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Purpose: Energy resolving detectors provide more than one spectral measurement in one image
acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose
four materials using energy discriminating detectors and least squares minimization techniques.
Methods: Three least squares parameter estimation decomposition techniques were investigated for
four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it
consisted of fractions of all the materials. The second method assumes that a voxel primarily
contains one material and divides the decomposition process into segmentation and quantification
tasks. The third is similar to the second method but a calibration was used. The simulated computed
tomography �CT� system consisted of an 80 kVp spectrum and a CdZnTe �CZT� detector that could
resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with
flat panel CT to provide a model for the digital phantoms. Hydroxyapatite �HA� �50, 150, 250, 350,
450, and 550 mg/ml� and iodine �4, 12, 20, 28, 36, and 44 mg/ml� contrast elements were embedded
into the glandular region of the phantoms. Calibration phantoms consisted of a 30/70 glandular-to-
adipose tissue ratio with embedded HA �100, 200, 300, 400, and 500 mg/ml� and iodine �5, 15, 25,
35, and 45 mg/ml�. The x-ray transport process was simulated where the Beer–Lambert law, Pois-
son process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations
of the decomposition techniques were performed and compared. The effect of breast size was also
investigated.
Results: The first technique decomposed iodine adequately but failed for other materials. The
second method separated the materials but was unable to quantify the materials. With the addition
of a calibration, the third technique provided good separation and quantification of hydroxyapatite,
iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of
9.83% and 6.61% for HA and iodine, respectively. Calibration at one point �one breast size� showed
increased errors as the mismatch in breast diameters between calibration and measurement in-
creased. A four-point calibration successfully decomposed breast diameter spanning the entire range
from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to
3.27% with the multipoint calibration for HA and iodine, respectively.
Conclusions: The results of the simulation study showed that a CT system based on CZT detectors
in conjunction with least squares minimization technique can be used to decompose four materials.
The calibrated least squares parameter estimation decomposition technique performed the best,
separating and accurately quantifying the concentrations of hydroxyapatite and iodine. © 2011
American Association of Physicists in Medicine. �DOI: 10.1118/1.3525840�
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I. INTRODUCTION

The ability to decompose and quantify specific materials on
x-ray computed tomography �CT� has been studied since the
1970s.1 Algorithms for decomposition exploit the attenuation
coefficients ���’s dependence on photon energy. Each com-
bination of x-ray tube spectrum and detector response yields
one effective attenuation coefficient for each material. In or-
der to decompose two materials, a second x-ray measure-
ment that produces a different effective attenuation coeffi-
cient is required. With two measurements, one can set up a
system with two equations and two unknowns �the two ma-
terials� and solve them using either analytical or numerical

2
methods. To decompose more than two materials, more
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measurements are needed. As a general rule, the number of
measurements has to be equal to or greater than the number
of materials. Previous decomposition methods focused pri-
marily on two measurements and two materials.1–7 However,
one recent study decomposed three materials with a dual-
source CT system8 by assuming the conservation of mass for
the third equation. Our study investigates four-material de-
composition methods using energy resolving x-ray detectors
that can simultaneously produce five detector responses in
one data acquisition.

Traditionally, the techniques for obtaining two energy
measurements are kVp switching, double-layered detectors,
and dual-source CT. All these methods rely on the detected

spectrum to be adequately separated. In dual energy switch-
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ing, the tube voltage is switched very quickly ��30 fps�
between the “low” and “high” energy acquisition.9 The
double-layered detector method acquires x-ray signals simul-
taneously with a front and a rear detector that are sandwiched
together.10 In dual-source CT system, two x-ray tubes and
two detectors are positioned orthogonal to each other for
dual energy scanning.8 The major disadvantage of both the
kVp switching and the dual-source methods is the misregis-
tration between high and low energy data. The double-
layered detector technique has poor separation between en-
ergy spectra. Recent advances in semiconductor technology
and counting electronics make it feasible to use detectors that
have photon counting and energy resolving capability.11

These detectors can resolve the x-ray spectrum into different
energy bins. This provides different � measurements of the
same object that can then be used in decomposition algo-
rithms. Photon counting detectors that have been investi-
gated include Si strips,12 Xe gas avalanche,13 and microchan-
nel plate.14 However, the most advanced of these are
detectors composed of CdTe and CdZnTe �CZT� crystals.15,16

The principal advantages of CZT detectors are direct conver-
sion, photon counting, good energy resolution, and room
temperature operation. By using these detectors and splitting
the x-ray spectrum into n energy bins, n materials can theo-
retically be decomposed.

