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Purpose: To experimentally investigate whether a computed tomography �CT� system based on
CdZnTe �CZT� detectors in conjunction with a least-squares parameter estimation technique can be
used to decompose four different materials.
Methods: The material decomposition process was divided into a segmentation task and a quanti-
fication task. A least-squares minimization algorithm was used to decompose materials with five
measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy
discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage,
and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8
�0.8�3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The
detector resolved the x-ray spectrum into energy bins of 22–32, 33–39, 40–46, 47–56, and 57–80
keV. Four phantoms were constructed from polymethylmethacrylate �PMMA�, polyethylene, poly-
oxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with
embedded hydroxyapatite �50, 150, 250, and 350 mg/ml� and iodine �4, 8, 12, and 16 mg/ml�
contrast elements. One phantom was composed of four materials with embedded hydroxyapatite
�150 and 350 mg/ml� and iodine �8 and 16 mg/ml�. Calibrations consisted of PMMA phantoms with
either hydroxyapatite �100, 200, 300, 400, and 500 mg/ml� or iodine �5, 15, 25, 35, and 45 mg/ml�
embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each
energy bin. Material segmentation and quantification were performed and compared between dif-
ferent phantoms.
Results: All phantoms were decomposed accurately, but some voxels in the base material regions
were incorrectly identified. Average quantification errors of hydroxyapatite/iodine were 9.26/7.13%,
7.73/5.58%, and 12.93/8.23% for the three-material PMMA, polyethylene, and polyoxymethylene
phantoms, respectively. The average errors for the four-material phantom were 15.62% and 2.76%
for hydroxyapatite and iodine, respectively.
Conclusions: The calibrated least-squares minimization technique of decomposition performed
well in breast imaging tasks with an energy resolving detector. This method can provide material
basis images containing concentrations of the relevant materials that can potentially be valuable in
the diagnostic process. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3525835�
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I. INTRODUCTION

The energy dependence of the x-ray attenuation coefficients
can be exploited to identify and quantify specific materials.1

In computed tomography �CT�, the decomposition process
can be accomplished in the projection domain �prerecon-
struction� or the image domain �postreconstruction�.2 In the
projection domain, the line integral through the object is
separated into different components,1,3,4 whereas in the im-
age domain, each voxel is decomposed into different con-
stituent basis materials.2,5,6 While the projection-based
method is advantageous because it eliminates the beam hard-
ening effect, the image-based method is computationally
simpler.6 Nevertheless, in both methods, the traditional as-
sumption is that each element to be decomposed contains
some fraction of the basis material. In this paper, we will

report on an image-based method that deviates from this idea
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by assuming that each voxel primarily contains one basis
material. Phantom experiments were performed to verify this
method on a prototype computed tomography system with an
energy resolving detector.

Basis functions for decomposition algorithms are based
on one of two types: The physical processes of x-ray
attenuation1,5,7 or the specific elements and compounds.3,4,8

Attenuation in the x-ray diagnostic range is the result of a
combination of the photoelectric effect and the Compton
scattering process9

��E,x�� = ap�x��fp�E� + ac�x��fc�E� , �1�

where � is the linear attenuation coefficient that is dependent
on photon energy E and position x�, a is the local density of
either the photoelectric effect �subscript p� or the Compton
scattering �subscript c�, and f is the mass attenuation func-

tions of the two physical processes. The objective of material
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decomposition is to solve for the local densities and relate
them to more meaningful quantities. This formalism has pre-
viously been used to solve for the spectral components in the
projection domain1 and to estimate the effective density and
atomic number in the image domain.5 An alternative method
demes the basis functions as materials that are similar to
different tissues. Traditionally, polymethylmethacrylate
�PMMA� and aluminum were used for dual-energy decom-
position to separate soft tissue and bone.10 But the number
and identity of the basis materials can be different, depend-
ing on the imaging task and system properties. In this case,
the � can be formulated by

