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Purpose: This article presents a general procedural framework to assess the point-by-point preci-
sion in mapped dose associated with the intrinsic uncertainty of a deformable image registration
�DIR� for any arbitrary patient.
Methods: Dose uncertainty is obtained via a three-step process. In the first step, for each voxel in
an imaging pair, a cluster of points is obtained by an iterative DIR procedure. In the second step, the
dispersion of the points due to the imprecision of the DIR method is used to compute the spatial
uncertainty. Two different ways to quantify the spatial uncertainty are presented in this work.
Method A consists of a one-dimensional analysis of the modules of the position vectors, whereas
method B performs a more detailed 3D analysis of the coordinates of the points. In the third step,
the resulting spatial uncertainty estimates are used in combination with the mapped dose distribu-
tion to compute the point-by-point dose standard deviation. The process is demonstrated to estimate
the dose uncertainty induced by mapping a 62.6 Gy dose delivered on maximum exhale to maxi-
mum inhale of a ten-phase four-dimensional lung CT.
Results: For the demonstration lung image pair, the standard deviation of inconsistency vectors is
found to be up to 9.2 mm with a mean � of 1.3 mm. This uncertainty results in a maximum
estimated dose uncertainty of 29.65 Gy if method A is used and 21.81 Gy for method B. The
calculated volume with dose uncertainty above 10.00 Gy is 602 cm3 for method A and 1422 cm3

for method B.
Conclusions: This procedure represents a useful tool to evaluate the precision of a mapped dose
distribution due to the intrinsic DIR uncertainty in a patient. The procedure is flexible, allowing
incorporation of alternative intrinsic error models. © 2011 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3528201�
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I. INTRODUCTION

Deformable image registration �DIR� algorithms allow con-
sideration of physiologic changes in patient anatomy during
treatment, making techniques such as image guided adaptive
radiation therapy and image guided radiation therapy,1,2

among others, possible. DIR algorithms estimate the vectors
between corresponding voxels in images that differ due to
morphological changes. There are numerous algorithms that
use various approaches to calculate the displacement vector
field �DVF� that matches points in one image with points in
another.3–7 Although several different basis functions have
been utilized by DIR algorithms, no known algorithm pro-
vides a DVF that maps tissue elements from between ana-
tomic instances without error.8–10 The lack of a gold standard
makes it difficult to assess the DVF accuracy for arbitrary
patient images; similarly, there is no universal or widely ac-
cepted method to evaluate the uncertainty of an individual
patient’s DVF.

Several approaches have been proposed to evaluate the
accuracy of DIR algorithms. Some authors have used real or
simulated deformable phantoms where the displacements are
known.11–13 Other tests include comparison between DIR

14,15
mapped and physician-drawn contours, landmark
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tracking,15–17 energy conservation analysis,18 or self-
consistency evaluation.19 Unfortunately, it is impractical to
implement these tests in a clinical practice routine and the
information provided by these methods is not complete.19

For example, a deformable phantom does not provide any
information about the actual errors made in a real patient and
it is impractical to identify a multitude of point-based land-
marks for accuracy evaluation. Even when limited automatic
landmarks can be identified, they are limited in that they
provide no information distant to the landmarks. Further-
more, none of these methods are intended to give the preci-
sion of the mapped doses, i.e., the reproducibility of the dose
mapping process. Accuracy is not the only measure that can
be used to assess the confidence in a DVF. Any physical
measurement is also characterized by the precision, i.e., the
degree to which repeated measurements under the same con-
ditions will show the same results. Precision does not mea-
sure the true error of the measurement, but it gives a value of
the spread of possible values around a mean value. However,
a precise algorithm is not necessarily accurate, so systematic
errors must be evaluated before relying in a precise DVF.

Although precision is not necessarily correlated with ac-
curacy, errors reported in the literature can be useful to esti-

mate the order of magnitude of the expected precision of a
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DIR algorithm. Published errors vary with the algorithm and
evaluation method, with mean values generally in the range
of 2–4 mm and maximum errors larger than 15 mm.15,16,20

Such large errors can lead to unacceptable dose inaccuracies,
limiting the applicability of 4D treatments.

