
A Preliminary Evaluation of Multi-Probe Resonance-Frequency
Electrical Impedance based Measurements of the Breast

Bin Zheng, PhD, Dror Lederman, PhD, Jules H. Sumkin, DO, Margarita L. Zuley, MD,
Michelle Z. Gruss, BS, MTASCP, Linda S. Lovy, RT(R)(M)(CT), RDMS(BR), and David Gur,
ScD
Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract
Rationale and Objectives—To preliminarily assess performance of a new, resonance-
frequency-based electrical impedance signals (REIS) system in identifying young women who
were recommended to undergo breast biopsy following imaging.

Materials and Methods—A seven probe REIS system was designed, assembled, and is
currently being prospectively tested. During examination, contact is made with the nipple and six
concentric points on the breast skin. Signal sweeps are performed and outputs ranging from 200 to
800 KHz at 5 KHz intervals are recorded. An initial set of 140 examinations including 56 that
eventually had a biopsy, 63 who were negative during screening mammography, and 21 recalled
for additional imaging but later determined as negative was used. An initial set of 35 features, 33
representing impedance signal differences between breasts and two representing participant age
and average breast density, was assembled and reduced by a genetic algorithm to 14. Performance
of an artificial neural network based classifier was assessed using a case-leave-one-out method.

Results—The substantially greater asymmetry between signals of mirror-matched regions
ascertained from biopsy (“positive”) compared with non-biopsy (“negative”) cases, resulted in an
ANN classifier performance (AUC) of 0.830±0.023. At 90% specificity this classifier, optimized
for “recommendation for biopsy” rather than “cancer” detected 30 REIS “positive” cases (54%),
including 6 of 9 (67%) actual cancers cases and 6 of 9 (67%) women recommended for surgical
excision of high risk lesions.

Conclusions—Asymmetry in impedance measurements between bilateral breasts may provide
valuable discriminatory information regarding the presence of highly suspicious imaging based
findings.
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INTRODUCTION
Early detection of breast cancers in younger women (e.g. < 50 years old) is a
mammographically difficult and time consuming task, primarily due to the low prevalence
of disease and denser breast tissue (on average) that results in lower detection sensitivity and
specificity [1–3]. In recent years, a number of alternative and/or improved approaches have
been investigated for this purpose. Full-field digital mammography (FFDM), whole breast
ultrasound (US), and magnetic resonance imaging (MRI) are frequently used for this
purpose [4]. Other newer technologies such as digital breast tomosynthesis (DBT) and breast
cone beam computed tomography (CBCT) are also being investigated [5,6]. These new
breast imaging modalities have demonstrated the ability to achieve improved detection
performance in specific groups of women as compared with film and/or digital
mammography [7–9], resulting for example in the recent recommendation for periodic
breast MRI examinations in women at high-risk as an adjunct to mammography [10]. Often
these technologies result in the detection of different cancers; hence, the information
obtained is complimentary to mammography [4]. However, all of these imaging modalities
have well understood advantages and disadvantages, in particular when, and if, applied to a
substantial fraction of the screened population with no known risk factors. Despite these
advances and the fact that mortality from breast cancer is decreasing, there is a serious
continuing controversy about the efficacy of current screening practices in the United States
[11,12]. As related to women who are of pre-screening age and those not complying with
screening recommendations at an older age, there has been an interest in developing an
inexpensive, non-radiation based, simple to use and interpret examination tool that could be
used during annual examinations at the physician’s office in conjunction with the clinical
breast examination (CBE). The underlying concept is that with the use of this new
examination tool any abnormality in these women would be detected at an early time (and
potentially at an earlier stage). Due to low cancer prevalence among younger women (e.g., <
50 years old), there may be an important role for tools that could stratify these women into
two groups, the majority of those that are at “average risk” and but a small fraction of those
(e.g., 10% or less) that are at significantly higher than average risk of having or developing
breast cancer. Hence, women who do not participate in periodic imaging based screening
because of their age, or their personal choice, and are found to be “positive” based on the
stratification-type examination should be recommended to seek an imaging based evaluation
because they were determined to belong to a “defined high risk group.” [13]. This approach
is then based on a “rule in” concept rather than a “rule out” one. Namely, such a
stratification tool is in no way a competitor of imaging based surveillance. Under this
paradigm, every additional cancer that would be ultimately detected as a result of the
practice, and the imaging that would follow, will likely be detected substantially earlier. As
important perhaps, a stratification-type examination (tool) with these operational
characteristics could become extremely important for individualized screening
recommendations if annual imaging based examinations, in particular at an earlier age (e.g.,
< 50 years old), is ultimately deemed to no longer be the standard of practice.

