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Abstract

Racemic and scalemic α-(acyloxy)-tri-N-butylstannanes undergo Pd-catalyzed cross-couplings
with alkenyl/aryl/heteroaryl iodides, bromides, and triflates in moderate to good yields in THF at
45 °C. Simple aryl iodides and unprotected aza-arenes, two classes of electrophiles that typically
react sluggishly, are also good substrates. Cross-couplings proceed with retention of configuration
at the alkenyl and stannyl-substituted stereocenters.

The Stille reaction,1 i. e., the transition metal-mediated cross-coupling of organostannanes
with organic electrophiles, has achieved wide acceptance2 as an exceptionally mild and
efficient method for the creation of C-C bonds, especially between sp- and/or sp2-hybridized
centers.3 Not surprisingly, the apparent advantages that would accrue from expanding the
traditional scope and structural confines of the Stille reaction have attracted much interest.4
In the early 1990’s, this laboratory5 and others6 explored the utility of tri-n-butylstannanes
for the transfer of stereogenic carbons bearing heteroatoms and reported the stereospecific
palladium/copper co-catalyzed cross-coupling of scalemic α-alkoxy- and α-
aminoalkylstannanes with acid chlorides.7,8 Subsequent studies led to copper mediated
cross-couplings with reactive electrophiles such as allylic and propargylic halides.9 The
utility of this methodology for the construction of chiral ethers and alcohols was cogently
demonstrated during asymmetric total syntheses of the anticancer agent (+)-goniofufurone10

and the potent endothelium-derived vasodilator 11,12,15-THETA.11 On the other hand,
comparable unions between α-heteroatom-substituted triorganostannanes and alkenyl/aryl
electrophiles were conspicuously absent12 and suitable methodology has been elusive.13 To
address this methodological gap, we conducted an extensive survey of alternative reaction
parameters including oxygen substituents14 and herein describe a practical, stereospecific
cross-coupling capable of using a broad range of sp2-hybridized iodides/triflates/bromides
(Scheme 1).
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Since esters and alkenyl iodides were identified as the most promising pairing in our initial
evaluations, α-(acetyloxy)stannane 1a and (E)-β-iodostyrene (2) were selected as the test
system. Screening an extensive collection of transition metals salts and complexes, tested
individually or in combination, revealed palladium complexes were especially efficacious,
and in particular freshly recrystallized Pd(dppe)Cl2.15 The yield of adduct 3a increased
proportionately with the amount of Pd(dppe)Cl2 up to 10 mol % (62%; Table 1), but
thereafter neither more catalyst nor alterations in mode of addition improved the outcome.16

Yields of 3a were patently better in THF as well as the reaction rate compared to other
common solvents, inter alia, toluene, DME, and DMF; there was no cross-coupling in NMP,
acetone, EtOAc, and CH3CN. In contrast with the experience of others,17 sources of fluoride
(LiF, TBAF, KF, AlF3, CsF) did not have a beneficial effect nor did Lewis acids [MgBr2,
AlCl3, FeCl3, ZnBr2, BF3·Et2O, Sc(OTf)3].

Replacement of the acetate of 3a with a benzoate, i.e., 3b, resulted in a modest improvement
in yield. Electron donating substituents (3c–d) had little influence above that of the parent
aromatic 3b and neither did electron-rich heterocycles like 2-carboxyfuran 3f and 2-
carboxythiophene 3g despite the potential for intramolecular coordination in the transition
state. In contrast, electron-withdrawing substituents (3h–j) offered an additional
improvement in adduct yield and a modest rate enhancement. Because of its better handling
characteristics and lower cost than the polyfluorinated aryls 3h,i, p-trifluoromethylbenzoate
3j was used in subsequent optimization studies.

Having standardized the reaction conditions, we next explored the scope of the cross-
coupling of p-trifluoromethylbenzoate (TFMB) 1j with a panel of representative sp2-
hybridized iodides, triflates, and bromides (Table 2). 3-Iodopropenoate 4, despite its
proclivity towards loss of HI and/or isomerization, smoothly cross-coupled using
Pd(dppe)Cl2 (catalyst A) to furnish 5 (entry 1) in excellent yield without complication or
loss of the Z-configuration at the alkenyl center (>98% by 1H/13C NMR), thus precluding a
conjugate addition mechanism. Under the same reaction conditions, 2-iodo-2-cyclohex-2-
enone (6), (Z)-iodostyrene (9), (E)-triflate 12, and unconjugated alkenyl iodide 15 led to
adducts 8 (entry 2), 11 (entry 3), 14 (entry 4), and 16 (entry 5), respectively, although the
reaction rates were somewhat slower than for 4. TFMB-benzyl alcohols 19 (entry 6), 22
(entry 7), and 24 (entry 8) were obtained analogously from aryl/heteroaryl iodides 17, 20,
and 23, respectively, in useful yields.

Comparable couplings of alkenyl and aryl bromides using Pd(dppe)Cl2 proved more
challenging and only poor yields of adduct could be obtained. Fortunately, we discovered
that the Buchwald pallacyclic catalyst18 chloro(2-di-tert-butylphosphino-2′,4′,6′-tri-iso-
propyl-1,1′-biphenyl)[2-(2-aminoethyl)phenyl] palladium(II) (t-BuXphos) restored efficacy
(Table 2). While reaction times were modestly increased for bromides 10, 13, 18, and 21,
adduct yields were generally comparable or even slightly better than those seen with alkenyl
iodides/triflates. The exception was (Z)-bromostyrene (10) which likely reflects this
electrophile’s greater steric hindrance.

To ascertain the stereochemistry of the C-C bond formation, enantioenriched benzoate 25
(98% ee), readily prepared from the corresponding aldehyde via the one-pot procedure of He
and Falck,19 was added to phenyl iodide using the standard conditions (Figure 1).
Saponification of the resultant benzoate 26 gave rise to the known20 1,3-
diphenylpropan-1(R)-ol (98% ee via chiral HPLC), thus demonstrating complete retention of
configuration at the stannyl-substituted stereogenic center. This is consistent with prior
experience using other classes of electrophiles, but opposite to the inversion of configuration
observed by Kells and Chong8 using scalemic α-(sulfonamido)organostannanes and Pd/Cu
cocatalysis. Analogous coupling of the diastereomeric glyceryl stannane 2721 to give 28
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(Figure 1) was also instructive and revealed the adjacent stereocenter had no apparent
influence on the outcome.

In conclusion, we have demonstrated the stereospecific Pd-mediated cross-coupling TFMB-
protected α-hydroxystannanes with alkenyl/aryl/heteroaryl iodides/triflates/bromides
including secondary cycloalkenyl and unactivated aryl iodides in THF under mild
conditions.22 When combined with the recently introduced methodology for the synthesis of
racemic and scalemic α-hydroxystannanes,19 we anticipate the foregoing methodology will
find wide utility in the synthesis of heteroatom-substituted stereogenic centers.
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Figure 1.
Cross-Coupling of Enantioenriched Stannanes
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Scheme 1.
Proposed Cross-Coupling
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