��E,x�� = a1�x���m1�E� + a2�x���m2�E� + a3�x���m3�E� + . . . ,

�2�

where a is now the local density of the chosen material �m’s�
and �m is the mass attenuation coefficients as a function of
photon energy. Solving for the local densities typically re-
quires a calibration process to measure the attenuation prop-
erties of each material. This formalism was used to decom-
pose two materials5,6 and three materials in the image
domain.2

Due to limitations of x-ray detector technology, previous
investigations primarily focused on the dual-energy methods.
Techniques such as fast kVp switching,11 dual source CT,2

and layered detectors12 were used to produce two attenuation
measurements of the same object at different energies. Re-
cent advances in semiconductor materials has made it pos-
sible to produce energy resolving detectors that can provide
multiple energy measurements of the object in one
acquisition.13 Currently, detectors based on CdZnTe �CZT�
crystals have the ability to resolve the x-ray spectrum into
five to eight energy bins.7,14–16 Linear attenuation coeffi-
cients from these energy bins can be used to decompose two
or more materials. Parameter estimation algorithms can be
used for cases in which the number of attenuation measure-
ments is more than the number of unknowns �number of
material basis�. The maximum likelihood estimation tech-
nique was used to decompose materials with prominent
k-edge�s� such as gadolinium and iodine.7,17 This “k-edge”
algorithm was implemented in the projection space. Al-
though their technique performed well for gadolinium and
iodine, it is not designed for materials without a k-edge. Our
technique performs parameter estimation by minimizing the
least-squares. It is able to decompose materials both with and
without prominent k-edges in the diagnostic energy range. A
key feature is that the algorithm separates the decomposition
implementation into a segmentation and a quantification
task. This separation is possible because it is applied in the
reconstructed image space where each voxel is not a line
integral but a specific location in space.

The purpose of this study is to test the proposed decom-
position technique for materials relevant to breast computed
tomography. Breast CT with charge integrating flat-panel de-
tectors are currently in the clinical trial phase and has shown
to have advantages over other breast imaging modalities.18
Some authors have proposed using energy discriminating de-
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tectors for breast CT to improve image quality and reduce
patient dose.14,15,19 Simulations showed that for various
breast imaging tasks, the contrast-to-noise ratio can be in-
creased by a factor of 1.28–1.57 with optimal energy
weighting.19 Experimental comparison between a CZT detec-
tor and a CsI indirect flat-panel detector showed an increased
in CNR of 1.25–1.35.15 This increase in image quality can be
translated to dose reduction if the image quality is kept the
same between the imaging systems. Dose reductions were
found to be 47%–52% with a CZT computed tomography
system.15 With energy-resolved data, four-material decompo-
sition is possible and it is useful in the case of contrast-
enhanced breast CT. With one image acquisition, the relevant
materials, such as calcifications, iodine contrast, and glandu-
lar and adipose tissue, can be identified and quantified. It is
beneficial to have this capability because the properties of
calcifications can determine malignancy20 or risks for heart
disease.21 Regions of iodine contrast accumulation indicate
increased angiogenesis in neoplasm.22 Glandular and adipose
tissue quantification provides the capability to measure
breast density, where an increase in density indicates an in-
crease in one’s risk of developing breast cancer. It is also
possible to use temporal subtraction of contrast-enhanced
images to accurately isolate the iodine signal.23 However, the
acquisition of the precontrast image would impart additional
radiation dose to the patient. With energy discriminating CT,
a precontrast image is not needed for material separation.

The primary purpose of this paper is to evaluate a general
parameter estimation method to decompose up to four mate-
rials using five spectral measurements. A simulation study
evaluating the technique’s potential were performed and re-
ported in a companion paper. This study provides an experi-
mental validation of the technique in phantoms relevant to
breast imaging. Although this study is focused on a breast
imaging task, the technique can be applied generally to any
material. However, each imaging task will need to be indi-
vidually investigated with the corresponding materials.

II. METHODS

This section is divided into four parts: Theory, CZT CT
system, phantom description, and data analysis. The decom-
position algorithm was chosen because it performed the best
out of the three least-squares parameter estimation tech-
niques that were described in the companion simulation pa-
per. This algorithm is summarized here.

