infections

mainly involve the bacterial entry through the mucosal routes, the

development of successful approaches for oral vaccination could

radically alter the current scene of brucellosis. Most published

studies have evaluated the use of attenuated Brucella strains

[33,41,42] or live vectors expressing Brucella antigens [43,44] or

carrying DNA plasmids for DNA vaccine delivery at the mucosal

gut [45]. At present, only 3 recombinant proteins of Brucella have

been evaluated as oral vaccine candidates: the choloylglycine

hydrolase (CGH) [46], Omp16 and Omp19 [16,47]. To our

knowledge there are no reports describing the use of an edible

vaccine made in plants against Brucella.

Plant-derived oral vaccines are a very suitable approach with

many advantages, including their ability to stimulate systemic and

mucosal immune responses, their simplified large-scale production

and storage (eliminating frozen stocks), and their improved safety

due to the lack of human pathogens or microbial toxin

contamination [2]. Our results indicate that plant-expressed U-

Omp19 is able to induce significant protective immune responses

when administered to mice by the oral route as a purified protein

as well as within the crude leaf material of transgenic tobacco

plants. In both cases the achieved protection levels were equivalent

to those elicited by the purified E. coli-made U-Omp19, indicating

that the plant-made U-Omp19 has similar self-adjuvanting

properties to its homologous expressed and purified from E. coli.

U-Omp19 is a very promising vaccine candidate, since it could

be expressed in an edible plant and administered with the food to

animals. In the case of bovines, it has been described that

rumination could be exploited for vaccine improvement, since if

the vaccine antigen is expressed by a fibrous feed like alfalfa the

nasopharyngeal immune tissues have a prolonged exposure to the

vaccine during the cud chewing [3]. Yet, in cattle and other

ruminants protein administration by the oral route would have a

negative side because of the enhanced antigen degradation in the

rumen, previous to the passage to the intestine [3]. However,

antigens expressed in plant would be protected by bioencapsula-

tion, enhancing the antigen delivery to the gut-associated

lymphoid tissue [30,31,48].

A major restrictive factor for the development of plant-derived

oral vaccines is the availability of efficient and safe adjuvants that

work at mucosal sites. Induction of immune responses following

mucosal immunization is usually dependent on the co-adminis-

tration of appropriate adjuvants that, overcoming tolerance, can

initiate and support the transition from innate to adaptive

immunity [49]. However, many adjuvants are associated with

toxicity or side-effects and their use also increases the cost of

vaccine manufacture and introduces complexity [28]. Therefore,

the use of adjuvant-free vaccines would be considered a very

worthwhile approach for oral and systemic vaccination. Auspi-

ciously, U-Omp19 administered without adjuvants is able to

induce protective immunity against Brucella in BALB/c mice when

administered by the oral route as well as by the systemic route.

This protective capacity is neither improved by the lipidation of

the protein nor by the addition of external adjuvants (CT when

orally administered or IFA when i.p. delivered). The fact that the

protein moiety of Omp19 has the ability to induce the protective

responses by itself is a very favorable attribute in the vaccine field,

since the lack of adjuvants in the formulation would reduce

adjuvant associated drawbacks such as toxicity, side effects, cost,

etc., and the U-Omp19 production is beyond any doubt easier and

more economical than the one of L-Omp19 [16].

U-Omp19 elicits straightly similar protection levels to those

conferred by the current used attenuated vaccine strains by the

oral route or by the parenteral route (B. abortus RB51 and B. abortus

S19, respectively), indicating that U-Omp19 would be a rational

component in a subunit vaccine formulated with only few

protective antigens against brucellosis. Yet, this should be proven

in the final hosts of Brucella spp. (cattle, goats, sheep and swine).

The ability of U-Omp19 to elicit a protective response against a

B. abortus infection without the addition of adjuvants was not only

observed when orally administered but also when i.p. administered

to mice. These results indicate that this protein can act as a self-

adjuvant on the mucosal as well as on the systemic immune

system. Furthermore, the elicited systemic protective response was

not only protective against B. abortus infections, but also against B.

melitensis and B. suis infections (data not shown). Taking all these

results into account, U-Omp19 would be a powerful component of

a subunit vaccine against brucellosis, which could be useful for

rapid vaccination of different Brucella affected livestock species and

be administered by different immunizations routes without the

need of external adjuvants.

