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The Role of Stretching in Slow Axonal Transport
Matthew O’Toole† and Kyle E. Miller‡*
†Department of Mathematics, Kettering University, Flint, Michigan; and ‡Department of Zoology, Michigan State University, East Lansing,
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ABSTRACT Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow
axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal
elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching.
We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day�1),
stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accel-
erate elongation and transport simultaneously by increasing either the axon’s susceptibility to stretching or the forces that induce
stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It
has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma,
and hence to the development of treatments for spinal cord injury.
INTRODUCTION
Slow axonal transport and axonal elongation occur at approx-
imately the same velocity, and many have suspected that
these two processes are closely related. It is intuitive that
axonal elongation cannot occur at a rate that exceeds the
transport of the materials that make up the axon. Although
proteins associated with organelles are moved by fast trans-
port at averagevelocities of up to 400mmday�1, cytoskeletal
proteins (e.g., neurofilament proteins, tubulin, and actin)
are transported by slow axonal transport at velocities in the
range 0.2–8 mm day�1 (1–6). A series of recent articles
have demonstrated that axonal stretching is linked to
axonal elongation (7–11). A particularly exciting finding is
that when forces are applied to axons, in a process called
extreme stretch growth, the axons can elongate at a rate of
8 mm day�1 for sustained periods of time without thinning
(7,12). Together these results imply that under certain condi-
tions stretching contributes to slow axonal transport.

The physical properties of the axon and substrate signif-
icantly modulate axonal stretching. For example, when
axons are tightly bound to the substrate, stretching will
not occur along the axon. This mode of elongation is called
tip growth (Fig. 1 B) and is exemplified by the elongation of
Xenopus neurons on the sticky substrate concanavalin A. In
contrast, when an axon (or a nerve) is unattached to the
substrate and axial forces cause it to lengthen, stretching
will occur along the length of the axon. This mode of elon-
gation is called towed growth (Fig. 1 D) and is seen in vivo
during body growth after synapse formation (8,13,14).
Towed growth has been examined in vitro by plating
neurons on platforms with a gap between them and moving
them apart over the course of days. Because high rates of
elongation can be achieved, this is called extreme stretch
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growth. Between the bounds of towed growth and tip growth
are situations where stretching occurs along a portion of the
axon. An example of this is observed when chick sensory
neurons are grown on laminin. Here, forces generated by
the growth cone cause low-velocity transport and stretching
of the distal axon (15). Our previous work suggests
that stretching is limited to the distal axon because forces
generated by the growth cone are dissipated by axonal inter-
actions with the substrate (Fig. 1 C) (16). In terms of
modeling the impact of stretching on slow axonal transport,
we consider three situations to be of the greatest interest:
towed growth in vivo, extreme stretch growth in vitro, and
growth-cone-mediated elongation in vitro on laminin.

During natural development, axons first lengthen as
a result of the actions of their growth cones. Forces gener-
ated by growth-cone dynamics cause elongation until the
neurite reaches its target. After synapse formation, axons
become longer through natural body growth. In addition,
there is abundant evidence that axons and nerves increase
in diameter. For example, the cross-sectional area of the
human sural nerve is ~0.25 mm2 in infants and increases
to ~0.6 mm2 in adults (17). Increases in axonal diameter
have also been observed in rat, chick, and Drosophila
neurons (18–20). The need for slow axonal transport to
add mass to the axon depends on protein demand and
mode of elongation. Demand for new protein can be created
by changes in axonal length, changes in axonal caliber, and
degradation of proteins along the length of the axon. Each of
these creates a need for anterograde flux of new material
(20). At an intuitive level, stretching can contribute to trans-
port during lengthening, but without additional modes of
transport, it will cause axons to thin. It is well accepted
that active-kinesin-based transport underlies slow axonal
transport and is needed for addition of new material to the
axon. Even without mathematical analysis, it is clear that
active-kinesin-based transport will be highest when axons
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FIGURE 1 Three models of mass addition during axonal elongation. The

vertical line denotes the initial position of the distal tip. (A) Diagram of an

axon before elongation. (B) Elongation by tip growth. The shaded area

denotes the location of the addition of new mass. (C) Elongation by stretch-

ing in the presence of adhesions. Forces generated at the growth cone are

dissipated because of interactions with the substrate. The force gradient

results in nonuniform thinning of the axon. The unshaded area distal to

the vertical line shows the portion of the axon that has been pulled forward

by stretching. (D) Towed growth and extreme stretch growth. Axial tension

is the same at all points, so that thinning and mass addition occur uniformly

along the axon.
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are rapidly lengthening, diameter is increasing, and protein
half-life is short. Likewise, axonal stretching will be high
when the axons are free from the substrate and axonal length
is rapidly increasing. The interesting problem is to deter-
mine quantitatively the contribution of stretching to slow
axonal transport under physiological conditions.