II.A. Theory

In energy-resolved computed tomography, the measured
linear attenuation coefficient ��L�B ,x��� is a function of both
the spatial coordinates �x�� and the energy bin �B�. Its value is
dependent on the concentration ��i�x��� and mass attenuation

coefficient ��M,i�B�� of the constituent materials �i�
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�L�B,x�� = �
i=1

K

�i�x���M,i�B� , �3�

where K is the total number of materials. If the partial-
volume effect is negligible, then each voxel can be treated as
consisting of one material. In this case, �L�B ,x�� only de-
pends on one material

�L�B,x�� = �i�x���M,i�B� . �4�

The decomposition algorithm first identifies the material
and then computes its concentration. Thus, it is divided into
a segmentation task and a quantification task. For the seg-
mentation task, the identity of the material at each voxel can
be determined by least-squares minimization

i�x�� = arg min
i
�min

�i�x��
�
B=1

J

��L�B,x�� − �i�x���M,i�B��2� , �5�

where J is the number of energy bins that the detector can
resolve. Accordingly, the quantification task is computed by
system built with an energy resolving detector made of CZT
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�i�x�� = arg min
�i�x��

�
B=1

J

��L�B,x�� − �i�x���M,i�B��2. �6�

The average mass attenuation coefficients �M,i�B� at each
energy bin can be computed based on a preattenuated x-ray
beam �the beam that exits the x-ray tube�. However, the
beam hardening effect changes the detected �M,i�B�. As pho-
tons travel through an object, low energy photons are pref-
erentially attenuated over higher energy ones, which results
in a beam that “hardens” or contains relatively more high
energy photons. The average attenuation coefficient also
changes because it is dependent on the x-ray spectrum. Fur-
thermore, the detector response function also affects the ef-
fective coefficient. To account for these effects on the attenu-
ation coefficients, �M,i�B� can be obtained from a calibration
process. A similar calibration technique was performed by
Johns et al.24,25 for their dual-energy method in the projec-
tion domain. For contrast elements that have varying concen-
trations, such as hydroxyapatite and iodine, the calibration
consists of measuring the linear attenuation coefficients at
different concentrations and extracting the effective mass at-
tenuation coefficients. For glandular and adipose tissues, the
mass attenuation coefficients can be extracted by imaging a
region with homogeneous density. The calibrated �M,i�B�
can be obtained as follows:
�M,i�B� = �arg min
�M,i�B�

�
d=1

Q

��L�E� − �i�x���M,i�B��2, i = HA, iodine

�L,i�B�
�i

, i = glandular, adipose tissue

,	 �7�
where d refers to each concentration point in the calibration
and Q denotes the total number of concentrations. Since the
purpose is to quantify the contrast elements �hydroxyapatite
and iodine�, different concentrations of these materials were
used. From our experience, the observer can visually distin-
guish glandular and adipose tissues on breast CT with rela-
tive ease. For these two tissues, the �L,i�B� can be obtained
directly from the energy-resolved CT data with a region-of-
interest �ROI� in the corresponding tissue type

�L,i�B� =
�l=1

V �L,i�B,i�
V

, �8�

where l refers to the pixel and V denotes the total number of
pixels in the ROI.

II.B. Small field-of-view CZT CT system

II.B.1. System description

All images were acquired with a computed tomography
crystals. The system consisted of a tungsten target x-ray tube
�Dynamax 78E� coupled to a Phillips Optimus M200 x-ray
generator and a CZT array. A high precision motor �Kollmor-
gen Goldline DDR D062M, Danaher Motion, Wood Dale,
IL� provided the rotational mechanism and also served as a
platform for the object. The system was mounted on an op-
tical bench with the CZT �eV2500, eV Microelectronics Inc.,
Saxonburg, PA� detector aligned with the central ray of the
x-ray beam. The detector consisted of a row of four CZT
crystals of 12.8 mm in length and 3 mm in thickness. Each
crystal was divided into 16 pixels with a pitch of 0.8 mm,
yielding a total of 64 pixels that were 51.2 mm in length. The
x-ray detection process starts when photons are absorbed in
the crystals, causing the generation of electrons and holes
that propagate in opposite directions according to a bias volt-
age �300 V� on the crystal’s surfaces. These electrical
charges create a current that is amplified and collected by
downstream integrated circuits. Our CZT system has five
comparators that sort the photons into five energy ranges.