As the activation of DCs plays a critical role in the initiation of

immune responses, we evaluated the ability of U-Omp19 to

activate this cell population. Our results indicate that U-Omp19

activates DCs in vivo as indicated by the up-regulation of the

expression of CD40, CD80 and CD86 molecules on DC

membrane. This activity is completely dependent on the presence

of the intact protein, since it was lost when the complete degraded

protein with proteinase K was used as stimulant.

After oral or i.p. administration of Omp19 a mild specific

humoral immune response is induced in L-Omp19 immunized

mice. On the contrary, in U-Omp19-immunized mice the anti-

Omp19 IgG antibodies are practically undetectable in serum of

immunized mice. The lack of a specific humoral response elicited

by i.g. U-Omp19 administration compared to L-Omp19 immu-

nizations by the same route together with the similarities in the

protective immune responses evoked by the lipidated or

unlipidated versions of the protein are in concordance with the

usually associated scant participation of antibodies in the

protective immune responses against smooth strains of Brucella

spp., such as B. abortus [9].

Throughout all this manuscript there are many results that

validate that the measured self-adjuvanting properties of U-

Omp19 are not due to E. coli contaminants, mainly LPS, but to a

feature of the protein moiety. Firstly, the protection level induced

by the oral administration of tobacco derived purified U-Omp19,

the crude leaf material expressing this protein or the E. coli-made

U-Omp19 was equal. Secondly, E. coli-made U-Omp19 induced

significant and equivalent levels of protection in wt and TLR42/2

C57BL/6 mice, indicating that the TLR4 receptor is not involved

in the ability of U-Omp19 to elicit a protective response. Last but
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not least, the abrogation of the in vivo DC-stimulating properties of

U-Omp19 by the complete protein degradation with proteinase K

in combination with the lack of effect of the same treatment on the

E. coli-LPS activity provided evidence that the measured activity

resides in the U-Omp19 protein moiety.

Because of its intracellular residence, effective immune respons-

es against Brucella include predominantly cell-mediated immunity.

Furthermore, Th1 and CTL responses are critical components

involved in anti-Brucella protection. Principally IFN-c, which

activates macrophages for more efficient killing and inhibition of

replication of intracellular microbial pathogens, is generally

considered crucial in the battle against this illness [50]. The in

vivo CD4+ T cell subset depletion experiment clearly showed that

oral protection against B. abortus elicited by U-Omp19 is mainly

attributed to CD4+ T cells. Moreover, oral administration of U-

Omp19 induced a mixed Th1-Th17 specific cellular immune

response, while systemic administration of U-Omp19 elicited a

Th1 immune response. In contrast to Th1 differentiation, which

depends on IL-12, Th17 differentiation in mice requires IL-6 and

TGF-b in vivo. DC can determine whether nonresponsiveness

(tolerance) or an active immune response occurs to a particular

antigen, as well as determining whether a T helper (Th) 1, Th2,

Th17 or a regulatory response predominates [51,52]. As there are

many differences in terms of cell distribution and cytokine

expression between gut and spleen it would be possible that -

when orally delivered - Omp19 can bind and activate a specific

cell population present at the gut that is not present at the spleen

that positively regulated the differentiation of interleukin 17-

producing T helper cells.

Recently, the role of Th17 responses in infectious diseases has

started to be elucidated. It has been shown that Th17 responses

are important for the host defense against many microorganisms,

although they can also contribute to immunopathology during

infection [53,54]. In infections caused by bacteria and fungi, the

pathogen-induced Th17 response has been reported as an

important mediator of protective mucosal host defense [53,54].

At present, the role that IL-17 might play in the clearance of

Brucella spp. is largely unknown. As oral administration of U-

Omp19 induces a Th17 immune response in vitro we decided to

study its in vivo role in the elicited protection. Unprecedented, our

results demonstrate that IL-17A neutralization during the

challenge period abrogates U-Omp19 vaccine efficacy, while does

not affect the bacterial burden in PBS-immunized mice.