A general DIR process has several sources of intrinsic
errors. One specific intrinsic error source is the lack of self-
consistency in generating the DVF.19,21 In simple terms, this
causes composite transitive transformations, such as f · f−1

and fAB· fBC· fCA, to be not equal to the identity transforma-
tion, with f−1 being the inverse of f and fAB, fBC, and fCA the
transformations from image A to B, from B to C, and from C
to A, respectively. Self-consistency is a necessary but not
sufficient requirement for a precise DIR algorithm.

The clinical impact of DVF errors is not only related to
the magnitude of such errors, but also to their spatial loca-
tion. Dosimetrically, a large displacement error may be of
small importance if it is located in a volume with homoge-
neous dose or with no dose at all. On the other hand, a small
DVF error may lead to a large dose error if it is located in a
high dose gradient region. One purpose of DIRs for a 4D
treatment is to map the dose delivered on an image set to one
or several other sets and reconstruct the composite �total�
delivered dose over all image sets.2,22,23 Errors in dose map-
ping may or may not be consequential depending on whether
they are located within an important structure or not.

In this paper, a computational framework is presented to
estimate the dose uncertainty in a 4D treatment due to the
intrinsic DVF uncertainty in a patient-per-patient basis. This
procedure obtains a set of mapped points for each voxel. The
dispersion of these points is used to model the uncertainty of
the mapped point coordinates due to the inherent imprecision
of DIR algorithms by an iterative procedure. Dose standard
deviation is then calculated for each imaging voxel from the
standard deviation of the modules of inconsistency vectors
�method A� or from the covariance matrix of the coordinate
of inconsistency vectors �method B�.

This scheme provides an estimation of the precision for
DIR mapped doses. A simplistic DVF error model is used. It
is not the aim of this work to propose a comprehensive DVF
error model but to present a method that, given any DVF
error model, provides a dose uncertainty estimation. In the
form presented in this paper, random errors due to the intrin-
sic functioning of the DIR algorithm are considered and,
therefore, the method is insensitive to systematic errors.

The intrinsic uncertainty algorithm takes advantage of the
lack of self-consistency of the DIR to obtain a set of similar
images where each point in an image can be traced to the
other ones. By doing so, statistical dispersion due to intrinsic
inconsistency can be calculated at each voxel. Adaptation of
this method for use with inverse consistent DIR algorithms is
covered Sec. IV.

II. MATERIALS AND METHOD

The procedure consists of three steps: An iterative regis-

tration method is used to obtain a cluster of points associated
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with each voxel; the dispersion of the cluster is used to com-
pute point-by-point DIR uncertainties; and from the DIR un-
certainties, dose error is evaluated.

Importantly, the process used in the first step to obtain the
cluster of points is a simple first order estimate of the point
dispersion. Alternative processes to estimate DIR process
point dispersion can be simply substituted in this process.
Ideally, the selected method should assess all sources of in-
trinsic uncertainty of the whole registration procedure. The
last two steps are general and can be applied given any
source or subsource of intrinsic DIR errors.

II.A. Notation and terminology

DIR algorithms map information �typically image inten-
sity, but possibly contours� from a source image to a target
image. In this paper, the original source and target images are
noted S0 and T0. The uncertainty evaluation algorithm pre-
sented here generates a set of source and target images in an
iterative scheme. The generated images in step n are noted Sn

and Tn and are referred as mapped source and mapped target
images. Every point in images Sn is the result of composite
mappings Sn= fSn−1T0 · fTnS0, with fSn−1T0 being the DIR trans-
formation from Sn−1 to T0 and fTnS0 the transformation from
the resulting Tn to S0. The vector that goes from a point in S0

to the corresponding point in Sn is noted the nth inconsis-
tency vector or vn.

Two uncertainty analyses are used in this work. The first
is the variance of the modules of inconsistency vectors. For a
given voxel, the standard deviation of the module of the
inconsistency vector in step n is noted �n, while the standard
deviation of the whole set of vectors and the reconstructed
initial standard deviation �the inferred standard deviation of
the initial transformation� are noted �T and �0, respectively.
The second analysis is a generalization of the first where the
subscript notation remains but, instead of using the standard
deviation � of the modules of vectors, the covariance matrix

� =� �x
2 �xy �xz

�xy �y
2 �yz

�xz �yz �z
2 �

of the vector coordinates is used, where �x
2, �y

2, and �z
2 are

the variances of the x, y, and z coordinates and �xy, �xz, and
�yz are the covariances. In all figures and the text, values of
� and ���1/2 are given in mm.