Electrical Impedance Spectroscopy (EIS) is one of the approaches that have been
investigated for this purpose. Since the first imaging based EIS system to detect breast
abnormalities was assembled and tested in the 1980s [14], a number of studies have
followed [15–22]. The EIS approach involves the application of alternating low power
electric signals into the testing sample (or target) followed by measurements of the sample’s
response. Differences in electrical conductivity and capacitance between neo-plastic and
normal tissue have been shown in the 1920s and are thought to be primarily the result of
changes in cellular water content, amount of extracellular fluid, blood flow, and membrane
proteins [23]. It has long been established that cancer cells exhibit significantly different
local dielectric properties as compared with normal cells [20]. For example, one study

Zheng et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reported that the conductivity and capacitance in malignant human breast tissue was 20 to 40
fold higher than in normal breast tissue [14]. A single breast imaging based commercial EIS
system (T-Scan 2000, Mirabel Medical Systems, Austin, TX) was approved by the U.S.
Food and Drug Administration as an adjunct modality to mammography [22]. The T-Scan
2000 uses a system-generated EIS signal mapping image of single breast contact and the EIS
signal is inputted into a classifier designed for detection and classification of suspicious
lesions. A number of studies of EIS signals acquired on breast tissue samples in vitro and
breast surfaces in vivo demonstrated that measured EIS output signals contain some
discriminatory information [24]. However, when applied to women in the clinic, the
performance levels of EIS based classifiers remain relatively low. For example, the T-Scan
2000 has not been successful in terms of the stated objective as reported sensitivity was in
the range of 20% to 30% at high specificity levels. Only one study reported 27% sensitivity
at 94% specificity in a group of women that included 36 cancer and 476 negative cases [21].

We have been investigating a substantially different non-imaging based EIS concept in that
the response signals we ascertain and analyze are specifically at and near the resonance
frequency for the breast tissue being measured. We focus our analysis on asymmetry in
measured EIS signals from mirror-matched regions of bilateral breasts of the examined
woman [25–27]. Hence, we termed this approach resonance-frequency electrical impedance
spectroscopy (REIS). The approach aims to identify younger women who are not routinely
screened by an imaging modality but are at a higher than average risk of having or
developing breast cancer. These women could then be recommended to undergo an imaging
based follow-up. In a preliminary evaluation of a prototype REIS system with only one pair
of probes, we demonstrated that there is relevant information in the measured signals and
performance was statistically significantly better than chance [26]. Recently, we developed,
assembled, and installed a new multi-probe REIS system [27]. Under an Institutional
Review Board (IRB) approved protocol, we are currently conducting a prospective clinical
data collection to assess the performance of this multi-probe REIS system. In this study, the
initial set of REIS examinations acquired from 140 women with verified diagnostic results
was used to develop and test an artificial neural network (ANN) based machine learning
classifier. From the classification results of these women into “positive” (women actually
recommended for biopsy) and “negative” (women not recommended for biopsy), we report
here the preliminary assessment results.

MATERIALS AND METHODS
A. The multi-probe REIS system

Under an exclusive agreement between the University of Pittsburgh and Dhurjaty
Electronics Consulting LLC (Rochester, NY), we designed and assembled a unique multi-
probe REIS system (Fig. 1) that enables measuring and recording multi-channel output
signal sweeps ranging from 200 to 800 KHz [27]. In brief, the system consists of a
mechanical support, an electronic box with two sensor cups, and a notebook computer that
includes the management software of the system control and data acquisition and recording.
The two sensor cups have different surface curvatures specifically designed to fit “smaller”
and “larger” breasts. Each sensor cup has seven mounted metallic probes. One probe is
located at the center of the cup and the other six probes are mounted uniformly, or
symmetrically distributed, along an “outer” circle with a 60mm radius. The probes
(contacts) protrude approximately 4mm from the base of the cups to facilitate good contact
with the breast. During an REIS examination, the center probe is intended to enable easy
contact with the nipple. The other six external probes provide contact with six fixed points
on the breast skin surface at a fixed distance to the nipple (center probe). Specifically, the
six external probes are located at 12, 2, 4, 6, 8, and 10’o clock positions, respectively
(Figure 1). The curvature of the cups and the distance between the probes were based on
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actual multiple measurements using a mock-up device. The two sensor cups are mounted on
the “front” and “back” of the electronic box. The complete assembly can be easily rotated
180° to allow use of either cup by the person conducting the REIS examination and is easily
movable (up/down) to a desired height. The maximum electric voltage and current applied
to the sensor probes are less than 1.5V and 30mA, respectively. Hence, applying a sensor
cup to the breast skin is similar to physically holding a 1.5V battery between one’s fingers.