Brucella is an intracellular facultative pathogen that infects

professional and non-professional phagocytes, including macro-

phages, neutrophils, placental trophoblasts, DC and epithelial cells

[4]. After being internalized, Brucella builds its replicative niche

where it resists the intracellular killing and replicates. Brucella

intracellular fate is crucial to cause illness and involves several

important virulence factors, which allow the bacterium to survive

and proliferate within a membrane compartment, called the

Brucella-containing vacuole. This vacuole interacts transiently with

endosomes and fuses with the ER membrane establishing a

replicative compartment and causing a chronic infection [4].

There are evidences that IL-17 plays a protective role against the

primary infection of some intracellular bacteria, such as Francisella

tularensis and Listeria monocytogenes [55–57], while it has been shown

to have a limited role with other intracellular primary infections,

such as tuberculosis [58] or a controversial role like in Salmonella

enterica [59–61]. However, recent evidence supports a critical role

of Th17 cells in vaccine-induced protection to both extracellular

and intracellular infections, such as Staphylococcus aureus, Candida

albicans, Bordetella pertusis, Mycobacterium tuberculosis, Pseudomonas

aeuruginosa [23,58,62–64]. To our knowledge, this is the first

demonstration that vaccine-induced IL-17 is critical against an

oral delivery challenge with virulent intracellular bacteria. In the

case of Brucella infection, our results indicate different and

important new discoveries: i) IL-17 does not contribute to reduce

the bacterial burden in non vaccinated young mice, at least during

the first month of infection and ii) IL-17 plays a central role in

vaccine mediated anti-Brucella immunity.

In conclusion, altogether our results demonstrate that an oral

vaccine based on U-Omp19 induces protection against mucosal

challenge with the intracellular bacteria B. abortus by inducing an

adaptive IL-17 immune response.

Materials and Methods

Ethics Statement
All experimental protocols of this study were conducted in strict

accordance with international ethical standards for animal

experimentation (Helsinki Declaration and its amendments,

Amsterdam Protocol of welfare and animal protection and

National Institutes of Health, USA NIH, guidelines: Guide for

the Care and Use of Laboratory Animals). All surgeries were

performed under sodium pentobarbital anesthesia. They were

performed by the premise of minimizing the suffering to which

animals are exposed and use the minimum number of experi-

mental animals to ensure statistically significant results. The

protocols of this study were approved by our Institutional

Committee for the Care and Use of Laboratory Animals

(CICUAL) from the University of Buenos Aires (Permit Number:

1100).

Mice
All mice experiments were performed using 8–10 week-old-

female specific-pathogen-free mice. Mouse strains were: BALB/c

mice (obtained from Universidad Nacional de La Plata, Argen-

tina), C57BL/6 wt mice (provided by the Federal University of

Minas Gerais, UFMG; Belo Horizonte, Brazil) and genetically

deficient TLR42/2 C57BL/6 mice (provided by S. Akira, Osaka

University, Japan). Mice were housed in appropriate conventional

animal care facilities and handled following international guide-

lines required for animal experiments.

Bacterial strains
B. abortus strain 2308 and B. abortus strain 544 were used in the

challenge experiments. B. ovis strain REO 198 was used for

production of the antigenic preparation Hot Saline (HS) and B.

abortus RB51 and B. abortus S19 were used as vaccine controls. All

strains were obtained from our own laboratory collection

[13,15,65] derived from the Brucella culture collection (INRA-

Nouzilly, France). Bacterial growth and inocula preparation were

performed as previously described [65,66]. E. coli BL21(DE3)

(Novagen, Madison, WI) was used for recombinant protein

expression.

Antigen production
The recombinant lipidated (L-) and unlipidated (U-) Omp19

proteins were obtained as previously described [35]. Briefly, using

B. abortus 544 genomic DNA as template, the B. abortus Omp19

gene sequences were cloned into the pET 22b+ vector (Novagen,

Madison, WI). The unlipidated version was cloned using different

forward primers, resulting in the gene sequence lacking the

putative signal peptide and the N-terminal cysteine. After cloning,

the resulting plasmids (pET-L-Omp19, pET-U-Omp19), con-

tained the genes with a COOH-terminal 66 histidine tag. The

expression of recombinant Omps in E. coli BL21(DE3) was
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induced with isopropyl b-D-thiogalactoside (1 mM). The lipidated

protein, L-Omp19, was isolated from bacterial membranes

whereas the unlipidated protein, U-Omp19, was isolated from

bacterial cytoplasm. Purification was performed by affinity

chromatography with a Ni-NTA resin (Qiagen, Dorking, U.K.).