This study tests the proposed algorithm for decomposing
materials on breast imaging. Breast imaging is suitable for
application in the current photon counting detector technol-
ogy due to its low dose requirement.17–19 Breast computed
tomography with charge integrating flat panel detectors is
currently in the clinical trial phase. It has been shown to have
advantages over other breast imaging modalities.20 Some in-
vestigators have proposed using energy discriminating detec-
tors for breast CT to improve image quality and reduce pa-
tient dose.17,18,21 An additional advantage of such a system is
the ability to decompose relevant materials in the breast. A
four-material decomposition technique is useful in the case
of contrast-enhanced breast imaging. With one image acqui-
sition, the relevant materials, such as calcifications, iodine
contrast, glandular, and adipose tissues, can be identified and
quantified. The properties of calcifications can determine
malignancy22 and risk for heart disease.23 Regions of iodine
contrast accumulation indicate increased angiogenesis of
neoplasm.24 Glandular and adipose tissue quantification pro-
vide breast density, where an increase in density can serve as
an indication of an increase in risk of developing breast can-
cer. Although temporal subtraction of contrast-enhanced im-
ages can accurately isolate the iodine signal,25 the acquisition
of a precontrast image would impart a higher radiation dose
to the patient. With energy discriminating CT, a precontrast
image is not needed for material separation.

While breast imaging task was chosen as an example, the
overall purpose of the study was to evaluate decomposition
algorithms. In this study, three least squares parameter esti-
mation algorithms were investigated. Simulations were per-
formed on a realistic breast CT slice that was embedded with

contrast objects. A CT system with a standard x-ray tube and
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energy resolving CZT detector was used. A phantom study
evaluating the technique’s potential was performed and re-
ported in a companion paper.

II. METHODS

A CZT computed tomography system that has five-
energy-bin resolving capability is simulated. Briefly, the tube
spectrum was 80 kVp and energy bins were 1–32, 33–39,
40–46, 47–56, and 57–80 keV. More details are provided
below. First, the mathematics of the decomposition algo-
rithms is formulated �Sec. II A�. Second, the x-ray transport
process was described: Beginning with the tube spectrum
�Sec. II B�, followed by the phantom description �Secs. II C
and II D�, and the image formation process �Sec. II E�.

II.A. Theoretical formalism

In energy resolved computed tomography, the measured
linear attenuation coefficient ��L�B ,x��� can be described by
the linear combination of the mass attenuation coefficients
�M,i�B� weighted by the concentration of materials ��i�x���,

�L�B,x�� = �
i=1

K

�i�x���M,i�B� , �1�

where B refers to an energy bin of the energy resolved de-
tector, x� is a vector that describes the spatial dependence of
the attenuation, �i denotes the concentration of material i,
and K refers to the number of materials. Since B refers to a
range of energy, �L�B ,x�� is the average linear attenuation
coefficient from the starting photon energy �Es� to the final
energy �Ef� in that bin. Given multiple measurements of
�L�B ,x�� and the expected values of �M,i�B�, the objective is
then to determine the concentration of each constituent ma-
terial. The energy-dependent mass attenuation coefficients
can be calculated by

�M,i�B� =

�
E=Es�B�

Ef�B�

��E��M,i�E�

�
E=Es�B�

Ef�B�

��E�

, �2�

where � is the photon fluence and E is the photon energy in
keV. If the detector can discriminate incident photons into J
energy bins that is equal to the number of materials �J=K�,
then a unique solution for �� �vector of material concentra-
tions� can be obtained by a numerical inversion of Eq. �1�.
While simulation was previously performed for J=K=3 for
bone, water, and iodine, the accuracy of material quantifica-
tion was not studied.26 In the case of J�K, the solution will
not be unique since the number of equations is less than the
number of unknowns. For J�K, no solutions exist because
the system is overdetermined. However, a least squares mini-
mization method can be used to estimate the parameter �� in
Eq. �1�. A similar approach used the maximum likelihood
method to decompose materials containing k-edges in the
diagnostic imaging range, such as gadolinium and iodine.27,28
In those studies, projection data were decomposed and then
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material-specific images were reconstructed. In contrast, we
investigated decomposition on reconstructed data and also
included materials that lack prominent k-edges, such as glan-
dular tissue, adipose tissue, and calcium in the form of hy-
droxyapatite �HA�.