The energy of an incoming photon is compared to a user-
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selectable threshold. The corresponding counters increase by
increments of one if the voltage is greater than the threshold.
The total photon count in each energy bin is obtained by
finding the difference between counters of consecutive
thresholds. Figure 1 shows a schematic of the CZT setup.
The source-to-image distance of the system was 1.4 m and
the source-to-object distance was 1 m. Slit collimators were
constructed from lead sheets that were 3 mm thick. A 0.3 mm
slit fore collimator shaped the beam while a 0.8 mm slit aft
collimator rejected scattered x rays.

II.B.2. Acquisition parameters

CZT data were acquired in the fluoroscopic mode because
the detectors require a low tube output.15 The x-ray tech-
nique used was 80 kVp and 1 mA. The phantoms were ro-
tated at 0.98 RPM for 360°, giving 1229 frames per scan at
50 ms per frame. The resulting air kerma at the isocenter was
4.85 mGy. Photon counts for each energy bin were obtained
with proprietary software �eV Microelectronics, Saxonburg,
PA�. The detector communicated with a workstation through
a USB port. Preliminary tests showed that the optimal lowest
energy threshold to eliminate electronic noise was 22 keV.
The energy ranges were set at 22–32, 33–39, 40–46, 47–56,
and 57–80 keV. These thresholds were chosen because they
allow the detector to obtain approximately the same number
of photon counts in the open field images of each energy bin.

II.C. Phantom description

Phantoms were constructed to test the technique’s perfor-
mance. Phantom materials needed for breast imaging are adi-
pose tissue, glandular tissue, hydroxyapatite, and iodine.
Glandular and adipose tissues are the two principle compo-
nents of a breast. Microcalcification �hydroxyapatite� is often
observed on mammographic images as clusters of calcifica-
tions and is indicative of underlying pathology.26 Iodine is
used as the contrast agent in contrast-enhanced imaging to
better visualize the breast vasculature and abnormal
angiogenesis.27 We investigated the algorithm on phantoms
that were composed of both three materials and four materi-
als. PMMA and polyethylene were used to simulate soft tis-
sues. Figure 2 shows the similarity in linear attenuation co-
efficients of PMMA and polyethylene to glandular and

FIG. 1. Schematic of the CZT system.
adipose tissues, respectively. Different hydroxyapatite con-
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centrations were made by mixing corresponding amounts of
hydroxyapatite powder �Acros Organics, Morris Planes, NJ�
with a polymeric casting resin �ETI, Fields Landing, CA�.
Similarly, different iodine concentrations were obtained by
diluting an iodinated contrast material �Omnipaque Injection
350 mg/ml, GE Healthcare Inc., Princeton, NJ� in water.
Each phantom consisted of “base” materials and embedded
contrast elements. Base materials refer to PMMA and poly-
ethylene, whereas contrast elements refer to hydroxyapatite
and iodine. There were three types of constructed phantoms:
Three-material, four-material, and calibration.

II.C.1. Three-material phantoms

Three different phantoms were constructed, which con-
sisted of three different materials �Fig. 3�c��. In the first
phantom, the base material was PMMA and the contrast el-
ements were hydroxyapatite and iodine. A PMMA cylinder
of 3.175 cm in diameter was used to embed eight wells that
were 0.5 cm in diameter. Four of the wells contained hy-
droxyapatite of 50, 150, 250, and 350 mg/ml. The other four
wells contained iodine of 4, 8, 12, and 16 mg/ml. The second
phantom had the same geometry and concentrations of con-
trast elements except that the base material was polyethyl-
ene. The third phantom also had the same configuration ex-
cept that the base material was polyoxymethylene. The
polyoxymethylene phantom was added to test the method on
a base material whose density �1.41 g/ml� is significantly
different from glandular and adipose tissues.