B. The REIS examination
After launching the REIS control software, a trained technologist performs the REIS
examination as follows: 1) The technologist adjusts the height of the sensor box (lowers or
raises) along a vertical rail (weight balanced for ease of use) to fit the height of the
participant’s breast and locks it in place. The center probe is typically positioned slightly
above the natural position of the participant’s nipple while standing. 2) The technologist
selects the sensor cup to be used based on participant’s breast size and locks it in place. 3)
The woman is asked to ‘lift” her breast slightly with her hand and position the nipple in
contact with the center probe and then gently “pull herself into” the cup by holding one or
both support sidebars designed specifically for this purpose. 4) The technologist keyboards a
digital identification number specific to each REIS examination in a data entry window and
then, using the computer mouse, initiates the REIS examination by clicking on a “start”
command button displayed on the computer screen. Once the system detects (automatically
done) that all seven probes are in “good contact with the breast”, signal acquisition
commences. 5) The technologist visually monitors the signal scanning process on the
computer screen to assure that contact between the breast skin and probes was maintained
during the entire scanning period. If adequate contact is lost during the REIS examination,
the system generates un-smoothed signal output curves and the examination results are
discarded. A repeated examination is then conducted and recorded. A complete examination
of each breast takes 8 seconds to scan, record, and save all measured output signals from as
many as eight detection channels. During a complete REIS examination the same
positioning and scanning protocol is performed on both breasts.

C. Acquired Output Signals
The recorded signal sweeps in each detection channel, namely a single pair of probes,
includes three sets of output signals. Each records 121 output values for frequencies ranging
from 200 KHz to 800 KHz at 5 KHz increments. The three sets of output signal sweeps

represent signal amplitude (a), signal phase (p), and signal magnitude ( ),
respectively, as shown in Figure 2. At the resonance frequency, the signal magnitude (I)
reaches a minimum output signal value and the phase signal crosses the p = 0 line (i.e.
converts from a negative to a positive value). During each REIS examination, all generated
and recorded six pairs of the three output signal sets are automatically saved in a computer
database for future data analysis.

D. Study Participants
Under an IRB approved protocol we have been performing REIS examinations on
consenting women between the ages of 30 and 50 years old who meet our inclusion criteria.
Participants are classified based on actual diagnostic results (outcome) into one of three
groups. The “positive” group includes women who had been recommended for biopsy
following an imaging based diagnostic workup (BIRADS 4 or 5) and the REIS relevant
examination was performed prior to the biopsy (typically on the same day approximately
half an hour prior to the scheduled biopsy). The second group includes women who
previously had a negative screening examination and were visiting our facility for their
scheduled annual screening examination. Status verification in these women included at this
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time, solely the negative mammograms of the scheduled screening examination. Currently
we do not have long term follow-up on these women as it is scheduled to be performed in
two years but the expectation value for future positive findings within one or two year is
extremely low. The third group includes women who had been recalled for a diagnostic
follow-up (BIRADS 0) as a result of a prior screening mammogram but were later (after a
diagnostic workup) determined not to require a biopsy (BIRADS 1 or 2, no BIRADS 3 in
this group). At this time our inclusion criteria for women who had been recalled for a
diagnostic follow-up, or those who had been recommended for a biopsy, does not include
restrictions regarding the type of abnormality in question (e.g. mass, cluster of micro-
calcifications, focal asymmetry) or the specific location or depth of the suspected
abnormality within the breast [26].