The least squares minimization to estimate material con-
tributions to a voxel can be written as

��x��� = arg min
��x���

�
B=1

J ��L�B,x�� − �
i=1

K

�i�x���M,i�B��2

. �3�

Here, each voxel is assumed to consist of all the basis mate-
rials. Alternatively, a voxel can be treated as if it consisted
primarily of one material since it represents a position in a
three-dimensional object. Projection data cannot be treated
this way because each pixel represents a line integral through
the object, which potentially passes through more than one
type of material. With this assumption, the least squares ap-
proach can be used to first determine the material and then
compute its concentration. Thus, the decomposition method
is separated into a segmentation task and a quantification
described. We termed them the basic least squares fitting
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task. For the segmentation task, the identity of the material
can be determined by

i�x�� = arg min
i
	min

�i�x��
�
B=1

J

��L�B,x�� − �i�x���M,i�B��2
 . �4�

After the material is identified �let i= I�, the quantification
task for material I can be computed by

�I�x�� = arg min
�I�x��

�
B=1

J

��L�B,x�� − �I�x���M,I�B��2. �5�

In the above equations, the effective mass attenuation coef-
ficients at each energy bin can be computed using a preat-
tenuated x-ray beam �the beam that exits the x-ray tube be-
fore passing through the patient�. However, the beam
hardening phenomenon �described in Sec. II F� changes the
quality of the spectrum as it travels through the object. Equa-
tion �2� suggests that �M,i�B� also changes because it is de-
pendent on the x-ray spectrum. To account for this effect, a
calibrated mass attenuation coefficient ��C,i�B�� can be ob-
tained by measuring the �L�B� of known material
concentrations,
�C,i�B� = �arg min
�C,i�B�

�
d=1

Q

��L,d�B� − �i,d�x���C,i�B��2, i = HA, iodine

�L,i�B�
�i

, i = glandular, adipose tissue,� �6�
where d refers to each concentration point in the calibration
and Q denotes the total number of concentrations. To accu-
rately quantify hydroxyapatite and iodine, more than one
concentration points were used in the calibration. A calibra-
tion phantom would contain different, but known, amounts
of HA and iodine. In the case of glandular and adipose tis-
sues, �L�B� can be obtained directly from the energy re-
solved CT data by taking the mean value within a region of
interest in the corresponding tissue type. From our experi-
ence, these two tissues can be visually distinguished from
each other without difficulty on breast CT. Thus, the cali-
brated least squares minimization method is slightly modi-
fied with the segmentation task as

i�x�� = arg min
i
	min

�i�x��
�
B=1

J

��L�B,x�� − �i�x���C,i�B��2
 �7�

and the quantification task as �let i= I�

�I�x�� = arg min
�I�x��

�
B=1

J

��L�B,x�� − �I�x���C,I�B��2. �8�

Three related techniques for material decomposition are
�BLSF� �Eq. �3��, the decoupled least squares fitting �DLSF�
�Eqs. �4� and �5��, and the calibrated least squares fitting
�CLSF� techniques �Eqs. �7� and �8��. These decomposition
methods were studied and compared using simulation of the
x-ray transport and detection processes.

II.B. Tube spectrum

Models for generating x-ray spectra include those that are
theoretical,29 semiempirical,30 and purely empirical.31 We
chose the interpolating polynomial method of Boone and
Seibert31 for its excellent agreement with the x-ray tube out-
put in our laboratory. This model is a purely empirical model
of a tungsten anode tube. An 80 kVp spectrum was used as
this is the standard tube voltage for current flat panel breast
CT protocol.20 Flux levels were adjusted to match the air
kerma that imparts a mean glandular dose that is the same for
a standard two view mammography protocol.32 Energy sam-
pling of the spectrum is in steps of 1 keV and the average
energy of the spectrum is 43 keV.