II.C.2. Four-material phantom

One phantom consisted of four materials. Its diameter was
also 3.175 cm �Fig. 3�d��. It contained PMMA and polyeth-
ylene as the base materials and hydroxyapatite and iodine as
the contrast elements. Polyethylene resided in periphery and
made up 70% of the total area, while PMMA was centrally
located and made up 30% of the total area. The ratio of
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FIG. 2. Linear attenuation coefficients of the plastics used in the base
material of the phantoms. Adipose �AT� and glandular �GT� tissues are
also shown for comparison. PMMA=polymethylmethacrylate, PE
=polyethylene, and POM=polyoxymethylene.
polyethylene and PMMA were chosen to approximately
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equal to the adipose and glandular content of an average
breast.28 Embedded in the PMMA region were two concen-
trations of hydroxyapatite �150 and 350 mg/ml� and two con-
centrations of iodine �8 and 16 mg/ml�.

II.C.3. Calibration phantoms

Similar phantom geometry was used for calibration. The
base cylinders were 3.175 cm and the wells were 0.5 cm in
diameter. Two phantoms were made to separately calibrate
hydroxyapatite and iodine �Figs. 4�a� and 4�b��. They con-
sisted of PMMA as the base material. The five concentrations
of hydroxyapatite were 100, 200, 300, 400, and 500 mg/ml
and iodine were 5, 10, 15, 20, and 25 mg/ml. The calibration
phantoms were scanned using the same techniques as the
measurement phantoms.

(a

(c

a)

c)

(b)

(d)

FIG. 3. Diagrams of the calibration phantoms with �a� hydroxyapatite and
�b� iodine contrast elements and measurement phantoms of �c� three and �d�
four materials. PMMA=polymethylmethacrylate, PE=polyethylene, POM
=polyoxymethylene, HA=hydroxyapatite, and I=iodine.

FIG. 4. Photon counting CT images of hydroxyapatite calibration �left� and
−1
iodine calibration �right� phantoms �L /W:0.010 /0.02 mm �.
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II.D. Data analysis

The segmentation task was evaluated qualitatively for all
phantoms. The quantification task was evaluated by compar-
ing the measured concentrations of contrast elements to their
known concentrations. The mean and standard deviation of
the values for each contrast element were measured with a
10-pixel-diameter ROI. Linear regressions were performed
with the MATLAB Curve Fitting Toolbox.

III. RESULTS

The general image quality produced by the CZT system
was adequate for the material separation task. Ring artifacts
were present toward the center of the reconstructed images.
This effect was more prominent in some energy bins than
others �Fig. 5�: Energy bins 2, 3, and 4 had more ring arti-
facts than bins 1 and 5. Reconstructed images of the calibra-
tion phantoms �Fig. 4� showed that the hydroxyapatite and
iodine regions had adequate contrast for analysis. Energy-
resolved images of the PMMA three-material phantom �Fig.
5� revealed the expected dependence of the linear attenuation
coefficient on photon energy. The gray level of PMMA and
hydroxyapatite decreased as the photon energy increased, but
the k-edge �33.2 keV� of iodine in the second energy bin
increased the measured � of iodine on the corresponding
image. The plots �Fig. 6� of the measured � versus known
concentrations of contrast elements indicated strong correla-
tions with average correlation coefficients of 0.992 and 0.994
for hydroxyapatite and iodine, respectively.