The multi-phase prospective clinical data collection task we are embarking on will be
executed over the next two years and has several planned sequential analysis steps. As a
preliminary assessment the first acquired set of 140 cases is reported here. We analyzed an
initial set of 140 REIS examinations acquired with a new multi-probe based REIS system on
women with known imaging and/or pathology based outcome. Among these women, 56
were “positive” (recommended for biopsy) and 84 were “negative” (non-biopsy) cases. The
latter group (“negative”) included 63 that had not been recalled (screening negative) and 21
who had been recalled (screening BIRADS 0) for additional imaging procedures but were
later determined not to need a biopsy (BIRADS 1 or 2); hence, these cases are considered
“negative” for the purpose of this analysis. Among the 56 “positive” cases (BIRADS 4 or 5),
imaging based examinations (i.e., mammography, ultrasound, and magnetic resonance
imaging) showed that 37 cases depicted suspicious masses, asymmetric density, or
architectural distortions, 8 depicted micro-calcification clusters alone, and 11 depicted both
masses and micro-calcification clusters. Among the 56 biopsied lesions in this dataset, 16
were reported as “palpable” masses in the corresponding diagnostic reports (CBE), but only
two of these eventually represented “high risk” lesions and none of the cancers were
palpable. For the purpose of this analysis, the biopsy (“positive”) group included three types
of cases, namely: (1) verified cancer cases, (2) cases with high risk lesions recommended for
surgical excision, as a result of the biopsy that followed and (3) biopsy-proven benign cases.
The biopsy results showed that the “positive” group included 9 cancer cases, 9 high risk
cases and 38 benign cases. Among the 9 cancer cases, 4 depicted masses only, 2 were
associated with micro-calcification clusters only, and 3 depicted both abnormalities. Among
the 9 “high risk” cases, 6 depicted masses only, 2 depicted micro-calcification clusters only,
and one depicted both abnormalities.

The average mass size in the biopsy group, as measured by ultrasound, was 1.37cm +/−
1.28cm (range 0.4cm to 7cm). The cancer mass sizes ranged from 0.85cm to 2.0cm. Among
the 56 biopsied cases, 9 were located in the “peri-areolar” or “retro-areaolar” regions and 3
were located posterially, close to the chest wall. The remaining 44 biopsied lesions were
reasonably well distributed in all breast regions. The average age of the women whose REIS
data were included in this analysis was 43.8 ± 3.8 years old (with a range of 35 to 50 years
old). Among the 140 cases in this dataset, 2 were subjectively rated by the radiologists
during the imaging based examinations as being “almost all fatty” (1.4%), 32 were rated as
“scattered fibroglandular densities” (22.9%), 93 were rated as “heterogeneously dense”
(66.4%), and 13 were rated as “extremely dense” (9.3%).

E. The initial feature pool
A large number of EIS signal related features was extracted as the initial feature set from the
six sets of EIS signal sweeps acquired between the center probe and each of the six
“external” probes. We named each probe based on the location (orientation) of the external
contact point at 12, 2, 4, 6, 8, and 10’o clock, respectively (Figure 1). Based on the
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underlying assumption that, similar to asymmetry in tissue patterns, two breasts have a
higher level of impedance symmetry in negative cases than in abnormal cases [20,25,26], we
focused our analysis on signal differences between geometrically corresponding locations
obtained from the two breasts of each participant. Figures 3 and 4 show typical signal
sweeps (magnitude only) for a biopsy (“positive”) case, and a non-biopsy (“negative”) case,
respectively.

The initial feature pool of 35 included 33 EIS signal based features and two non-EIS based
features. The definitions of the initial 33 EIS signal based features follow. Feature 1 was
defined as the maximum absolute difference between the ranges of all six resonance
frequencies for each of the breasts as computed for the left (L) and right (R) breasts (F1 =
Max |ΔfL − ΔfR|). The remaining 32 EIS signal based features were divided into two distinct
groups (Features 2 to 17 in group one and Features 18 to 33 in group two). In the first group,
we averaged a number of EIS signal values of the six EIS sweeps (including both signal
magnitude and phase) for each breast. Except for one feature that was computed as a mean
of two averaged EIS signal values from the two breasts, the remaining 15 features were all
computed by subtraction (differences) of two averaged EIS signal values from the two
breasts. These 16 features were:

1. Features 2 and 3: We computed two average resonance frequencies including

(  for the left breast and  for the right breast and defined
the following two features. Feature 2 was the mean of the two averaged resonance
frequencies (F2= (f̄L + f̄R)/2) and was the only feature that did not represent a
subtracted value but rather represented the overall resonance frequency value as
measured for the specific case. Feature 3 was the absolute difference between the
two averaged resonance frequency values (F3 = |f̄L − f̄R|).

2. Feature 4: By identifying the EIS signal magnitude value at the resonance
frequency [I (f)] of each sweep and computing the average value of all six EIS

sweeps ( ), we defined feature 4 as F4 = |ĪL − ĪR| representing the
absolute difference in averaged EIS magnitude values at the respective resonance
frequencies.