II.C. Measurement phantoms

Although the decomposition techniques can generally be

applied toward any imaging task, breast imaging was chosen
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because current energy resolving technology is more suited
for low dose tasks.17 To generate a digital breast phantom, a
postmortem specimen was scanned with cone-beam CT and
then segmented into glandular and adipose tissues. The cone-
beam CT system was constructed using a standard x-ray tube
�Dynamax 78E�, a rotation stage �Kollmorgen Goldline DDR
D062M, Danaher Motion, Wood Dale, IL�, and a flat panel
detector �Paxscan 4030CB, Varian Medical, Inc., Palo Alto,
CA�. One slice from the reconstructed volumetric data was
chosen and the tissues were segmented by a fuzzy C-means
iterative technique.33 Embedded in the central region of glan-
dular tissue were contrast elements consisting of HA and
iodine �Figs. 1�a� and 1�b��. The size of each contrast ele-
ment is 25 mm2, which is in the range of sizes for calcifica-
tions of fibroadenoma and fat necrosis.34 Iodine is relevant
for contrast-enhanced imaging to detect angiogenesis in
tumors.24 Although the size of tumors and calcifications that
indicate malignancy can be smaller than 25 mm2, the focus
of this investigation is on the initial test of the theory and its
performance given the chosen attenuation functions. Similar
configuration of contrast elements in phantoms have been
investigated for different imaging parameters and decompo-
sition techniques.26,28 The energy-dependent attenuation co-
efficients �Fig. 2� of soft tissues were obtained from a previ-
ous study that reported their cross sections as parametrized
by aluminum and polymethyl methacrylate �PMMA�
components.35 The cross sections of HA and iodine were
obtained from the published data.36 For each keV step from 1
to 80, an attenuation map of the phantom was generated and
fed through the photon transport simulation, as described in
Sec. II E.

Three types of simulation were performed based on the
configuration of the phantom. In the first, the diameter of the
phantom was 14 cm. Inside the phantom, the top and bottom
three rows of contrast wells contained hydroxyapatite �50,
150, and 250 mg/ml� and iodine �4, 8, and 12 mg/ml�, re-
spectively. In the second simulation, one well for HA and
one well for iodine was allowed to have the concentrations
varied across different iterations. The range for HA was 50–
550 mg/ml in 100 mg/ml increments, and the range for io-

(a)

FIG. 1. Diagrams of the digital breast phantom �a� and calibration phantom
elements is also shown �b�.
dine was 4–44 mg/ml in 8 mg/ml increments. These concen-
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tration values are consistent with those typically found in
breast imaging.37 In the third, the concentration values were
the same as the first simulation but the diameter of the phan-
tom varied from 8 to 20 cm in 2 cm increments.

II.D. Calibration phantoms

To implement the calibrated method of decomposition
�CLSF�, a calibration phantom �Fig. 1�c�� was used. A simi-
lar method was performed by Johns and co-workers in the
projection domain.38,39 The phantom was a simplified ver-
sion of the breast phantom. It consisted of a peripheral region
of adipose tissue comprising 70% of the total area and a

(c)

are shown. The magnified image of the region that contains the contrast
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central region of glandular tissue comprising 30% of the total
area. Embedded in the glandular tissues were five wells that
contained contrast elements of either hydroxyapatite or io-
dine at various concentrations. The HA concentrations used
for calibration ranged from 100 to 500 mg/ml in 100 mg/ml
increments, and the iodine concentrations ranged from 5 to
45 mg/ml in 10 mg/ml increments.

Two types of calibration were used to investigate the
method’s robustness in decomposing breasts of different
sizes. In one type, a 14 cm diameter calibration was used to
obtain the effective mass attenuation coefficients. This is a
“single-point” calibration in which the computed slopes are
used to decompose breasts of all diameters. In the other type,
four calibration phantom sizes �8, 12, 16, and 20 cm� were
simulated. Linear regressions of these values provided the
calibration slopes for the decomposition. This is a “multi-
point” calibration, as described in Eq. �6�.