In this article, we develop a set of equations to analyze the
role of stretching in slow axonal transport. We do this in the
contexts of growth-cone-mediated axonal elongation, towed
growth in vivo after synapse formation, and conditions of
extreme stretch growth (i.e., towed growth at a high rate
in vitro). In our model, we consider the influences of rate
of axonal elongation, protein half-life, protein density, adhe-
sion strength, and axonal viscosity. We find that when axons
are free of a substrate and lengthen at rapid rates, stretching
can account for ~50% of total slow axonal transport.
RESULTS

Flux equations

The flux profile J(x,t) that is necessary to support a constant
velocity of axonal elongation is
Biophysical Journal 100(2) 351–360
Jðx; tÞ ¼ �
�
PðtÞ
t

þ a

�
x þ PðtÞLðtÞ

t
þ gPðtÞ þ aLðtÞ; (1)
where P is the density of materials in the axon, L is the length
of the axon, a is the rate of change of the density of materials,
g is the rate of lengthening, and t is the characteristic time
constant of decay (defined by half-life¼ ln2� t) (20). Based
on data from experiments where axonal diameter and mito-
chondrial density were analyzed along nerves in vivo
(18,20), we treat the density P as uniform with respect to
distance along the axon, but note that this does not hold in
all cases. It has been reported that axonal diameter tapers
(from an average diameter of 10.8 mm to 9.77 mm, by our
calculations) over a distance of 4 cm in the soleus nerve of
rabbits (21). In addition, axonal caliber increases with
distance in a stepwise manner along the mouse optic nerve
(22). Length and density increases in elongating axons
have also shown a linear trend based on experimental data
over defined developmental time windows. This leads to
the equations L(t) ¼ L0 þ gt and P(t) ¼ P0 þ at (20).
Although it is clear that there are nonlinear variations in
the rate of axonal elongation and the rate of change in axon
diameter over the course of development (17), here we use
linear models for the sake of simplicity.

In our model, we discuss protein density (P) in terms of
unit length of the axon (i.e., g/mm). In general, there is a tight
regulation between cell volume, protein density, and
osmotic control (23,24). This leads to the assumption that
an increase in P can be interpreted as an increase in axonal
diameter, as opposed to an increase in protein concentration.
In mature vertebrate axons, neurofilaments are the most
abundant protein, and they are particularly important in
controlling axonal diameter. Nonetheless, the relationship
between P and axonal diameter is complex, because axonal
diameter is a function of both neurofilament concentration
and composition and is influenced by other factors, such
as distance along the axon (25,26).

Total flux in Eq. 1 will be satisfied by the combined
effects of multiple transport processes (2). We separate the
contribution of stretching from other processes using the
formula

JTotalðx; tÞ ¼ JStretchðx; tÞ þ JOtherðx; tÞ: (2)

The form of the equation for stretch flux will depend on the
rate at which the axon is elongating, the strength of adhe-
sions along the length of the axon, and the density of mate-
rials. Processes including active-kinesin-based transport and
diffusion comprise the other flux in the axon.

When tension is initially applied to an axon it acts for
several seconds like a spring or viscoelastic solid. In contrast,
over minutes to hours, an axon acts like a dashpot or visco-
elastic fluid that exhibits a constant growth rate for a given
level of force (27): Force ¼ constant � velocity. Since
we model elongation over long time periods, we treat the
axon as a series of dashpots. The viscoelastic response of
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an axon to pulling forces is dependent on both the axon’s
axial viscosity and the level of adhesions that exist between
the axon and a possible substrate (16). In terms of modeling
slow axonal transport, we consider two cases: one where
there are no adhesions and one where there are adhesions
uniformly distributed along the length of the axon. It is
worth noting that axons in nerves are fasciculated (i.e.,
have attachments along their length), yet the nerve itself is
typically free from attachments along its length. Thus, we
treat individual axons and nerves that are free from the
substrate equivalently. In the case where the axon or nerve
is unattached, the axial force is felt equally along the length
of the axon. Since the cell body (or spinal cord) is chosen to
be the stationary point of reference, the velocity of materials
will decrease linearly from the end of the axon (Fig. 2) so that
stretch flux JU(x,t) in this regime can be approximated by
FIGURE 2 Flux during towed growth in vivo when adhesions are absent.

Transport profiles are shown at 0 (A), 1 (B), and 5 (C) days of elongation.