II.B. Set of points

The procedures to model the intrinsic DVF uncertainty in
a first stage, determine �0 and �0 in a second stage and then
determine dose uncertainty in a third stage, are independent
of one another. The output of one stage is used as input for
the next one, so the method to obtain the cluster of points can
be changed without modifying the other two stages or the
error model can be replaced by an alternative model, either a
more general model or one specific for a DIR algorithm or

anatomic region. The only link between the first and the
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second stage are the point coordinates and the only link be-
tween the second and the third phase are �0 or �0.

In this paper, DVF intrinsic errors are assumed to be
Gaussian distributed. That is, the mapped coordinates of each
point are assumed to be Gaussian distributed around a mean
value. This assumption is not proven in this work and may be
simplistic, although it is a reasonable a priori assumption
because the total DVF uncertainty is due to the sum of sev-
eral sources of errors, so their overall effect is expected to be
nearly Gaussian.

To determine the precision of the DVF, the repeatability
of the results must be assessed. However, DIR algorithms are
deterministic, so some “artificial” perturbation must be intro-
duced. This perturbation must be large enough to cause the
algorithm to provide a different solution, but small enough
for the differences to be due mainly to the intrinsic uncer-
tainty of the algorithm. This paper uses the inherent differ-
ences between the mapped image and the target image in a
DIR procedure.

Mapping a source image S0 into a target image T0 with a
DIR algorithm implies determination, for each point in S0, of
the associated position of the point in T0. Generally, this
calculation is not exact and thus, some uncertainty in the
mapped position of the point is introduced by the DIR algo-
rithm. There are several sources of uncertainty, each of
which contributes to the total uncertainty. In the absence of
systematic errors, the true value of the mapped position is
located in the neighborhood of the calculated point. As the
total uncertainty arises from several causes, the positional
error of the mapped point can be assumed to follow a Gauss-
ian probability density function �PDF�. Because of this un-
certainty, the resulting mapped image T1 is not exactly the
same than T0.

The overall procedure utilized is shown schematically in
Fig. 1. After the initial mapping from S0 to T0 and computa-
tion of T1, T1 is mapped back to S0. The coordinates of a
point of the new image S1 to the original point in S0 have a
PDF that is the convolution of the forward and the backward
mapping uncertainties. Since the images are similar and the
algorithm did not change, we assume that the intrinsic uncer-
tainty due to the DIR algorithm does not change. In this case,
the PDFs of the new point’s coordinates are the convolution
of two identical Gaussian distributions which is another
Gaussian distribution with �1,i

2=2�0,i
2, where �1,i and �0,i

are the standard deviation of the coordinate xi. In the second
step, image S1 is mapped to T0 �resulting in T2�. However,
the backward transformation is not from T2 to S1 but from T2

to S0. This assures that the resulting images S1 ,S2 ,S3 , . . . do
not diverge but tend to be similar to S0. In general, for any n,
the nth iteration consists of mapping Sn−1 to T0 and then Tn is
mapped back to S0. The variance of a coordinate of a point in
Sn to the analogous point in S0 is 2n�0,i

2.
After N iterations, each point in S0 can be related to a

cluster of N points. The total distribution of this cluster is the
sum of the PDFs of every point. The superposition of Gauss-
ian distributions is not in general a Gaussian, but if they have
the same mean value, the variance of each coordinate is

given by
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�T,i
2 = 	xT,i

2 
 = 	xT,i
2 =
1

N
�
n=1

N

�n,i
2 =

1

N
�
n=1

N

2n�0,i
2

= �N + 1��0,i
2 , �1�

where we have taken into account that 	xT,i
2 


= �1 /N��n=1
N 	xn.i

2 
=�1 /N��n=1
N ��n,i

2 + 	xn,i
2� and chosen the
origin of the coordinate system so that 	xn,i
=0, ∀n
� �1,N�.