II.E. System geometry and x-ray transport

Single slice parallel beam geometry was used in the simu-
lation. The x-ray transport process began with the generation
of a beam spectrum according to the TASMIP model.31 For
each energy and spatial dependent attenuation map of the
phantom �F�x� ,E��, a sinogram �G�� ,u ,E�� was obtained by
computing the Radon transform �R�,

G��,u,E� = RF�x�,E�� , �9�

where � is the angle of gantry rotation and u is the position
of each detector element. Then, the x-ray beam was passed
through the object and detector according to the Beer–
Lambert law to obtain the detected spectrum �N�� ,u ,E��,

N��,u,E� = D�E�S�E�e−G��,u,E�, �10�

where N�� ,u ,E� is the number of photons, D�E� is the ab-
sorption efficiency of the detector, and S�E� is the primary
x-ray tube spectrum. Quantum fluctuation was simulated by
adding Poisson noise to N�� ,s ,E�,

Npoi��,u,E� = poissrnd�N��,u,E�� , �11�

where poissrnd��� generates a random number from the
Poisson distribution with a mean of �. In our simulation, the
gantry made one full rotation around the object from which
360 frames were acquired �� was from 1 to 360 in 1° incre-
ments�. The detector array was composed of 3-mm-thick
CZT crystals of 0.5�0.5 mm2 pixels. The length of the ar-
ray was 429 elements—u was from 1 to 429. Current CZT
detector technology allows for five to eight user-selectable
energy bins.16,18,21,28 Here, our simulated detector could re-
solve the spectrum into five energy bins. The sinogram for
each energy bin is calculated by

Npoi��,u,B� = �
E=Es�B�

Ef�B�

Npoi��,u,E� . �12�

The ranges of the five energy bins were 1–32, 33–39, 40–46,
47–56, and 57–80 keV. These were chosen to provide ap-

proximately the same number of photons in each bin given
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the 80 kVp spectrum. The linear attenuation coefficient im-
ages were reconstructed using the standard filtered back-
projection algorithm �FBP�,

�L�x�,B� = FBP�Npoi��,u,B�
D�B�S�B�

� . �13�

The FBP algorithm used ramp filter and linear
interpolation.40 The reconstructed linear attenuation images
�L�x� ,B� were processed as described in Sec. II A for mate-
rial decomposition.

II.F. Beam hardening correction

As a polyenergetic x-ray beam passes through the object,
low energy photons are preferentially absorbed in compari-
son to high energy photons. Since the attenuation coefficients
are generally lower at higher energy, they are measured to be
lower as the beam hardens. As a result, the CT number de-
presses toward the center and produces a phenomenon called
“cupping artifact.” This nonideal effect was corrected by es-
timating the “cupping” as a function of position in the object
by prescanning a uniform object of similar material. In our
study, we used PMMA cylinders of different diameters �8,
10, 12, 14, 16, 18, and 20 cm� for this purpose. The cylinder
was reconstructed and the correction function was obtained
for each energy bin. The correction function ��h�r ,B��� was
computed by averaging the measured �L�B� in the circle de-
fined by a radial distance �r� from the center and normalizing
it to the value at the periphery,

h�r,B� =

�
�=0

2	

�L�r cos���,r sin���,B�

�
�=0

2	

�L�rmax cos���,rmax sin���,B�
, �14�

where � is the angle in the polar coordinate system with the
center of the image set at the origin and rmax is the distance
from center to the edge of the calibration phantom. The cor-
rected image ��L,C�r ,B�� is computed by

�L,C�r,B� =
�L�r,B�
h�r,B�

. �15�

This correction method is an image-based technique.

II.G. Data analysis and comparison

The three methods of material decompositions �BLSF,
DLSF, and CLSF� were evaluated by comparing the results
to both the ground truth and one another. The segmentation
task of the DLSF and CLSF techniques was evaluated by
computing a metric �O� that compares the segmented region
to the ground truth from the original phantom: If T is the
image of a particular segmented tissue and G is the ground

truth image, then O can be computed as
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O =
area�T � G�
area�T � G�

. �16�

This gives the segmentation metric O a range from 0 to 1,
with 1 being a perfect segmentation. The quantification task
was evaluated by plotting the measured concentrations ver-
sus the known values. The average errors were calculated by

Error =
1

P
�
i=1

P �mi − yi

yi
� , �17�

where P is the total number of points measured, mi is the ith
measured value, and yi is the ith known value.