The process of expression and purification was monitored by SDS-

PAGE followed by silver staining. The identity of the Omps was

confirmed by western blot developed with anti-Omp19 specific

mAbs. In some experiments, a U-Omp19 enzymatically digested

preparation was used as control. U-Omp19 was treated with

proteinase K-agarose from Tricirachium album (Sigma) for 2 h at

37uC following manufacturer’s indications. The enzyme immobi-

lized in agarose was then centrifuged out (2000 g, 5 min) and the

supernatants were incubated for 1 h at 60uC to inactivate any

fraction of soluble enzyme. The complete digestion of the proteins

was checked by SDS-PAGE, followed by coomassie blue staining.

In the in vitro cell stimulation assays a hot saline extract (HS)

from B. ovis REO 198, that is enriched in Brucella Omps and that

contains the native Omp19 [26], was utilized as stimulus. HS was

obtained as previously described [66].

Protein concentration was determined by the bicinchoninic acid

assay with bovine serum albumin as a standard (Pierce, Rockford,

IL). LPS contamination was eliminated with Sepharose-polymyxin

B. Endotoxin determination was performed with Limulus amoe-

bocyte assay (LAL) (Associates of Cape Cod, Woods Hole, MA).

All protein preparation contained ,0.25 endotoxin U/mg protein.

Omp19 expression in N. benthamina plants
For the transient plant expression the coding sequence of U-

omp19 was PCR amplified using primers PO19-102 (59-TT-

TGGTCTCAAGGTATG CAGAGCTCCCGGCTTGG-3) and

PO16-201(59-GCTCTAGATCAGTGGTGGTGGTGTGGTG-

CTC-39). The construct was cloned into pCRblunt (Invitrogen,

Karlsruhe, Germany) and sequenced for integrity check. Subse-

quent cloning of the XbaI/BsaI- fragment into vector pICH10990

resulted in vector termed pO19-6122. The full-length coding

sequence of Omp19 was cloned by pasting a NcoI/XbaI fragment

from vector pO19-3211 into the 39-module pICH11533. Trans-

formation, infiltration, and purification were carried out according

to Pasquevich et al. 2010 [47].

Immunizations and experimental design
Intragastric (i.g.) immunization of mice. Groups of 5

BALB/c mice were immunized on days 0, 7 and 14 i.g. as

previously described [16,46]. Different groups received the

following treatments: i) 75 mg of purified recombinant U-Omp19

in 200 ml of bicarbonate buffer (HCO3Na 0.1M pH 8), ii) 75 mg of

purified recombinant N. benthamiana made U-Omp19 in 200 ml of

bicarbonate buffer, iii) 75 mg of purified recombinant E. coli U-

Omp19 mixed with 5 mg of cholera toxin (CT) (Sigma-Aldrich) in

200 ml of bicarbonate buffer as positive control, iv) 75 mg of L-

Omp19 in 200 ml of bicarbonate buffer or v) 200 ml PBS plus

bicarbonate buffer as negative-control. For the protection

experiments an extra group of mice received iv) a single dose

i.g. of 0.56109 CFU of live B. abortus RB51 (positive control).

In some protection experiments mice were immunized i.g. with

transgenic crude leaf material of N. benthamiana plants. In those

experiments mice received 3 i.g. doses of i) 10 mg of freeze-dried

transgenic N. benthamiana leaf powder (containing >75.8 mg of U-

Omp19) suspended in bicarbonate buffer, ii) 10 mg of freeze-dried

non transgenic N. benthamiana (wt) leaf powder suspended in

bicarbonate buffer, iii) 75.8 mg of purified E. coli-made recombi-

nant U-Omp19 in bicarbonate buffer or iv) PBS plus bicarbonate

buffer.