Accordingly, from the variance of the positions of an it-
eratively mapped point, it is possible to infer the expected
variance in the first mapping, which enables estimation of
the uncertainty effects on clinically used DIR mappings.

II.C. DVF Uncertainty

II.C.1. Method A „variance of vector modules…

The module of the inconsistency vector vn is given by
�v�� =�x2+y2+z2, with x, y, and z being random variables with
Gaussian PDFs. For the case of �=1 and �=0 �being � the
standard deviation of �v�� and � the mean�, the PDF of �vn�
tends to the � distribution with three degrees of freedom. For
the sake of simplicity, we can approximate the distribution of
vn to a Gaussian distribution with a good degree of accuracy.

FIG. 1. Flowchart of the procedure to obtain a set of variant images as a first
step to estimate the DVF uncertainty. In every loop, the image resulting
from the previous loop is warped toward the original target image T0. The
image obtained is warped back to the original source image S0 and the
resulting image will be used as input for the next loop.
In this case, Eq. �1� can be applied to the module of vn and
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we can approximate the uncertainty of the module of vn via
�0

2=�T
2 / �N+1�. This approximation is more accurate with

larger values of the standard deviations of each coordinate,
�x, �y, and �z. The standard deviation of this Gaussian dis-
tribution will be named �0.

II.C.2. Method B „coordinates variance…

The analysis of the vector module variances has some
drawbacks. The first problem is that it lacks of directional
information. For a point in S0, the variance of positions of
the related cluster of points in S1 ,S2 , . . . may have a predomi-
nant direction. Losing the directionality of variance makes
the estimation less accurate and ignores possible correlations
between uncertainties in coordinates. The second problem of
the module analysis is related to the impact of DVF uncer-
tainty in the mapped dose precision.

Related to the previous drawbacks, dose uncertainty esti-
mation can be improved if the interaction between the direc-
tionality of the DVF uncertainty and the dose gradient is
considered. If dose gradient is perpendicular to the largest
component of the DVF uncertainty, the effect of the latter
would be diminished.

To overcome these limitations, a generalization of the pre-
vious method is developed. The same set of images S1 ,S2 , . . .
are used as in method A. However, instead of looking at the
modules of the inconsistency vectors, the coordinates of the
mapped points are analyzed. Taking the position of the origi-
nal point as origin of the reference system, the covariance
matrix of the coordinates of the associated cluster of points is
calculated.

The covariance matrix of the coordinates retains informa-
tion about the anisotropy of the cluster of points. The prob-
ability that a point in S0 is mapped to a point in T0 can be
evaluated by the 3D Gaussian distribution

f�x��= �2��−3/2��0�−1/2e−1/2x�T�0
−1x� �Fig. 2�, where �0 is the co-

variance matrix, x� is the coordinate column vector of the
T

FIG. 2. Cluster of points generated by iteratively mapping a point in the
source image. Numbers show the iteration at which each point was obtained.
The numberless point represents the original point. The ellipsoid represents
the 50% isosurface of the initial 3D Gaussian distribution calculated from
the cluster.
point, and x� is the transpose coordinate vector. This 3D
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distribution can be viewed as the PDF that the mapped image
of the point x�0 in S0 �the point where f�x�� is calculated� is x�.

II.D. Dose uncertainty

After the variance for each point is computed, the impact
of it on dose can be assessed. To first order, dose uncertainty
may be estimated by considering a sphere centered at a point
with diameter k�0, k being a dimensionless parameter that
depends on the desired degree of confidence and �0 the es-
timated standard variation of the DVF at each point. The
variance of dose values within this sphere can be used to
estimate the dosimetric impact of the DIR inaccuracies in
this point. This procedure is the only suitable when obtaining
�0 by method A.