3. Features 5 to 10: Near each resonance frequency, we extracted six EIS signal
magnitude values of an EIS sweep (I (fi)) at six recorded frequencies, including two
values smaller than the resonance frequency (f−10 = f − 10 KHz and f−5 = f − 5
KHz) and four values larger than the resonance frequency (from f5 = f + 5KHz to
f20 = f + 20 KHz at 5 KHz increments). For each of these extracted EIS magnitude
values, we subtracted the EIS signal magnitude value at the resonance frequency of
the same EIS sweep [ΔIi = I (fi) − I (f)]. After computing the average EIS signal

magnitude differences (ΔIi) among all six probe pairs ( ) for each
breast, we defined six features (Fj = |ΔĪ(fi)L − ΔĪ(fi)R|, where j = 5, 6,…10, and i =
−10, −5, +5, +10, +15, +20 representing the six frequency differences near the
resonance frequency (in KHz) of the EIS signal sweeps). Thus, features 5–10
represented the absolute differences of the averaged EIS signal magnitude values
between left and right breasts at these six frequencies.

4. Feature 11: Similar to the computation of feature 3 representing the difference in
value between two frequencies, we computed another frequency difference value
between two breasts based on the EIS signal phase sweeps (Figure 2). For each EIS
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signal phase sweep, we identified the frequency at which the EIS phase value
reaches a plateau [f (pMax)]. We then computed the average frequency value of the

six EIS signal phase sweeps ( ) for the left and the right

breasts. We defined feature 11 as  representing the absolute
difference between two averaged frequencies at which EIS phase values reach
plateaus for the two breasts.

5. Features 12 to 17: Similar to features 5–10 we computed EIS signal phase value
differences rather than EIS signal magnitude value differences for the same set of
six frequencies of interest. Features 12 to 17 were defined as the absolute
differences between two breasts of two averaged phase values at the specific
frequencies, namely, Fj = |p̄(fi)L − p̄(fi)R|, where j = 12, 13, …17, and i = −10, −5,
+5, +10, +15, +20KHz different to the resonance frequencies, respectively.

Features 18 to 33 in the second group were defined and computed in a similar manner to
Features 2–17 in the first group with the exception that only one pair of mirror-matched EIS
signal sweeps (rather than averages of all six sweeps) from the left and the right breasts were
selected for computing these 16 features. Specifically, for each REIS examination (case), we
compared the resonance frequency differences for the six sets of mirror-matched EIS pairs
of sweeps. We then selected the one matched pair of EIS sweeps (e.g., at 10’o clock on right
breast and 2’o clock on the left breast) that had the maximum resonance frequency
difference among all six matched pairs of EIS sweeps. Table I summarizes the distribution
of cases that had a maximum resonance frequency difference between the two breasts at
each of the six mirror-matched pairs in the dataset used in this study. After selecting the
examination specific matched pair we discarded all other (five) pairs and we repeated the
same computation process that was used to define and compute features 2 to 17 (F2 to F17).
This process resulted in a second group of 16 EIS signal and phase related features (F18 to
F33). Last, we added to the feature pool the participant’s age (F34) and the radiologist’s
subjectively rated density BIRADS during the mammographic interpretations (F35). As
breast density and age are well known to be correlated with risk, the rationale of adding the
two non-REIS based input variables (“features”) was to test whether, or not, our classifier
optimization scheme is sensitive to inclusion or exclusion of these variables (“features”).

F. Optimization and performance assessment of the machine learning classifier
Selection of an “optimal” feature set through the process of pruning redundant features is an
important step in developing any data-driven computerized scheme designed for this
purpose. In previous studies, we established a feature selection protocol using a genetic
algorithm (GA) that has been tested and applied frequently to optimize different machine
learning classifiers including Bayesian belief networks [28], the artificial neural networks
(ANN) [29], and k-nearest neighbor algorithms based template-matching scheme [30]. In
this study, we applied a similar GA-based feature selection protocol to reduce the feature
pool and build an optimal ANN. The feed-forward ANN built in this study included three
layers. The first (input) layer included N neurons that connect to N selected features, the
second layer included M hidden neurons, and the third (decision) layer included one neuron
that generates a likelihood score of a test case being “positive” for the endpoint of interest
(or not). A publicly available GA software package [31] was modified and used with a
specifically designed binary coding method and a GA fitness function [29] to select an
optimal feature set and ANN structure. The ANN directly connects the detection scores to
the input data of a receiver operating characteristic (ROC) fitting and analysis program that
computes the area under the ROC curve (Az value). To minimize over-fitting and maintain
robustness of the ANN performance, a limited number of training iterations (1000), and a
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large ratio between the momentum (0.9) and learning rate (0.01), was used. During the GA
optimization step, the initial 100 chromosomes in the first generation were randomly
generated by the scheme. After a specific GA chromosome was selected, a case-based leave-
one-out method was used to assess the performance of the ANN-based classifier. The 140
classification scores generated by this process were inputted into a ROC fitting and analysis
program (ROCKIT [32]) to compute the area under the ROC curve (Az value). Thus, after
each training cycle, the GA generated a performance score (Az) for each chromosome. The
GA chromosomes that produce higher Az values have higher probabilities of being selected
in generating new chromosomes using the method of crossover and mutation. The GA
operation was terminated when it reached a global maximum performance level or a pre-
determined number of growth generations/iterations (i.e., 100 in this study).