Parenteral immunization of mice. Groups of 5 BALB/c or

C57BL/6 mice were immunized on days 0 and 15 intraper-

itoneally (i.p.) with 30 mg of the specified antigen. As control some

mice were immunized i.p. with U-Omp19 emulsified in IFA. In

addition other groups of mice were immunized with PBS as

negative control and for the protection experiments as positive

control an extra group of mice received i.p. a single dose of the

vaccine strain B. abortus strain 19 (16104 CFU/dose).

Sera samples were obtained from blood samples collected from

the retro-orbital plexus and fecal pellets from each mouse were

collected on days 0, 15, 30 and 45 after the first immunization.

After immunizations, mice were used to evaluate the elicited

protective immune response or the specific cellular immune

responses (cytokines production or DTH response).

Antibody detection
Anti-Omp19 IgG, IgG1 and IgG2a specific antibody titers in

the sera of immunized mice were measured with a specific indirect

ELISA, as previously described [16]. Anti-Omp19 IgA was

analyzed in Fecal extracts by indirect ELISA using a goat anti-

mouse IgA-specific horseradish peroxidase conjugate (Santa Cruz

Biotechnology, Santa Cruz, CA). Fecal extracts were prepared by

suspending 5 fecal pellets in 0.5 ml of extraction buffer (100 mg/ml

soybean trypsin inhibitor (Sigma), 10 mg/ml bovine serum

albumin (SIGMA) and 30 mM disodium EDTA in PBS,

pH = 7.6). After homogenization and centrifugation at 4uC, the

supernatants of the fecal extracts were used for IgA determination

in feces.

Protection experiments
One month after the last immunization mice were challenged

with virulent Brucella by the same route of the immunizations.

Intragastrically (i.g.) immunized mice were challenged i.g. with

36108 CFU of B. abortus 2308 while i.p. immunized mice were

challenged with 46104 CFU of B. abortus 544 or B. abortus 2308.

One month after challenge spleens where aseptically removed,

homogenized in sterile PBS, diluted, plated and incubated as

described [65] to determine the number of Brucella colonies.

Results were represented as the mean log CFU 6 SD per group.

Units of protection were calculated subtracting the mean log10

numbers of CFU in the experimental group from the mean log10

numbers of CFU in the PBS-immunized group. Each experiment

was repeated three times.

Cellular immune responses
DTH Response. DTH tests were performed as an in vivo

index of the elicited cell mediated immunity. Three weeks after the

last i.g. immunization mice received intradermally 30 mg of U-

Omp19 into the left footpad while an equal volume of vehicle

(saline) was injected into their right footpad. After 72h the DTH

reaction was quantified by measuring the difference between the

footpad thicknesses using a digital caliper with a precision of

0.01 mm. The mean increase in footpad thickness (mm) was

calculated according to the following formula: left footpad

thicknesses (U-Omp19) 2 right footpad thicknesses (saline).

Cytokine production. Spleen cells from immunized mice

were obtained 1 month after the last immunization and were

stimulated as previously described [16]. Briefly, single cell

suspensions of spleen cells from immunized and control mice

were cultured in duplicate at 46106 cells/ml in RPMI 1640

(Gibco BRL, Life Technologies, Grand Island, N.Y.) supple-

mented with 10% fetal calf serum (Invitrogen Life Technologies),

1 mM sodium pyruvate, 2 mM L-glutamine, 100 U of penicillin/

ml, 100 mg of streptomycin/ml (complete medium) with stimuli.
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The different stimuli were: HS (20 mg/ml) or complete medium

alone. After 72 h of incubation at 37uC in a humidified

atmosphere (5% CO2 and 95% air) cell culture supernatants

were collected and immediately stored at 280uC until further

analysis. Cytokine production was analyzed using mouse ELISA

kits according to the manufacturer’s instructions: IFN-c, IL-2, IL-

4, IL-5, IL-10 (Pharmingen, San Diego, CA, USA) and IL-17

(R&D Systems, Minneapolis, MN, USA).