The material separation algorithm performed well on the
PMMA three-material phantom �Fig. 7�. The larger three
concentrations of hydroxyapatite and iodine separated well.
However, for the smallest concentration points �50 mg/ml
hydroxyapatite and 4 mg/ml iodine�, some voxels did not
separate correctly. The PMMA-only image contained noisy
areas where some voxels were incorrectly identified as hy-
droxyapatite or iodine. The relationship �Fig. 8�a�� between
measured �HM� and known �HK� amounts for hydroxyapatite
was HM =1.09HK−15�R2=0.997�. Correspondingly, the rela-
tionship �Fig. 8�b�� between the measured �IM� and known

2

(a) (b) (c)

(d) (e)

FIG. 5. CT slices of the polymethylmethacrylate three-material phantom for
energy bins �a� 1, �b� 2, �c� 3, �d� 4, and �e� 5 �L /W:0.01 /0.02 mm−1�.
�IK� amounts of iodine was IM =1.15IK−1�R =0.999�. The



�L/W: 10/20 mg/ml� are shown.

233 H. Q. Le and S. Molloi: Segmentation and quantification with energy discriminating computed tomography 233
average errors for measured hydroxyapatite and iodine were
9.26% �Table I� and 7.13% �Table II�, respectively.

The method’s robustness in decomposing phantoms that
have a different base material from the calibration phantom
was tested with the polyethylene and polyoxymethylene
phantoms using PMMA for calibration. Although the algo-
rithm segmented the polyethylene three-material phantom
well, it did not perform as well as the PMMA three-material
phantom. There were more noisy regions with incorrect ma-
terial identification in the polyethylene-only image �Fig.
9�b��. However, quantification of hydroxyapatite and iodine
was still accurate with average errors of 7.37% �Table I� and
5.58% �Table II�, respectively. The same trend was observed
for the three-material polyoxymethylene phantom. There was
more noise on the polyoxymethylene-only image �Fig. 10�b��
and more ring artifacts that were incorrectly identified as
hydroxyapatite or iodine �Figs. 10�c� and 10�d��. The average
errors for quantification of hydroxyapatite and iodine were
12.93% �Table I� and 8.23% �Table II�, respectively.

Material decomposition with the four-material phantom
�Fig. 11� performed as well as the three-material phantom.
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FIG. 6. Calibration curves for �a� HA and �b� iodine. The slope of the each
line indicates the effective mass attenuation coefficients for the correspond-
ing energy bin.
Polyethylene and polymethylmethacrylate images contained
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FIG. 7. Material separation was applied to the polymethylmethacrylate
three-material phantom. �a� Photon counting image
�L /W:0.01 /0.01 mm−1� and decomposed images of �b� PMMA �L/W: 600/
1000 mg/ml�, �c� hydroxyapatite �L/W: 200/600 mg/ml�, and �d� iodine
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FIG. 8. Relationships between the measured and known concentrations of

�a� hydroxyapatite and �b� iodine. The identity line is shown is dashed.
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some noisy decomposed voxels, but generally separated
well. Hydroxyapatite and iodine quantification were also ac-
curate with average errors of 15.62% and 2.76% �Table III�,
respectively.

IV. DISCUSSION

A least-squares parameter estimation algorithm was used
to decompose three and four materials using a computed
tomography system with a CZT detector with five energy

TABLE II. Quantification of the iodine mea
=polymethylmethacrylate, PE=polyethylene, and PO

Known iodine
�mg/ml�

Measured iodine
�mg/ml�

PMMA PE

4.00 3.62 3.75
8.00 8.30 8.58

12.00 12.88 12.46
16.00 17.27 16.80

Averag

TABLE I. Quantification of the hydroxyapatite
=polymethylmethacrylate, PE=polyethylene, and PO

Known HA
�mg/ml�

Measured HA
�mg/ml�

PMMA PE

50 37 45
150 147 158
250 265 269
350 360 374

Average

(a) (b)

(c) (d)

FIG. 9. Material separation was performed on the polyethylene three-
material phantom. �a� Photon counting image �L /W:0.01 /0.01 mm−1� and
decomposed images of �b� PMMA �L/W: 600/1000 mg/ml�, �c� hydroxya-
patite �L/W: 200/600 mg/ml�, and �d� iodine �L/W: 10/20 mg/ml� are shown.