After the highest performing ANN based classifier was determined, we re-computed the
performance level when classifying the 140 cases in our dataset into “positive” and
“negative” groups. Using the case based leave-one-out testing method we recorded the final
ANN-generated classification scores for each test case over the entire positive and negative
set of cases. The performance level (e.g., area under the ROC curve) and its variability (95%
confidence intervals) were analyzed. We note that the classifier was optimized for an
“actionable” endpoint (i.e., recommendation to biopsy) rather than for cancer as an end
point. This was done specifically for the purpose of the intended use of our proposed
approach, rather than as a screening tool to identify cancer cases. Under this scenario we
clearly underestimate the ability to identify cancer cases had the classifier optimized for
actual cancer as an endpoint, but the results for “biopsy recommendations” are more
generalizable in this scenario due to the number of cases in the different groups. However,
under this suboptimal optimization we computed the changes in sensitivity levels for
different types of cases (i.e., verified cancer cases, “high-risk” cases recommended for
surgical excision of the lesions, and all other biopsy recommended but pathology proven as
benign cases). We also evaluated the relationship between detection results and different
breast based characteristics (including type of depicted abnormalities and breast tissue
density ratings) at a predetermined set of specificity levels.

RESULTS
An example of the three recorded breast EIS output signal sweeps for one measurement
channel (one pair of probes) is shown in figure 2. The six sets of EIS signal magnitude
sweeps between the center probe and each of the six “external” probes are shown in figure 3
for a participant with a biopsy confirmed cancer and figure 4 for a participant determined by
mammography to be negative. As previously discussed by other investigators [20] and
shown in our own previous studies [25,26], these figures demonstrate that in general
“negative” cases tend to exhibit a higher level of electrical impedance symmetry between
the two breasts than “positive” cases.

After using a genetic algorithm for selecting an optimal feature set, we built and tested an
ANN-based classifier that included 14 input features (neurons) and four hidden neurons. The
14 selected features included six from those representing differences in averaged EIS signal
or phase (the first feature group), namely F6, F10, F11, F12, F13, and F15, and eight features
selected from the differences of EIS signals in individual mirror-matched probe pairs (the
second feature group), namely F19, F20, F21, F25, F26, F28, F29, and F30. The distribution of
these 14 selected features also shows that two features represented frequency differences
(F11 and F19), six represented EIS signal magnitude differences (F6, F10, F20, F21, F25, and
F26), and six represented EIS signal phase differences (F12, F13, F15, F28, F29, and F30).
Interestingly, the two non-REIS signal based features, including age (F34) and breast density
(F35), were not selected by the GA for inclusion in the optimized classifier, supporting the
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general expectation that, unlike mammography, REIS examinations are largely independent
of patient age and/or breast tissue density.

The overall performance of the ANN based classifier resulted in an area under the ROC
curve (Figure 5) of AZ = 0.830 with a 95% confidence interval for AUC [0.755, 0.890].
Table II shows performance levels of the ANN training and testing results as a function of
the number of training iterations. Table III summarizes the detection results of the classifier,
optimized for “biopsy” as an endpoint, at three predetermined specificity levels. The results
are provided by biopsy outcome, type of abnormality, and density BIRADS. For example,
the ANN classifier detected 30 “positive” (biopsy) cases or 54% sensitivity at 90%
specificity.