III. RESULTS

The decomposed images for the basic least squares fitting
method are shown in Fig. 3. Although iodine decomposition
performed the best out of the four materials, the hydroxya-
patite image still contained remnants of glandular tissue and
iodine. Glandular and adipose tissues also did not decompose
well. Images for the decoupled least squares fitting approach
are shown in Fig. 4. This method generally performed better
than the BLSF method, but only the highest concentration of
HA �250 mg/ml� separated correctly. All iodine concentra-
tions decomposed well. Glandular and adipose tissue separa-
tions were adequate. However, there were still regions of
misidentification for both tissues. The quantification of con-
trast objects could not be made using these two techniques
due to the mismatch between the theoretical � calculated

(a) (b)

(c) (d)

FIG. 3. Decomposed images of hydroxyapatite �L/W: 200/600 mg/ml� �a�,
iodine �L/W: 10/20 mg/ml� �b�, adipose �L/W: 600/1000 mg/ml� �c�, and
glandular �L/W: 600/1000 mg/ml� �d� tissue using the basic least squares
fitting method.
from the spectral model and the � obtained from the simu-
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lated images. This difference is shown in Fig. 5, where the
plot of ideal versus simulated CT � for energy bin 1 deviates
from the identity line.

To produce more accurate quantitative results, the cali-
brated least squares fitting method was used. The calibration
curves are shown in Fig. 6. For each energy bin, the CT �
measurements were plotted against concentrations of hy-
droxyapatite and iodine. The slopes and intercepts of these
linear regressions were used to decompose the corresponding
materials. As seen on the graphs, the linear regressions pro-
vided good fits for the data. The decomposition from the
CLSF technique is shown in Fig. 7, where HA and iodine
were identified accurately. Some voxels in the periphery of
the contrast wells were misidentified as glandular tissue at
the lowest concentrations of HA �50 mg/ml� and iodine �4

(a) (b)

(c) (d)

FIG. 4. Decomposed images of hydroxyapatite �L/W: 200/600 mg/ml� �a�,
iodine �L/W: 10/20 mg/ml� �b�, adipose �L/W: 600/1000 mg/ml� �c�, and
glandular �L/W: 600/1000 mg/ml� �d� tissue using the decoupled least
squares fitting method.
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mg/ml�. Glandular and adipose tissues separated well, but
some voxels were misidentified due to noise fluctuations.
Quantitatively, the segmentation metric for the DLSF method
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FIG. 6. Calibration curves for hydroxyapatite �top� and iodine �bottom�.

(a) (b)

(c) (d)

FIG. 7. Decomposed images of hydroxyapatite �L/W: 200/600 mg/ml� �a�,
iodine �L/W: 10/20 mg/ml� �b�, adipose �L/W: 600/1000 mg/ml� �c�, and
glandular �L/W: 600/1000 mg/ml� �d� tissue using the calibrated least

squares fitting method. The breast size is 14 cm.
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was lower than the CLSF method for all materials. For the
DLSF technique, the values for O were 0.36, 0.41, 0.61, and
0.83 for material-specific images of HA, iodine, glandular,
and adipose tissues, respectively. The corresponding values
for the CLSF method were 0.57, 0.50, 0.73, and 0.90, respec-
tively. Measured hydroxyapatite �Fig. 8, top� and iodine �Fig.
8, bottom� from the CLSF technique are plotted against their
known values. These measurements were accurate for both
contrast elements with average errors of 9.83% for HA
�Table I� and 6.61% for iodine �Table II�.

The effect of breast size on quantitative measurements is
shown in Fig. 9. In these plots, the HA and iodine concen-
trations were 250 and 12 mg/ml, respectively. Calibration
was obtained from one phantom of 14 cm in diameter. This
one-point calibration was used to decompose breast sizes of
8, 10, 12, 14, 16, 18, and 20 cm in diameter. As seen from
the graphs, measurements were more accurate in the vicinity
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FIG. 8. Measured hydroxyapatite �top� and iodine �bottom� concentrations
using the CLSF method.

TABLE I. Quantification of hydroxyapatite.

Known HA
�mg/ml�

Measured HA
�mg/ml�

Error
�%�

50 68 36.89
150 158 5.54
250 241 3.51
350 348 0.56
450 469 4.12
550 596 8.36

Average error 9.83
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of 14 cm. Decompositions of breast with diameters other
than 14 cm were not as good; more voxels were misidenti-
fied. Material identification performed well, but quantifica-
tion did not �Fig. 9�.