This simplistic process has several weaknesses. It is ob-
vious that not every value within the sphere has the same
probability. The further the dose point is from the center, the
less probable it is. Furthermore, the dose uncertainty estima-
tion depends on the arbitrary parameter k, the diameter of the
sphere to evaluate the dose uncertainty in. Changing k
changes the calculated variance. Increasing the value of k
implies, in most cases, increasing the calculated dose uncer-
tainty and no convergence is obtained for any value of k.
This problem can be partially overcome by weighting the
dose points with a function that takes into account the radial
distance; however, there is no universal appropriate function
to use. Regardless, the fact that DIR uncertainty may not be
isotropic will result in misestimating the dose uncertainty
within the sphere. Furthermore, if the radius of the sphere is
smaller than the size of the dose grid and nearest-neighbor
interpolation is used to estimate dose values within the
sphere, the estimated uncertainty will be exactly 0 since only
one dose value will be considered. This can be overcome by
trilinear interpolation of doses on the 3D dose matrix. Due to
the fact that method A is merely a first order estimate and
that trilinear interpolation is computationally expensive, only
nearest-neighbor interpolation is used in this work with
method A.

The problems related to the loss of directionality and
sphere size inherent to method A can be avoided by using the
more detailed information provided by method B. The cova-
riance matrix �0 provides information not only about the
magnitude but also about the directionality of the uncer-
tainty. In a DVF analysis, ��0�1/2 can be assimilated to �0 but
by doing so the advantages of knowledge of DVF uncer-
tainty directionality are lost. Furthermore, if the Gaussian
PDF is highly directional, ��0�1/2 can be very small even
though some individual components are large.

The PDF calculated by method B can be used to calculate
a weighted dose variance. Each dose value is weighted by
the value of the PDF at its position. In practice, for compu-
tational reasons, only dose values whose statistical weight is
above a threshold are considered for the calculation. The
dose uncertainty calculated in this way preserves the aniso-
tropy of DIR errors, takes into account the direction of the
dose gradient, and does not relay in an arbitrary parameter

like k in the previous procedure. The only selectable param-
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eter is the Gaussian function threshold to consider the dose
point in the calculation. Importantly, the calculated dose vari-
ance converges as the threshold value decreases, so if the
chosen value is low enough, the calculated dose variance
will be accurate.

This approach has a further advantage when using
nearest-neighbor interpolation in regions with low spatial un-
certainties. Unlike method A which yields zero dose uncer-
tainty when k�0 is less than the size of the dose grid, in
method B the 3D Gaussian spatial uncertainty distribution
covers the whole patient volume. By setting a suitably low
threshold for the minimum statistical weight considered,
multiple voxels are sampled in 3D, resulting in a sufficiently
accurate estimate of the dose uncertainty estimation without
the need to resort to trilinear interpolation. To validate that
the threshold was set sufficiently low, a comparison of
nearest-neighbor and trilinear dose estimates is presented.

FIG. 3. Axial and coronal slices of the treatment
FIG. 4. Distribution of standard deviations of the modules of inc
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In order to offer some insight to the differences between
both methods and their accuracy, three representative points
are studied in detail. The points are chosen to be representa-
tive of voxels where both methods show small, medium, and
large discrepancies. Specifically, the evolution of the dose
uncertainty in each point with the number of iterations used
to determine �0 and �0 are analyzed and the Kolmogorov–
Smirnov test is performed on the points coordinates to evalu-
ate normality. Results for these three points do not try to
probe the accuracy of the DVF uncertainty model used, but
to show that it is a feasible model and may provide reason-
able results.

II.E. Clinical demonstration case

A 4D CT of a lung case is used to demonstrate the pro-
cedures given above. The patient was diagnosed as having a

dose distribution mapped into the inhale phase.
onsistency vectors by using method A. � is given in mm.
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malignant neoplasm of right bronchus and lung. Treatment
consisted of an IMRT plan to deliver 50 Gy in 25 sessions,
plus a boost of 12.6 Gy in 7 sessions with 6 and 18 MV
beams. The main plan consisted of seven equispaced beams
with 50° steps. The boost plan consisted of seven beams at
angles of 15°, 90°, 130°, 180°, 230°, 280°, and 330°. For
simplicity, only two breathing phase images �full inhale and
full exhale� are used. The general method is easily extend-
able to mapping multiple image phases with the total dose
uncertainty being the sum of the individual phase dose un-
certainties added in quadrature. For this demonstration, we
compute the full 62.6 Gy delivery to the exhale phase and
then map the dose into the inhale phase using the point-based
thin plate spline �TPS� algorithm implemented in a research
version of Pinnacle planning system.7 Volumes used as input
by the TPS algorithm were lungs, heart, cord, superior me-
diastinal lymphatic nodes, esophagus, PTV, and GTV. The