DISCUSSION
As the number of women who participate in breast cancer screening programs increases, so
too does the demand placed on the health care system to deliver high quality care to an ever
increasing number of women through adequate access, high quality (accurate) interpretation,
and at a reasonable cost. Despite the continuing controversy about the efficacy of screening,
in particular as related to younger women, we believe that individualized risk based
screening will ultimately be established and accepted in this country (and other countries as
well for that matter). Despite the markedly lower prevalence of breast cancer at a younger
age, there is great interest in improving early detection of breast abnormalities in younger
women because of the large potential benefits. Identification of younger women who are at
higher than average risk for having and/or developing breast cancer is an important and
difficult task. This may even be more important in younger women who are not enrolled in
annual mammography screening (e.g., < 40 years old in the US and < 50 years old in many
other countries), or in women who choose for personal reasons not to participate in
recommended imaging based screening programs. Among several alternative approaches to
risk stratification that do not require radiation, electrical impedance based technology has
been investigated extensively [13–21], but the results to date, using traditional EIS imaging
based approaches, have been less than satisfactory [22].

Our focus on the development and assessment of a markedly modified EIS approach,
namely a resonance-frequency based EIS approach (REIS) [25–27] that focuses primarily on
signal asymmetry between bilateral breasts, may lead to an acceptable prescreening tool for
this purpose. The unique characteristic of the REIS approach is that it does not only use
information at the frequency range most likely to provide useful information, but it also
weighs heavily on output signal differences between contra-lateral breasts of the same
participant being examined. The multi-probe approach has a number of advantages. First, we
are able to obtain a large amount of data points covering a reasonably large portion of the
breast. Second, we can monitor in real time the quality of the physical contact between the
different probes and the breast. Only when all seven probes have adequate contact the
examination commences. Third, the data ascertainment period is short (8 seconds). To the
best of our knowledge, no similar REIS system has been developed and/or is being tested for
this purpose, to date.

When applied to this dataset, our multi-probe REIS system achieved a reasonably high
performance level (AZ = 0.830 ± 0.023) as compared with our prior, rudimentary, single
probe based REIS system (AZ = 0.707 ± 0.033) [26]. However, the two studies used different
datasets acquired from different participants and therefore, one cannot directly compare the
performance results of the two studies. For a more valid comparison we selected a single
mirror-matched probe pair (at 10’o clock and 2’o clock for the left and right breasts)
representing the geometrically nearest possible location to the previous prototype system.
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The ANN based classifier using REIS signal features extracted solely from this pair of
matched probes achieved a performance level of AZ = 0.689 ± 0.035 that is quite similar to
the previously reported performance for the single-probe pair based system. Hence, as we
focus on location specific, differences-based information for classification purposes, the
multi-probe approach seems to be substantially better.

Although this is a preliminary study, we can make several observations regarding the results
we obtained. First, despite a suboptimal optimization for classifying cancer from non-cancer
cases, this classifier yielded better sensitivity levels in detecting cancer and high risk cases
recommended for surgical excision than in detecting “biopsy recommended” cases that
proved to be benign. For example, at 90% specificity, the classifier assigned/rated 67% (6/9)
of the cancer cases and 67% (6/9) of the high-risk cases as “REIS positive”, while only
assigned 47% (18/38) of other biopsy-proven negative cases as “REIS positive.” This trend
was consistent at all specificity levels examined in this study (Table III). Second, the
classifier is able to detect different types of breast abnormalities. For example, at 90%
specificity, the classifier assigned/rated 30 biopsy cases as “REIS positive,” which include
17 that depicted masses only, 6 that depicted calcifications only, and 7 that depicted both
abnormalities representing 46%, 75%, and 64% of these three types of abnormalities,
respectively. Third, the classifier assigned/rated “REIS positive” cases in all breast tissue
density categories (BIRADS ratings). For example, among the 30 cases classified as “REIS
positive” at 90% specificity, 5 were rated as BIRADS 2, 20 as BIRADS 3, and 5 as
BIRADS 4 representing 42%, 56%, and 63% of the three breast density groups in the entire
dataset. Fourth, the sensitivity of the classifier seems to not be dependent on lesion size or
location, as two of the three (67%) lesions marked by radiologists as located posterially near
the chest wall were correctly detected at 90% specificity. Although interesting, we caution
against generalization of these results because of the limited data in different categories after
sub-setting.