The calibration can also take into account different breast
sizes by plotting the coefficients versus breast diameters
�Fig. 10�. The linear regressions of these values showed
strong correlations for both HA and iodine. With these fits,
measurements of HA �250 mg/ml� and iodine �12 mg/ml�
were found to be more accurate than the single-point calibra-
tion method �Fig. 11�. The quantification errors �Table III�
were 5.44% and 6.17% with the single-point method,
whereas the errors were 1.75% and 3.27% when using the
multipoint method for HA and iodine, respectively.

TABLE II. Quantification of iodine.

Known iodine
�mg/ml�

Measured iodine
�mg/ml�

Error
�%�

4 3.10 22.43
12 11.23 6.43
20 19.09 4.55
28 26.86 4.06
36 36.17 0.46
44 43.24 1.72

Average error 6.61
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FIG. 9. Measured hydroxyapatite �top� and iodine �bottom� concentrations
�250 and 12 mg/ml, respectively� at different breast diameters. The calibra-

tion was made on a calibration phantom of 14 cm diameter.
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IV. DISCUSSION

Three related methods to decompose materials on com-
puted tomography were studied using simulations. The tech-
niques rely on a detector that can separate the incident spec-
trum into multiple energy bins. The basic assumption of the
previously reported methods is similar to the basic least
squares fitting method—namely, that each image element
contains contributions from all basis materials. The decou-
pled least squares fitting and calibrated least squares fitting
methods deviate from this assumption by treating each voxel
as if it consisted of primarily one material. Treating an image
element in this way is not possible in the projection domain.
A pixel in the projection space represents a line integral
through the object ��t� that most likely receives contribution
from more than one material. In the reconstructed image
space, each voxel is not a line integral but a position in
three-dimensional space. The methods were also made pos-
sible by taking more than two simultaneous attenuation mea-
surements of an object. With only two measurements, as in
the dual energy methods, the least squares fitting methods
does not have enough data for parameter estimation. The
identification of materials and quantification of their concen-
trations were found to be accurate using five measurements.

The BLSF technique did not perform well due to the de-
mand of fitting the attenuation coefficients to four materials
simultaneously. This is a consequence of treating a voxel as
if it consisted of all constituent materials. The ability to de-
compose depends on the differences between the materials’
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FIG. 10. Calibration slopes �effective mass attenuation coefficients� of hy-
droxyapatite �top� and iodine �bottom� as a function of the breast diameter.
attenuation properties. A greater difference translates to a
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better decomposition. Iodine separation performed the best
due to its k-edge at 33.2 keV, which provides uniqueness to
its attenuation function �Fig. 2�. The other three materials
�hydroxyapatite, glandular, and adipose tissues� have very
similar attenuation functions, which were revealed in the
poor decomposition results. The demand on the fitting algo-
rithm is lessened when a voxel is treated as if it consisted of
mainly one material. The method is reduced to fitting the
attenuation coefficients to only one material. The DLSF,
which considers a voxel in this way, performed well in the
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FIG. 11. Measured hydroxyapatite �top� and iodine �bottom� concentrations
�250 and 12 mg/ml, respectively� at different breast diameters. The calibra-
tion slopes were calibrated with four-point calibrations at 8, 12, 16, and 20
cm diameters.

TABLE III. Quantification of hydroxyapatite and iodin
calibration phantom or from a linear fit through four
and iodine were 250 and 12 mg/ml, respectively.

Diameter
�cm�

Calibration from 14 cm diame

HA
�mg/ml�

Error
�%�

Iodine
�mg/ml

8 270 8.00 9.67
10 259 3.61 10.90
12 244 2.30 11.22
14 246 1.71 11.83
16 234 6.50 11.99
18 232 7.34 12.35
20 229 8.58 12.44

Average error 5.44
Medical Physics, Vol. 38, No. 1, January 2011
identification task �Fig. 4�. However, a calibration was re-
quired to obtain accurate quantification results.