In vivo analysis of DC maturation
In vivo activation of DCs was evaluated with flow cytometry by

measuring the expression of various surface markers. BALB/c

mice were injected i.v. with 100 mg of U-Omp19 untreated or

digested with proteinase K or 25 mg of E. coli LPS (Sigma) or with

PBS alone. Twenty hours after immunization, mice were sacrificed

and spleen cells from mice were removed and treated for 45 min

at 37uC with 400 U/ml collagenase type IV and 50 mg/ml DNase

I (Boehringer Mannheim) in RPMI 1640. After inhibition of

collagenase with 6 mM EDTA and 0.5% fetal calf serum, a single

spleen cell suspension was prepared and incubated with PE-anti-

CD11c mAb (BD Pharmingen) and FITC conjugates anti-CD86,

anti-CD40 and anti-CD80. After staining, cells were fixed and

analyzed by flow cytometry using a FACS ARIA II (BD

Biosciences). Data were analyzed using FlowJo software (Tree

Star).

Quantification of U-Omp19 in crude leaves of tobacco
material

The U-Omp19 content in crude leaves of tobacco material was

evaluated by a competitive ELISA based on a rabbit anti-U-

Omp19 polyclonal serum and the recombinant purified E. coli-

made U-Omp19 as standard.

Polystyrene plates (Immuno plate with MaxiSorp surface

Nunclon; Nunc, Roskilde, Denmark) were coated with 0.5 mg/

well of purified recombinant U-Omp19 in PBS. After 1 h of

incubation at room temperature plates were washed 4 times in

PBS with 0.05% Tween 20 (PBS-T), and blocked with 200 ml/well

of 3% skim milk in PBS overnight at 4uC. A 1:1 mix of the rabbit

anti-Omp19 serum (1:32000) with serial dilutions of U-Omp19

(standard curve) or the samples (soluble crude leaves material)

were incubated at room temperature for 30 min and afterwards

added to the blocked plates (50 ml/well) and incubated 1 h at

room temperature. Each condition was carried out in triplicate.

The serum was diluted in PBS-T containing 1.5% skim milk and

the standard U-Omp19 and samples were diluted in PBS. Isotype-

specific goat anti-rabbit horseradish peroxidase conjugate (Santa

Cruz Biotechnology, Santa Cruz, CA) was added (50 ml/well) at

an appropriate dilution. After 1 h of incubation at room tempera-

ture, plates were washed 4 times, and 50 ml/well of substrate

solution (200 mM of o-phenylenediamine and 0.04% H2O2) were

added to each well. After 20 min of incubation at room tempera-

ture, the enzyme reaction was stopped by addition H2SO4 and the

absorbance was measured at 492 nm. The absorbance values were

transformed using the following equation log10 (A/(Amax-A) were

A is the measured absorbance for a standard concentration or a

sample and Amax is the absorbance measured when any soluble U-

Omp19 was incubated with the rabbit serum. This transformation

leaded to a lineal relation with log10C (C = concentration of U-

Omp19). This immunoassay was highly specific, sensitive, and

suitable for U-Omp19 quantification. U-Omp19 concentrations

determinable by ELISA ranged from 0.078 to 300 mg/ml.

In vivo CD4+ T cell depletion or IL-17 neutralization
In some experiments immunized mice were depleted of CD4+ T

cells prior to the challenge with virulent Brucella while other groups

of mice received anti-IL-17A mAb (Biolegend) after the challenge

to neutralize IL-17 activity. For the CD4+ T cell depletion,

vaccinated mice were i.p. injected with 200 mg of purified GK1.5

(American Type Culture Collection) mAb, on days –15, –13, –8,

–5, and –1 before the bacterial challenge. The efficacy of cell

depletion was determined by flow cytometry analysis of spleno-

cytes and was greater than 98% (not shown). On the other hand,

other groups of mice received i.p. 100 mg of i) purified anti-IL-17A

mAb clone TC11-18H10.1 (Biolegend) or ii) a nonspecific rat

immunoglobulin G (IgG) purified mAb (isotype control) on days 1,

7, 13, 20 after the bacterial challenge.

Statistical analysis
GraphPad Prism 4 software (GraphPad, San Diego, CA) was

used for Statistical analysis and plotting. Student test or the one-

way ANOVA test followed by the Dunnett multiple-comparison

posttest was used to analyze the protection results. The antibody

titers were compared using the nonparametric Mann-Whitney U

test.

Cytokine production and DTH response data were analyzed

using the Student t test. Not normally distributed data were

logarithmically transformed before the statistical analysis, after the

transformation all parameters followed a normal distribution. A P

value ,0.05 was taken as the level of significance.
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