The rate of axonal elongation is set to a ¼9.24 mm h�1. Dimensionless

values characterizing the rate of axonal elongation (A ¼ 1.98) and the

rate of mass addition along the axon (C ¼ 1.00) are based on experimental

data shown in Table 1. Solid lines denote the flux profile necessary to fulfill

protein demand (Eq. 6). The position along the x axis where the stretch-

transport (Eq. 7) and other-transport lines intersect is x1=2=L. Stretching
accounts for more than half of the anterograde transport in the region:

x1=2=L < x%1. As the axon elongates, this value increases toward 1. The

size of the region is significant in the absence of adhesions.
JStretchðx; tÞ ¼ JUðx; tÞ ¼ g
x

LðtÞ PðtÞ; (3)
where the rate of elongation, g, a function of the force
applied and axonal viscosity G, is assumed to be constant,
as discussed above (7,27).

If adhesions are present, then the decrease in velocity of
materials is nonlinear in x and is dependent on the viscosity
of the axon, G, and the strength of the adhesions, h (16).
In this case, the flux of materials can be approximated by

JStretchðx; tÞ ¼ JAdðx; tÞ

¼ F0

ðhGÞ1=2
sinh

�
xðh=GÞ1=2

�

cosh
�
LðtÞðh=GÞ1=2

� PðtÞ; (4)

where F0 is the magnitude of the generated axial force
(Fig. 3). Here, we assume that the axon is long enough so that
the flux at the growth cone is JAdðLðtÞ; tÞz½F0=ðhGÞ1=2�PðtÞ
FIGURE 3 Flux during growth-cone-mediated stretching in the presence

of adhesions. Transport profiles are shown at 0 (A), 1 (B), and 5 (C) days of

elongation. The rate of axonal elongation is set to 9.24 mm h�1. Dimension-

less values characterizing axonal elongation (A ¼ 1.98), viscoelastic prop-

erties (B¼ 7.06), and rate of mass addition (C¼ 1.00) were calculated from

the parameters listed in Table 1. Solid lines denote the flux profile necessary

to fulfill protein demand (Eq. 6). The position along the x axis where the

stretch-transport (Eq. 8) and other-transport curves intersect is x1=2=L.

Stretching accounts for more than half of the anterograde transport in the

region: x1=2=L < x%1. As the axon elongates, this value increases toward

1. The presence of adhesions along the length of the axon decreases the

significance of stretching.
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where the velocity of elongation F0=ðhGÞ1=2 is constant. We
thus equate this value to the growth rate, g.

There are several simplifications inherent in our equations
that model stretching along the axon. In Eq. 3, we model the
situation where the cell body and the tip of the axon (or
nerve) are associated with points that are moving apart
and where the axon is free of external associations. The
underlying assumption is that the movement is the net result
of internal and external forces (28,29), the result being that
when an axon lengthens, stretching occurs equally at all
points along it. We think a model that includes the actions
of forces along the axon would be useful, but at this point
the experimental data needed to model those parameters
are too limited.
Nondimensionalization

As the magnitudes of variables and parameters will vary
based on the system to be studied, it is necessary to redefine
them in dimensionless form. We start with the following
choices for the variables:

~x ¼ x

L0

~t ¼ g

L0

t ~P ¼ P

P0

~L ¼ L

L0

~J ¼ t

P0L0

J (5)

L0 and P0 represent the initial values of the axon length and
protein density, respectively. Because we are studying the
case of minimal protein decay (t large), we avoid using
~t ¼ t

t. The nondimensional flux equations can then be
written as

~J
�
~x;~t

�
¼ �

h
~Pþ C

i
~x þ ~P~Lþ A~Pþ C~L; (6)

~JU

�
~x;~t

�
¼ A

~x
~L
~P; (7)

and

~JAd

�
~x;~t

�
¼ AD

sinh
�
B~x

�

cosh
�
B~L

� ~P; (8)

where the four dimensionless parameters A, B, C, and D are
defined as

A ¼ gt

L0

B ¼ L0ðh=GÞ1=2 C ¼ at

P0

D ¼ F0

gðhGÞ1=2
: (9)

These parameters can be defined as follows: A, the axonal
elongation parameter; B, the binding adhesion/viscosity
parameter; C, the cytosolic density parameter; and D, the
velocity ratio. Expressions for the scaled length and density
are ~Lð~tÞ ¼ 1þ~t and ~Pð~tÞ ¼ 1þ ðC=AÞ~t, respectively. Our
assumption that the velocity of stretch elongation is constant
will be considered safe if tanhðB~LÞ > 0:99, which requires
that B~L > 2:7. If this is the case, then g can be equated
with the velocity of stretch elongation and we can set D¼ 1.
Biophysical Journal 100(2) 351–360
It is to be noted that B~L will be<2.7 during the first hours
of axonal elongation, when the axon is very short. In the
case of chick sensory neurons grown on laminin,
B~L ¼ 2.7 when the length of the axons is � 90mm. In this
situation, forces and axonal stretching will be at significant
levels along the length of the axon reaching back to the cell
body. Mathematically, this minimizes the impact of adhe-
sion. As the axon grows longer, the effect of adhesions
increases to steady-state behavior (i.e., BL > 2.7). It is
possible to model this situation with short axons, but it is
beyond the scope of this manuscript.