Overall, the calibrated least squares fitting method per-
formed well in both identifying the materials and quantifying
their concentrations. The errors between the measured and
known concentrations of hydroxyapatite and iodine for the
ranges studied were 9.83% and 6.61 %, respectively. These
results compare well to a recent publication that investigated
the decomposition of three materials using dual-source CT.8

In that report, the average errors in the measurement of cal-
cium and iron were 13.2% and 7.8%, respectively. Using two
spectral measurements, three-material decompositions were
made possible by assuming mass conservation. Their method
also applied a material basis method for reconstructing im-
age domain. The advantages of our method are twofold: �1�
It requires only one source spectrum and �2� can be applied
to more than three materials. Both techniques are based on a
calibration, so the accuracy of the calibration is important.
When the calibration was calculated for the same breast size
as that used for the measurement phantom, the quantification
was accurate. However, as Fig. 9 indicates, errors increased
as the diameter mismatch between calibration and measure-
ments increased. This effect is due to imperfections in the
beam hardening correction, where �’s were slightly different
between calibration and measurements. Despite this effect,
the algorithm was still robust enough to identify materials,
but not quantify them. The calibration-measurement mis-
match can be accounted for by calibrating at more than one
breast size in a multipoint approach. Figure 11 indicates that
a multipoint calibration can be performed once for each sys-
tem and subsequent image acquisitions can simply use the
calibrated fits to obtain the necessary coefficients for decom-
position �Fig. 10�.

The materials that were chosen in this study are relevant
to breast imaging. Hydroxyapatite is the primary component
of breast microcalcifications, and iodine is present in
contrast-enhanced breast imaging. Breast computed tomog-
raphy using a flat panel detector was found to perform better
than mammography in detecting masses.20 Multislit breast
CT using the CZT as the detector has also been proposed. It

re the calibration was either obtained from the 14 cm
ration phantoms. The known concentrations of HA

Calibration from linear fits

or
�

HA
�mg/ml�

Error
�%�

Iodine
�mg/ml

Error
�%�

43 244 2.37 11.34 5.48
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was found that the contrast-to-noise ratio was increased by
1.35 times, while the dose can be reduced by 52.05%, when
compared to flat panel systems.21 The ability to identify and
quantify specific materials adds another dimension to the im-
aging system. In a single CT scan using the CZT system, one
obtains both the standard CT data and the additional infor-
mation about the amount of material present in a particular
image region. This information can potentially be invaluable
in the diagnostic process.

The simulated detector in this study has ideal properties.
However, a realistic detector would contain many imperfec-
tions that deteriorate decomposition results. To obtain five
spectral responses, the detector electronics must possess five
comparators to analyze the incoming voltage. The accuracy
of the energy reading depends on the mapping from voltage
to photon energy. Imperfections in this process lead to en-
ergy windows that do not correspond to the actual energy
widow. One of the contributions to spectrum distortions is
the charge sharing effect.41 As charge carriers propagate
through the CZT crystal, the charge cloud diffuses, causing
adjacent pixels to share the electric field. Another deteriorat-
ing factor is the hole tailing phenomenon.42 As electrons and
holes are created in the crystal, they drift in the opposite
direction toward the corresponding electrodes. The ability of
these charge carriers to move depends on their mobility life-
time product and the material properties of the CZT crystal.
In general, holes have poorer transport properties than elec-
trons, causing them to be trapped in the crystal lattice. The
lost charges trapped in holes are not collected, producing a
lower energy reading than in actuality—causing a “tailing”
of the spectrum. The spectrum can further be distorted by
florescent photons that are generated during the de-excitation
of an atom following a photoelectric event.42 The florescent
photons can also propagate through the crystal and interact
with other atoms of the detector. These processes can be
simulated and they are the subject of ongoing investigations.

An experimental phantom study is required to verify the
calibrated least squares fitting technique. The major differ-
ence between experiment and simulation is the imperfections
in the detector system—either with the electronics or with
the CZT detector as described above. However, with the cali-
brated implementation of the least square fitting technique,
most of the artifacts that result from these imperfections are
taken into account. The distorted energy spectrum would af-
fect both the images of the calibration and the measurement
phantoms. The measured � values would be consistent if the
same x-ray technique and geometry are used. The results of
phantom experiments have also been reported. The experi-
mental results showed that materials were identified and
quantified accurately with the calibrated technique.

In conclusion, the results of this simulation study showed
that a CT system based on CZT detectors in conjunction with
least squares minimization technique can be used to decom-
pose four materials. The calibrated least squares parameter
estimation decomposition technique performed the best,
separating and accurately quantifying the concentrations of

hydroxyapatite and iodine.
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