Base material was calibrated with PMMA.
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windows. Breast imaging tasks were chosen for this study.
However, the technique can theoretically be applied toward
any imaging task. Although the study was performed in
phantoms, the materials chosen were similar to breast tissues
in terms of the attenuation properties. For the task of material
decomposition, an important factor to consider is the amount
of separation between the attenuation properties. This sepa-
ration needs to be realistic for the algorithm to be valid for
clinical applications. In this aspect, the average difference
between the linear attenuation coefficients of polymethyl-

with the three-material phantoms. PMMA
olyoxymethylene.

Error
�%�

OM PMMA PE POM

4.33 9.45 6.22 8.19
8.67 3.79 7.21 8.31
2.92 7.37 3.87 7.66
7.40 7.93 5.02 8.76

or 7.13 5.58 8.23

ured with the three-material phantoms. PMMA
olyoxymethylene.

Error
�%�

M PMMA PE POM

4 25.96 9.75 31.97
38 2.18 5.51 7.72
33 6.14 7.47 6.65
31 2.78 6.77 5.36

9.26 7.37 12.93

(a) (b)

(c) (d)

FIG. 10. Material separation was performed on the polyoxymethylene three-
material phantom. �a� Photon counting image �L /W:0.01 /0.01 mm−1� and
decomposed images of �b� PMMA �L/W: 600/1000 mg/ml�, �c� hydroxya-
patite �L/W: 200/600 mg/ml�, and �d� iodine �L/W: 10/20 mg/ml� are shown.
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methacrylate and polyethylene is 26%. This is comparable to
the difference between glandular and adipose tissue, which is
29%. Overall, the results indicate that material segmentation
and quantification were accurate. The method was found to
be robust for both the three-material and four-material phan-
toms.

Although the phantom materials are similar to real tissues,
there is still the question of whether a calibration can be
applied clinically. In our studies, the calibration phantom
consisted of polymethylmethacrylate as the base material
while the measurement phantoms consisted of polymethyl-
methacrylate, polyethylene, or polyoxymethylene. The re-
sults show that calibrating with one base material, while
measuring with another, did not greatly affect the segmenta-
tion and quantification. The decomposition worked ad-
equately well on all three-material phantoms with the same
PMMA phantom as the calibration. This finding is important
because calibration phantoms contain materials that can only
approximate tissues, not duplicate them. This is seen in Fig.
2, where the attenuation property of PMMA and polyethyl-
ene slightly differ from glandular and adipose tissues, re-
spectively. Thus, it is possible to use a plastic calibration
phantom in the decomposition of clinical images. Further-
more, a single calibration can be used for images from dif-
ferent patients despite the differences in exact composition of
tissues between individuals.29

(a) (b) (c)

(d) (e)

FIG. 11. Material separation was performed on the four-material phantom.
�a� Photon counting image �L /W:0.01 /0.01 mm−1� and decomposed im-
ages of �b� PE �L/W: 600/1000 mg/ml�, �c� PMMA �L/W: 600/1000 mg/ml�,
�d� hydroxyapatite �L/W: 200/600 mg/ml�, �e� and iodine �L/W: 10/20 mg/
ml� are shown.

TABLE III. Quantification of the hydroxyapatite and iodine measured with
the four-material phantom.

Material
Known
�mg/ml�

Measured
�mg/ml

Error
�%�

HA 150 172 14.68
HA 350 408 16.55

Iodine 8.00 7.71 3.58
Iodine 16.00 15.72 1.75
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Quantification of hydroxyapatite �Table II� and iodine
�Table III� showed that the average errors were greatest for
phantoms of polyoxymethylene, followed by polymethyl-
methacrylate, and, lastly, polyethylene. This is consistent
with the density differences of the three materials: Poly-
oxymethylene has the greatest density �1.41 g/ml�, followed
by PMMA �1.19 g/ml� and then polyethylene �0.93 g/ml�.
Since cylindrical phantoms all have the same diameter, the
denser ones attenuate more photons, leaving fewer photons
to be detected. Images formed from fewer photons contained
more noise, resulting in greater error in the concentration
measurements. Despite the calibration phantom consisting of
PMMA base material, the quantification of the three-material
PMMA phantom had greater error than the polyethylene
phantom. Thus, given that the objects had the same diameter,
density has a greater impact on the quantification than the
material mismatch to the calibration phantom. The quantifi-
cation of iodine was found to be more accurate than hy-
droxyapatite. This is due to the k-edge of iodine that “de-
fines” the material more uniquely in terms of its spectral
property. Energy bins that contained a k-edge provided more
material-specific information for the decomposition algo-
rithm. Thus, materials with k-edges will more likely be de-
composed accurately.