At this point, we eliminate the tildes, keeping in mind that
we are dealing with dimensionless variables.
Region of stretch dominance and anterograde
momentum

In our model, the total-flux profile is decreasing and the
stretch-flux profiles are increasing along the axon, so that
for each value of t there will be a unique point, x1=2ðtÞ, at
which the stretch-induced flux will equal half of the total
flux. Between that point and the terminal end of the axon,
stretching will account for more than half of anterograde
flux of material (Figs. 2 and 3). In the case of no adhesions,
we solve the equation JUðx; tÞ ¼ Jðx; tÞ=2 for x and divide
by L to obtain

x1=2
L

¼ PLþ APþ CL

PLþ 2APþ CL
; (10)

which is between 0 and 1. The evolution of this point of
equality is shown in Fig. 4 A for four conditions: 1), wild-
type, 2), constant axonal diameter, 3), no protein degrada-
tion, and 4), constant diameter and no degradation. In
more detail, in Condition 1, the wild-type condition, protein
is normally degrading and the cytosolic density of proteins
along the axon is normally increasing, with the parameters
set at A ¼1.98 and C ¼ 1.00 (wild-type). The theoretical
situation in Condition 2 is that protein degradation is normal
but axonal diameter is constant, with parameters A ¼ 1.98
and C ¼ 0; here, C ¼ 0 is interpreted as a constant diameter
with a ¼ 0, and thus P(t) ¼ P0 for all t. In Condition 3,
where net mass addition is occurring along the axon but
protein degradation is undetectable, the parameters are
A>> 1 and C>> 1; since t is in both A and C, both of these
parameters are large. In Condition 4, where diameter is
constant and protein degradation is undetectable, the param-
eters are A >> 1 and C ¼ 0; here, A is large because t is
large and C ¼ 0 because a ¼ 0. In general, increasing C
pushes x1=2ðtÞ=L toward 1 (decreases the impact of stretch-
ing), whereas increasing A pushes x1=2ðtÞ=L toward 0.5
(increases the impact of stretching). We note here that
0.5 is not the absolute lower bound; when the level of active
transport is insufficient to maintain axonal caliber, x1=2ðtÞ=L
can be <0.5 and approaches zero as active transport
declines.



FIGURE 4 Contribution of stretching changes during elongation. As an

axon elongates, the fraction of the axon where stretching is the dominant

form of transport decreases. (A) The lines show x1=2=L as a function of

increasing axonal length (Eq. 10). In the absence of adhesions, when axonal

diameter remains constant and protein half-life is extremely high (A >> 1,

C ¼ 0), the only source of protein demand is axonal elongation. Thus,

x1=2=L remains fixed at 0.5. When the effect of increasing protein density

is added (A, C >> 1), x1=2=L increases slowly to a limiting value of 2/3.

Under conditions of a physiological protein half-life and constant axonal

diameter (A ¼ 1.98, C ¼ 0), the contribution due to stretching

is diminished. When proteins degrade and caliber increases (A ¼ 1.98

and C ¼ 1.00), the role of stretching is further reduced. (B) Comparison

of the evolution of x1=2=L in the presence (solid line; solution of Eq. 14)

and absence (dash-dotted line; Eq. 10) of adhesions. A ¼ 1.98 and C ¼
1.00 in both cases, and B ¼ 7.06 when adhesions are present. (C) In the

presence of adhesions (B ¼ 7.06), x1=2=L is affected only slightly for

varying levels of protein half-life and diameter increase (solution of

Eq. 14).
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Another measure of the effect of stretching is howmuch it
contributes to the total anterograde momentum of the
system. Momentum, p(t), is calculated as the integral of
flux over the length of the axon and is a measure of total
transport in the axon.

pðtÞ ¼
ZLðtÞ

0

Jðx; tÞdx ¼ L

2
ðPLþ 2APþ CLÞ: (11)

The momentum due to stretching is calculated in a similar
way (here in the absence of adhesions):

pUðtÞ ¼
ZLðtÞ

0

JUðx; tÞ dx ¼ 1

2
APL: (12)
The fraction of anterograde momentum that is accounted for
by stretching is pUðtÞ=pðtÞ. In the case of no adhesions, the
contribution of stretching to total anterograde momentum
and the point where stretching accounts for half of the total
flux are related by

pUðtÞ
pðtÞ ¼ AP

PLþ 2APþ CL
¼ 1� x1=2

L
: (13)