FIG. 5. Histogram of DVF standard deviations for the test case. Frequency
is given in arbitrary units.
FIG. 6. Axial and coronal slices showing the spatial distribution of the do
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number of vertices to create the volume meshes and the
number of sample points for the TPS algorithm are left at
their default values. Fifteen iterative mappings are performed
to estimate the DIR induced point dispersion. The CT image
voxel size is 0.976 56�0.976 56�2.999 95 mm and the
dose calculation grid size is 2�2�2 mm. Both variance
methods are applied in order to illustrate the similarities and
differences between them. Additional calculations with
method B are performed with a 1.5�1.5�1.5 mm dose res-
olution to show the insensitivity of the results to sufficiently
fine dose grid resolutions.

III. RESULTS

The dose distribution is calculated on the exhale breathing
phase and then mapped to the inhale phase �Fig. 3�. Fifteen
mapping iterations are performed, resulting in 15 mapped
source images and 15 evaluations of inconsistency vector vn

in order to calculate uncertainty. In Fig. 4, the spatial distri-
bution of the inconsistency vectors is shown. Displacement
uncertainties are mainly clustered within a narrow band be-
tween the mediastinum and the left lung. Although not
shown here, this feature did not appear when a different set
of DIR parameters were used. The DIR set with the feature is
used in this demonstration since it clearly shows the utility of
the method developed. For the case shown in Fig. 4, the
maximum �DVF is 9.2 mm and the mean value within the
patient’s body is 1.3 mm. The histogram of �DVF values is
shown in Fig. 5.

The dose uncertainty, computed with k=1, shows that
large dose uncertainty values exist where large �DVF values
matches up to high dose gradient regions, as was expected.
In Fig. 6, the distribution of dose standard deviation is
shown. Note that there are some regions �one of them clearly
visible in the axial slice, in the lower part of the right lung�
where �dose is exactly 0 and there is a discontinuity between
voxels where �dose�0 and voxels with �dose=0. Because of
using nearest-neighbor interpolation, this discontinuity
marks the point where �DVF value goes from higher than
se standard deviation obtained by the method A. � is given in Gy.
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twice the dose grid size to a lower value. If there is only one
dose value within the k� sphere, the dose variance is exactly
0. As soon as the sphere is large enough to encompass more
points, the variance changes sharply from zero to a nonzero
value in neighbor voxels. The maximum value of �dose is
29.66 Gy and the mean is 0.96 Gy. The volume where �dose

is larger than 10.00 Gy is V��dose�10.00�=602.3 cm3,
whereas V��dose�1.00�=5740.1 cm3 and V��dose�0.10�
=11 084.2 cm3 �Fig. 7�.

The spatial obtained by method B ����1/2� differs signifi-
cantly from that obtained by method A �Fig. 8�. The uncer-
tainty region between the mediastinum and the lung still ex-
ists but the relative intensity of this region is much lower.
The maximum ���1/2 was 5.5 mm and the mean value was
0.1 mm. The histogram of values of ���1/2 is shown in Fig. 9.
Although ���1/2 can be viewed as a generalization of the stan-

FIG. 7. Dose standard deviation histogram obtained by the method A. Stan-
dard deviation is given in Gy.
FIG. 8. Square root of the determinant of the covariance matrice
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dard deviation, its value is less meaningful since a small
value of ��� may hide a large variance in a dosimetrically
important spatial direction.

Despite the differences between the distributions of �DVF

and ���1/2, the distribution of dose uncertainties calculated by
the method B �Fig. 10� resembles roughly the distribution
obtained by the first procedure but magnitudes are much dif-
ferent. The largest uncertainties are located in the same re-
gion; however, the overall region is much smaller with
method B and there is a difference of an order of magnitude
in the mean dose uncertainty. The maximum �dose found with
method B is 21.81 Gy and the mean is 0.07 Gy. The volume
with �dose�10 Gy is V��dose�10.00�=1422.2 cm3,
whereas V��dose�1.00�=3035.7 cm3 and V��dose�0.10�
=5094.0 cm3 �Fig. 11�. For computational efficiency, voxels
with cumulative statistical weight under 0.02% were not
taken into account, that is, voxels that are at 3.72� from the
Gaussian mean value. Use of trilinear interpolation in place
of nearest-neighbor interpolation to evaluate dose uncer-
tainty was found to not significantly change the results. Us-
ing trilinear interpolation, maximum �dose was 21.81 Gy and
mean �dose was 0.12 Gy. Estimation of V��dose� agreed
within 3% for values of �dose lower than 3.50 Gy; however,
difference increases for low values of �dose being V��dose