The REIS based approach does not require radiation exposure. At the same time, it is not an
imaging based device. Identifying either the types or the locations of any breast
abnormalities has not been attempted to date. Despite the limitations of this preliminary
study, in particular in terms of sample size, our results suggest that REIS based technology
could potentially be used as a prescreening tool aimed at identifying a case based risk of
having or developing breast cancer. The ultimate goal of the approach that we are exploring
is to provide a fast, low cost, easy to use, and non-radiation based prescreening tool that can
be incorporated into physicians’ practices for periodic examinations of women who do not
participate in annual mammography based screening or those who are at a younger age (e.g.
between 35 years old and commencement of periodic mammography screening). In this
respect REIS can be seen as an adjunct or an alternative examination to the clinical breast
examination (CBE). Any cancer identified under this scenario would not have been found
until later and possibly at a greater stage during an eventual detection.

We note that REIS based examinations are not intended in any way to compete with imaging
based screening mammography and it is not intended for screening women with known high
risk factors. As related to imaging based screening, the REIS exam should be considered a
“rule in” approach, namely given a positive REIS result the physician should consider
recommending an imaging based follow-up examination, rather than using it as a “rule out”
approach (i.e. women should not use a negative REIS result as an excuse to avoid imaging
based screening).

At this stage our dataset is limited but we included both a relatively large set of “positive”
cases (in this case women who after an imaging based diagnostic workup had findings that
were suspicious enough to warrant a biopsy) and negative cases. The ratio of approximately
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2:1 between negative and positive cases is higher than many preliminary optimizations of
machine learning classifiers. Also, the testing procedures we implemented that included
“recalled” but later determined to be “negative” cases, address at least in part the problem of
generalization in terms of covering the “domain” from which the negative cases were
selected. We note that in recruiting women to participate in this study, we did focus on
recruiting pre-biopsy (“positive” for the purpose of this study) cases. This is a necessary,
commonly implemented and generally accepted strategy in the medical imaging field for the
purpose of developing and optimizing classifiers.

Despite the encouraging results showing that asymmetry in impedance signal measurements
between the bilateral breasts may provide valuable discriminatory information regarding the
presence of highly suspicious imaging based findings resulting in a recommendation for
biopsy, we must emphasize that this is a preliminary study which suffers from a number of
limitations. First, this study included a limited number of REIS examinations representing
only a small subset of the examinations we plan to acquire in our ongoing prospective
clinical data collection effort. Second, a direct comparison with results from other EIS based
studies is not possible, as the participant pool is different and in this study we optimized the
classifier for a surrogate endpoint, rather than cancer [15–22]. Third, all abnormalities
included in this study had been originally detected on imaging based procedures, potentially
biasing the results. We do not have data on performance when the REIS approach and
classification scheme is applied to occult abnormalities during imaging. Last, whether or not
the clinical use of this REIS approach would eventually result in a significant increase in
unnecessary interventions due to false-positive findings has not been investigated in this
preliminary study. Therefore, much work is needed in this area before we can conclude
whether or not this approach should be prospectively tested for possible wide clinical use.
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Figure 1.
The multi-probe REIS system installed in our clinical breast imaging facility.
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Figure 2.
An example of three recorded breast EIS output signal sweeps for a single probe channel.
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Figure 3.
Six sets of magnitude signal sweeps acquired from the right (a) and left (b) breasts of a 48
year old participant with a biopsy verified breast cancer.
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Figure 4.
Six sets of magnitude signal sweeps acquired from the right (a) and left (b) breasts of a 38
year old woman whose mammograms were rated “negative” during the screening
mammography examination that followed the REIS examination.
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Figure 5.
Experimental ANN scoring (output) data and the fitted ROC curve for classifying 56 biopsy
(positive) and 84 non-biopsy (negative) cases. The area under the ROC curve is 0.830 ±
0.023.
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Table III

Detection performance of the classifier by biopsy outcome, type of abnormality, and density BIRADS at three
specificity levels.

Specificity 95% 90% 80%

Biopsy result All 56 biopsy cases 22 (39%) 30 (54%) 41 (73%)

9 Cancer cases 2 (22%) 6 (67%) 7 (78%)

9 High risk cases 6 (67%) 6 (67%) 7 (78%)

38 Benign biopsy cases 14 (37%) 18 (47%) 27 (71%)

Abnormality 37 cases depicting only masses 14 (38%) 17 (46%) 25 (68%)

8 cases depicting calcifications only 4 (50%) 6 (75%) 6 (75%)

11 cases depicting both abnormalities 4 (36%) 7 (64%) 10 (91%)

Breast density 12 BIRADS 2 cases 3 (25%) 5 (42%) 9 (75%)

36 BIRADS 3 cases 16 (44%) 20 (56%) 27 (75%)

8 BIRADS 4 cases 3 (38%) 5 (63%) 5 (63%)
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