When adhesions are present along the length of the axon, we
find x1=2=L by solving the equation JAdðx; tÞ ¼ Jðx; tÞ=2,
which is transcendental. Multiplying this equation by 2
and setting D ¼ 1 gives

2A
sinhðBxÞ
coshðBLÞP ¼ �½Pþ C�x þ PLþ APþ CL: (14)

For the case of constant protein density and undetectable
protein degradation (C ¼ 0 and A >> 1), the asymptotic
solution is

x1=2
L

¼
sinh�1

h
coshðBLÞ

2

i
BL

þ O
�
A�1

�
; (15)

where the smaller-order terms have been omitted and the
first term is a good approximation. In the general case, the
solution may be well approximated using Newton’s method.
Fig. 4 B compares the evolution of x1=2=L in the presence
(solid line) to that in the absence (dash-dotted line) of adhe-
sions. Fig. 4 C shows that in the presence of adhesions, the
region of stretch dominance is much less sensitive to the
parameters involving axonal elongation (A) and changes
in cytosolic density (i.e., axonal diameter) (C).

To most effectively increase the role of stretching in slow
axonal transport, we need to know which parameter to
modify to cause the greatest reduction in x1=2=L. Fig. 5
shows the dependence of x1=2=L on parameters A–C
when t ¼ 0 (the qualitative results are similar for other
values of t). Dotted lines represent the value of x1=2=L for
A ¼ 1:98, B ¼ 7:06, and C ¼ 1:00, which is derived using
data from previous experiments (see Table 1). In each graph,
one parameter is allowed to vary while the other two are
held fixed at the values listed above. Values for B are
restricted to those >2.7, as is required for the use of this
model. The sensitivity of x1=2=L with respect to each param-
eter is estimated as the derivative of each of these curves at
ðA;B;CÞ ¼ ð1:98; 7:06; 1:00Þ. Those estimates are

v

vA

�x1=2
L

����
ðA;B;CÞ

¼ �5:01 � 10�3;

v

vB

�x1=2
L

����
ðA;B;CÞ

¼ �1:12 � 10�2;

v

vC

�x1=2
L

����
ðA;B;CÞ

¼ �4:97 � 10�3;

(16)

which shows that at this set of parameter values, x1=2=L is
about twice as sensitive to adhesion/viscosity (B) as to the
Biophysical Journal 100(2) 351–360



FIGURE 5 Sensitivity of the stretch-dominated region in the presence of

adhesions. The location of x1/2/L (Eq. 14) is plotted for varying values of

the dimensionless parameters when t ¼ 0. Dotted lines represent the value

of x1/2/L ¼ 0.913 for wild-type parameter values A ¼ 1.98, B ¼ 7.06, and

C ¼ 1.00. The contribution of stretching to transport is increased when

x1/2/L is lowered. In the presence of adhesions, varying A ¼ gt/L0 or

C ¼ at/P0 does little to decrease x1/2/L (A and C). Decreasing adhesions

(lowering B ¼ L0(h/G)
1/2), however, can significantly decrease x1/2/L (B).
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other two parameters. In Fig. 5, we see that the greatest
reduction in x1=2=L can be achieved by decreasing B.

Anterograde momentum is calculated in the same way as
above:

pAdðtÞ ¼
ZLðtÞ

0

JAdðx; tÞ dx ¼ AP
1� sechðBLÞ

B
: (17)
TABLE 1 Parameters used to calculate baseline values of

nondimensional parameters

Parameter Value System Source

a 4.49 � 10�3 mito mm�1 h�1 Drosophila larvae (20)

g 9.24 mm h�1 Drosophila larvae (20)

t 50.8 h Drosophila larvae (20)

L0 237 mm Drosophila larvae (20)

P0 .229 mito mm�1 Drosophila larvae (20)

G 3.9 � 107 g mm h�1 Embryonic chick (16)

h 3.5 � 104 g mm�1 h�1 Embryonic chick (16)

A ¼ gt
L0
¼ 1.98, B ¼ L0ðh=GÞ1=2¼ 7.06, and C ¼ at

P0
¼ 1.00.
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The fraction of anterograde momentum that is accounted for
by stretching in the presence of adhesions is pAd(t)/p(t) and
can be expressed as

pAdðtÞ
pðtÞ ¼ 2AP

PLþ 2APþ CL

1� sechðBLÞ
BL

: (18)
Fig. 6 shows the sensitivity of this ratio to the parameters
A; B; and C when t¼ 0. As with the region of stretch domi-
nance, the greatest increase in the stretching contribution to
anterograde momentum can be achieved by decreasing
adhesion/viscosity (B). Unlike x1=2=L, however, the contri-
bution of stretching to anterograde momentum is about
equally sensitive to each parameter at ðA;B;CÞ ¼
ð1:98; 7:06; 1:00Þ:

v

vA

	
pAd
p


����
ðA;B;CÞ

¼ �1:59 � 10�2;

v

vB

	
pAd
p


����
ðA;B;CÞ

¼ �1:31 � 10�2;

v

vC

	
pAd
p


����
ðA;B;CÞ

¼ �1:58 � 10�2:

(19)
FIGURE 6 Sensitivity of the relative contribution of stretching to

momentum in the presence of adhesions. The proportion of transport

that is due to stretching, pAd(t)/p(t), is plotted for varying values of the

dimensionless parameters when t ¼ 0. Dotted lines represent the value

pAd(t)/p(t) ¼ .094 for wild-type parameter values A ¼ 1.98, B ¼ 7.06,

and C ¼ 1.00. The contribution of stretching to transport is increased

when pAd(t)/p(t) is elevated. In the presence of adhesions, increasing

A can cause a moderate increase in pAd(t)/p(t), but decreasing C does little

(A and C). Decreasing B leads to the greatest increase in pAd(t)/p(t) (B).
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These partial derivatives can be determined directly from
Eq. 18. Note that this equation has a local maximum with
respect to B, but this is an artifact, since it occurs in the
region 0 < B < 2:7 (when axons are just beginning elonga-
tion) for all t R 0. In a similar way, x1=2=L has a local
minimum with respect to B, but this also occurs for
0 < B < 2:7 for all t R 0.

All figures in this article were created using MATLAB
(The MathWorks, Natick, MA) and Photoshop (Adobe,
San Jose, CA).
DISCUSSION

This work is the first that we know of to incorporate the
effects of axonal stretching in a model of slow axonal trans-
port. We analyze this problem taking into consideration
axonal viscosity (G), adhesions (h), protein degradation
(t), the rate of elongation (g), and the rate of mass addition
along the axon (a).We focus on three different situations as
examples. The first is in vivo towed growth in Drosophila
larvae. Here, synapse formation has occurred, the nerves
are free of attachments along their lengths, and the nerves
are elongating as the result of body growth. In the second
example, we examine the contribution of stretching to
slow axonal transport during the outgrowth of neurons
grown on laminin/polyornithine. In this situation, there are
attachments along the length of the axon, and stretching
occurs most prominently in the distal axon. In the final
case, we model the extreme stretch growth of neurons elon-
gating in vitro as the result of externally applied forces.
Here, the cell bodies and growth cones are on separate
platforms that are moved apart, and the axons are free of
adhesions. We find that stretching makes the most signifi-
cant contribution to transport when the rate of elongation
is rapid, adhesions are absent, and the rate of protein degra-
dation is low. In the case of the extreme stretch growth, we
estimate that stretching accounts for almost 50% of total
slow axonal transport.

We start with the assumption that multiple modes of
transport are making contributions to the slow-axonal-trans-
port flux (Eq. 1). Minimally, these include Stop-and-Go
transport of polymers, active-kinesin-mediated transport of
soluble proteins, diffusion, and stretching (2). To simplify
this problem, we divide total transport into two groups;
stretch transport and other transport (Eq. 2). We have chosen
two means by which to consider the effects of stretching.
The first is to compare the contribution of stretching to the
flux of materials at different points along the axon. When
this contribution is greater than half of the total flux, we
say that stretching is the dominant form of transport at
that point. As the total-flux profile is decreasing and the
stretch-flux profile is increasing, there will be a unique point
along the axon, x1=2ðtÞ, where stretching will account for
half of the anterograde flux (Eq. 10). Between this point
and the distal end, stretching is the dominant form of trans-
port. The fraction of the axon where stretching is the domi-
nant form of transport, then, is 1� x1=2=L. The strength of
this approach is that it is straightforward and obvious
from the graphs. The second way in which we view the
contribution of stretching to transport is in terms of antero-
grade momentum, which is the integral of anterograde flux
over the length of the axon. Whereas flux is a measure of
transport at a single point, anterograde momentum is
a measure of total anterograde transport in the axon. The
fraction of total anterograde transport that occurs by stretch-
ing is given by the ratio pUðtÞ=pðtÞ when adhesions are
absent (Eq. 13) and pAdðtÞ=pðtÞ when adhesions are present
(Eq. 18). Of these two methods of analysis, we think
momentum has the greatest utility, because it represents in
a single number the total flux along the length of an axon.
Ultimately, we would like to know the momentum of each
mode of transport (i.e., Stop-and-Go, soluble transport,
diffusion, and stretching) and how momentum changes
when proteins important for axonal transport are altered
(e.g., cytoplasmic dynein and the various members of the
kinesin and myosin families).