�2.00 Gy� 20% larger if trilinear interpolation was used.
Use of trilinear interpolation increased the computation time
fourfold. Using a 1.5�1.5�1.5 mm3 dose grid showed
little differences in uncertainty distributions.

The propagation of the estimated uncertainty for three
points is shown in Fig. 12 to illustrate the differences be-
tween the methods. For each point, the calculated dose stan-
dard deviation is shown after 4–15 iterations. Method A
tends to be more unstable and to provide larger estimations
of the dose standard deviation. This is likely due to the fact
that method A does not take into account the directionality of
spatial uncertainty, thus leading to an overestimation in vol-
umes where the largest component of the spatial uncertainty
is perpendicular to the dose gradient. Also, the assumption

1/2
s of coordinates by using method B. ��� is given in mm.
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that the distribution of modules of inconsistency vectors can
be approximated to a Gaussian distribution is not always true
and may lead to some errors. For these three points, the
Kolmogorov–Smirnov test was applied to compare the dis-
tribution of each coordinate to the superposition of Gaussian
distributions that was assumed in this work. All the coordi-
nates of the three points passed the test. In Table I, the sig-
nificance values for each coordinate and point are shown.

IV. DISCUSSION

The procedural framework presented in this work pro-
vides a dose uncertainty distribution that may be useful to
assess the quality of 4D dose mapping and hence, also of a
4D treatment. The system is flexible enough to be used with
different error models. However, the results may be highly
dependent on the specific error analysis performed.

FIG. 9. Histogram of square root of the determinant of the coordinate cova-
riance matrices for the test case. Frequency is given in arbitrary units.
FIG. 10. Axial and coronal slices showing the spatial distribution of the d
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The results obtained with the two error analyses presented
in this paper show significant differences. Although some
structures are identifiable with both methods, the magnitudes
of displacement uncertainties are very different. For ex-
ample, the band-shaped feature between the mediastinum
and the left lung is clearly the most prominent feature of the
variance mapping obtained by the first procedure �Fig. 4�,
whereas it seems a much less prominent feature if we look at
the values of ��0�1/2. The reason for such differences is re-
lated with the directionality of the DIR uncertainties. It is
possible that inconsistency vectors of a point tend to be
aligned along a direction. If that happens, the variance of
modules of vn may be large, but the determinant of �0 will
be small, since there is a coordinate system where all the
elements of �0 but one are very small. Analyzing the ele-
ments of �0 �Fig. 13�, it can be seen that the region between
the mediastinum and the lung shows a strong directionality
near the z direction, which would explain why the first pro-
cedure gives large deviations there but the second one does
not. Note that although ��0� may be very small, the informa-
tion about the variances and covariances in each direction is
not lost and it is used when calculating the 3D Gaussian
distribution of each point.

The effect of not considering the directionality of dis-
placement uncertainty to calculate the dose in method A are
evident in comparing results to method B. Although the or-
der of magnitude of the maximum dose variances and the
location of inaccurate regions are similar, the amount of vol-
ume involved and the mean dose variance are very different.
When dose variance is estimated in method A from the un-
weighted variance of doses within a sphere, the directionality
of dose gradient is not taken into account. However, in
method B, since the anisotropy of the DVF variance is taken
into account, not only are the dose values accounted for, but
the spatial distribution of doses have an influence on the dose
uncertainty estimation.

In general, method B provides a more accurate estimation
of the dose uncertainty associated with the DVF uncertainty
ose standard deviation obtained by the method B. � is given in Gy.
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because it takes into account the directionality of displace-
ment uncertainties and it weights dose values around each
point. However, if one is interested only in the DVF uncer-
tainty, method A provides a simple index that can highlight
potential inaccurate regions. Method B does not provide such
a simple insight of the spatial uncertainty and a more com-
plex and less intuitive analysis of the covariance matrix for
each point would be necessary.