In contrast with previous methods,3,4,7,8,17 this technique
produces material images that have a “binary” property,
meaning that voxels without any component of a basis ma-
terial are set to zero. This is the direct consequence of the
assumption that each voxel consists of primarily one mate-
rial. In the segmentation task, after a material is identified for
each voxel, its value on other material basis images is as-
sumed to be zero. The binary nature of the image allows for
clear visualization of the regions-of-interest, since back-
ground noise is effectively eliminated. In addition, the algo-
rithm gives local concentration information. Thus, in the di-
agnostic process, the clinician can display the basis material
images side-by-side and obtain the concentration of a par-
ticular material by “moving the cursor” to a particular re-
gion. This potentially adds versatility to the diagnostic pro-
cess.

One limitation of this study is the imperfections of the
current CZT detector. As seen on the reconstructed and de-
composed images, ring artifacts were present toward the cen-
ter. These had negative effects on the decomposition. These
artifacts arose from detector nonuniformity that could not be
compensated by flat-field corrections. Other effects intrinsic
to CZT detectors, aside from a deterioration in its detection
accuracy, include charge sharing,30 hole tailing of the de-
tected spectrum,31 k-fluorescent x-ray production,30 scatter
cross-talk within the crystals, and pulse pile-up.32 These ef-
fects can only be lessened by using higher quality crystals
and faster electronics. The performance of the algorithm is
expected to improve as CZT detector technology advances.
Specific to the current system, there were three dead spaces
between the four CZT crystals. To compensate, three pixels
were added to the corresponding positions. The values of
those positions were obtained by linear interpolation. Thus,

the detector produced 64 pixels of raw data, while the pro-
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cessed images were 67 pixels wide. Despite the various de-
teriorating effects, the detector produced images of adequate
quality for the decompositions.

Another limitation of the system is that it is a small field-
of-view �FOV� system that can image objects of approxi-
mately 3.2 cm in diameter. The effect of dose on the decom-
position was not investigated due to the small object
requirement and presence of image artifacts. The air kerma
used in this study was 4.85 mGy, while the value used to
scan an average breast of 14 cm diameter on flat-panel breast
CT was 9.04 mGy.33 To investigate the algorithm at a clinical
dose, a full FOV system is being developed with a detector
that has improved electronic and material properties. Despite
these limitations, the results showed the general concept of
segmentation and quantification for more than two materials
using energy discriminating detectors. Also, a simulation
study �reported in a companion paper� showed that by using
the correct mean glandular dose and breast size, the tech-
nique was able to accurately identify and quantify glandular
tissue, adipose tissue, hydroxyapatite, and iodine. Future re-
search will investigate the method on a full-size system with
phantoms and postmortem breast specimens. Another issue
to address is whether calibration at one diameter can be ap-
plied to breasts of different diameters. Simulations showed
that the accuracy deteriorates as the diameter mismatch in-
creases. This problem can be solved by using a “multipoint”
calibration, where different diameters are calibrated and the
calibration slopes are fitted with respect to breast size. It was
found that a four-point calibration performed well in the de-
composition. Thus, this technique can be applied in future
clinical implementations of energy resolving systems by us-
ing a set of calibrations performed once for each system.

In conclusion, a proof-of-concept study was performed
where three and four materials were decomposed accurately
using detectors that provide five energy windows. The least-
squares parameter estimation technique was applied success-
fully to breast imaging tasks. Current system properties al-
low investigation of only small phantoms. Improvement to
the growing CZT technology will enable testing the tech-
nique in more realistic clinical situations.
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