Our nondimensional model introduces three main param-
eters that play a role in the contribution of axonal stretching:
the axonal elongation parameter, A ¼ gt=L0; the cytosolic
density parameter, C ¼ at=P0; and the adhesion/viscosity
binding parameter, B ¼ L0ðh=GÞ1=2. In the case of no adhe-
sions, only the elongation and density parameters, A and C,
respectively, are present in Eqs. 6 and 7, and their values
dictate both the size of the stretch-dominated region and
the fraction of anterograde momentum due to stretching.
Contributing to each of these dimensionless quantities is
the degradation time constant, t, so that a change in the
half-life of the protein would change both A and C. In partic-
ular, in situations where protein degradation is very low,
A and C will both be large. A change in A or C alone would
be interpreted as a change in g or a, respectively. Fig. 4
A shows that a slower rate of protein density increase,
a (decreased C), and/or an increase in protein half-life, t
(increased A and C), elevate the relative contribution of
stretch-induced transport. Both of these changes result in
a decrease in the overall demand for new protein, leaving
the demand at the distal tip and the actual flux contribution
of stretching unchanged (see Eq. 1 and 3). This part of the
model best describes the cases of nerve elongation due to
bodily growth and instances where axons are towed while
unattached to a substrate.

One such example of this type of elongation is the extreme
stretch-grown axons engineered by Pfister et al. (7,12). In
these experiments, innervated rat axons were elongated
to a length of 5 cm over the course of 14 days. During the
first 2 days the rate of elongation was increased from 1 to
4 mm day�1, and for the final 12 days, the rate of elongation
was held at 4 mm day�1 (7). Using their data for microtubule
density and axonal caliber before and after the elongation
process, we can estimate the contribution that stretching
Biophysical Journal 100(2) 351–360
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makes to slow axonal transport in these experiments. The
values used to determine parameters A and C are given in
Table S1 in the Supporting Material.

Fig. 7 shows the contribution of stretching to overall
transport in extreme stretch-grown axons. We have
assumed, here, that the velocity of elongation is constant,
but the elongation steps were actually made in a stepwise
fashion. However, our assumption seems reasonable as the
0.5-mm steps were made approximately every 10.8 s and
this elongation rate (4 mm day�1) was held constant for
12 days. We observe that under conditions of extreme
stretch growth, stretching accounts for 49.1% of anterograde
momentum at the beginning of the third day of stretch
growth (t ¼ 0, the beginning of the 4 mm day�1 elongation
rate). At the end of the 12-day span (t ¼ 13.7) at this elon-
gation rate, the percentage of anterograde momentum that is
accounted for by stretching has only dropped to 41.1%. This
FIGURE 7 Contribution of stretching to slow axonal transport in extreme

stretch-grown axons. We applied our model to the study of Pfister et al. (7)

to see how much stretching contributed to anterograde transport in cases of

extreme stretch growth. In the study, axons were elongated at a rate of g ¼
4 mm day�1 for 12 days. These axons were free of adhesions along the

length, so Eqs. 6 and 7 were applied. Parameter values A ¼ 84.1 and

C ¼ 1.96 were derived using values listed in Table S1. (A) Flux profiles

of anterograde transport at the beginning of the 12-day elongation period.

Since A is much greater than C, the slope of the total flux profile is close

to zero, and stretching is the dominant form of transport in the majority

of the distal axon (x1/2/L ¼ 5.09). (B) After 12 days, stretching is still the

dominant form of transport in the distal 41% (20 mm) of the axon (x1/2/

L ¼ 5.89). (C) The relative contribution of stretching to anterograde

momentum is given by the ratio pU/p. Over the course of 12 days of

elongation at 4 mm day�1, this ratio declines from .491 to .411, showing

that stretching accounts for a significant amount of anterograde transport

(>40%) when axons are elongated by extreme stretch growth.
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is due to the fact that the elongation parameter based on the
experimental data is much greater than the density para-
meter (Table S1; A ¼ 84.1, C ¼ 1.96). The studies of Pfister
et al. showed that axons are able to grow at remarkable rates.
Our model suggests that when axons elongate at high rates
in this manner, stretching makes a significant contribution to
the transport of axonal materials.

During growth-cone-mediated axonal elongation, both
the growth cone and the length of the axon are typically
associated with a substrate. In vivo, this is typically the basal
lamina. In vitro, it is often coverslips coated with adhesion
factors. The adhesion/viscosity parameter, B, enters in
Eq. 8 when adhesions are present along the axon. Its effect
on the point where stretching accounts for half of the total
transport ðx1=2=LÞ is much more pronounced than varying
the rate of axonal elongation, A, or rate of that cytosolic
density increases, C. When the adhesion/viscosity param-
eter is set to conditions typical for the outgrowth of neurons
or polyornithine/laminin-coated coverslips (B ¼ 7.06),
stretching is dominant in the distal 10% of the axon (Figs.
3 and 4 B). In this case, there is almost no effect on the
time evolution of x1=2=L when the rate of axonal elongation,
A, and/or the rate of increase in cytosolic density, C, take
extreme values (Fig. 4 C). Altering the value of adhesion/
viscosity parameter, B, while keeping the other parameters
constant amounts to modifying the ratio h/G, where h

describes the strength of focal adhesions and G describes
the viscosity of the axon. Axial forces are quickly dissipated
by strong axonal adhesions, so when this ratio is large, there
will be limited stretching of the axon. High axonal viscosity
will lower force dissipation and a larger portion of the distal
axon will experience stretching (assuming the same velocity
of elongation). This part of the model best describes when
axons are engaged in growth-cone-mediated elongation
along sticky substrates.