With both methods, the procedure can estimate the impact
on dose distribution of DIR intrinsic inaccuracies. However,
they do not address the impact of systematic DIR errors due
to contouring errors, CT image artifacts, or other errors. In
general, systematic errors do not result in a dispersion of
points and thus will not be detected by these algorithms. A
low dose uncertainty does not mean a correct dose, but that
the DIR algorithm consistently maps the dose and that the
mapping shows little variability. The specific sources of er-
rors to which these procedures are not sensitive should be
studied.

Intuitively, one might expect dose uncertainties to be larg-
est in dose gradient or penumbral regions; however, this is
not true in general. Relatively small spatial uncertainties in
high gradient dose regions can result in large uncertainties;
however, the largest dose gradient region is not necessarily

TABLE I. P-values resulting from applying the Kolmogorov–Smirnov test to
the spread of the values of each coordinate for the three sample points. The
null hypothesis was that the distribution of the coordinates comes from the
superposition of 15 Gaussian distributions.

x Coordinate
�%�

y Coordinate
�%�

z Coordinate
�%�

Point 1 20.59 75.59 26.14
Point 2 86.18 41.30 45.08
Point 3 64.68 43.81 37.73

FIG. 11. Dose standard deviation histogram obtained by the method B. Stan-

dard deviation is given in Gy.
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the location with the largest dose uncertainty. Spatial uncer-
tainties in high gradient dose regions may be small, resulting
in small dose uncertainties. Similarly, low dose gradient re-
gions with high spatial uncertainty can result in large dose
uncertainties. Furthermore, even large spatial uncertainties
can result in low dose uncertainties in a large gradient region
if the spatial uncertainty is highly directional and normal to
the gradient vector. The relationship between the dose gradi-
ent and the sensitivity of the dose distribution to DVF errors
is under study.24 In the case presented in this paper, the cor-
relation coefficient between dose gradient and dose uncer-
tainty was 0.32, meaning a very weak correlation.

The presented algorithm takes advantage of the lack of
self-consistency of most DIR algorithms. Nonetheless, it is
still usable on DIR algorithms designed to be
self-consistent.21,25,26 Such algorithms aim to minimize the
lack of consistency but they do not eliminate it. Importantly,
computing the composite mappings Sn= fSn−1T0 · fTnS0 results
in an image Sn�S, thus allowing the evaluation of vn and
application of the method.

This procedure also has the advantage of estimating the
DVF and dose uncertainty in three separable phases. Thus,
more general methods to estimate the DIR induced point
dispersion can readily be used within this framework with
little modification. Similarly, cause specific point dispersion
models can be used to investigate dose uncertainty induced
by subcomponents of an DIR uncertainty.

V. CONCLUSION

A procedural framework to assess point-by-point dose
precision in dose mapping is presented. The procedure is
conceived in a modular way so that different error models
and analysis can be used within it. In this work, two different
analyses are used.

Although the second analysis is more complete and more
reliable, the first method, based on the variance of the mod-

FIG. 12. Dose standard deviation in three representative points as a function
of the number of iterations. Dashed lines represent calculations made with
method A and solid lines with method B.
ules of inconsistency vectors, may be useful for a more
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simple analysis when dose uncertainty accuracy is not a con-
cern. The second alternative, a more accurate generalization
of the first method, takes into account more complex details
of the impact of the DVF uncertainty in the dose precision.

The clinical impact of dose uncertainties resulting from

FIG. 13. Mapping of the values of the independent elements of the covarian
scale. Predominance of one component in some regions indicates that varia
intrinsic DIR uncertainties should not be inferred from the
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single case presented in this work. The methods can be a
useful tool to assess the precision of dose mapping in 4D
treatments or the potential impact of DIR uncertainties on
dose conformation within planning volumes and the clinical
impact of such imprecision on a per-patient basis. Such

atrices obtained in the test case. Note that each image has a different color
ave a strong directionality.
ce m
nce h
evaluations are ripe topics for future study.
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