To determine how the main parameters of our model
influence axonal stretching, we systematically varied the
rate of axonal elongation, the binding strength of the adhe-
sions, and the rate of change in axonal cytoplasmic density
(A, B, and C, respectively) and then determined the point
where stretching accounted for half of the total transport
(x1/2/L). Fig. 5 shows the sensitivity of the system to
variations in the three parameters when P ¼ L ¼ 1 (i.e.,
when t ¼ 0). From previous work, we consider wild-type
dimensionless parameter values A ¼ 1.98, B ¼ 7.06, and
C ¼ 1.00 (Table 1). At this set of parameters the axon is
elongating, adhesions are present, and net mass addition is
occurring at wild-type levels. Then, keeping two of these
values fixed, we allow the third parameter to vary to study
its effect on x1=2=L (note that to increase the size of the
region where flux is dominated by stretching, x1/2/L must
be lowered). We found that the contribution of stretching
to total transport increases as the rate of axonal elongation
increases (Fig. 5 A). In contrast, the contribution of stretch-
ing decreases when the strength of the adhesions increases
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(Fig. 5 B) and also decreases as the rate of mass addition
along the axon increases (Fig. 5 C). At a more detailed level,
our model also shows that in the presence of adhesions,
increasing A or decreasing C only produces mild reductions
in x1=2=L. In contrast, reducing B can lead to as much as
a doubling of the size of the stretch-dominated region.
Thus, decreasing adhesions along the length of the axon is
the most effective single method of increasing the contribu-
tion of stretching during elongation.

Anterograde momentum due to flux exhibits a similar
dependence on the rate of growth, adhesion strength, and
rate of density change. The key difference is that it is in
terms of the net mass that is moving along the axon. We
think this is more intuitive. For example, in Fig. 6 A, we
show the effect of increasing the rate of axonal elongation.
When A ¼ 1.98 in the graph (i.e., the rate of elongation is
9.24 mm h�1 (Table 1)), stretching accounts for ~9% of
the total transport (Fig. 6, dashed lines). When A ¼ 10,
the elongation rate is ~47 mm h�1 and the impact of stretch-
ing increases by ~50% to ~13%. This result is satisfying in
that it speaks to the older debate about the role of axonal
stretching in axonal elongation. In particular, many previous
studies observed axonal stretching in Xenopus neurons
which can grow at rates up to 100 mm h�1 (30). Several
studies subsequently suggested that stretching was the result
of the high rate of growth (31). Our analysis suggests that
indeed fast rates of elongation are coupled with increased
stretching of the axon. Likewise, it is well accepted that
adhesion strength is inversely associated with axonal
stretching. For example, axonal stretching is obvious when
Xenopus neurons are grown on laminin, whereas stretching
does not appear to occur along the axon shaft when the same
neurons are grown on the sticky substrate ConA (32). Like-
wise, in our model, we see that as adhesions increase, the
impact of stretching drops sharply (Fig. 6 B). Perhaps the
most interesting aspect of momentum is the impact of
the mass addition along the axon. In this case, we model
the net accumulation of material along the axon that has
been reported during development in terms of increases in
axonal width. In Fig. 6 C, we see that the contribution of
stretching decreases when the rate of net mass addition
along the axon is high. Our understanding of this is that
net mass addition along the axon is the result of active-
kinesin-based transport. When mass addition is high,
kinesin-based transport is high and the relative contribution
of stretching is reduced.

There are other possible patterns of bulk transport worthy
of note. For example, new material could be added at the
base of the axon and bulk transport could occur at a constant
velocity along the axon. This scenario has been proposed in
the structural hypothesis (2). Although this is a formal possi-
bility, there is currently no strong experimental support for
this mode of growth. Alternatively, more complicated
patterns could exist where force generation occurs at the
cell body and or along the axon. This might result in retro-
grade bulk low-velocity transport toward the cell body or
contraction in some regions and stretching in other regions
of the axon. Nonetheless, because there are no detailed
experimental data sets supporting these modes of elonga-
tion, we do not consider them in our analysis.

One important aspect of stretch-induced elongation that
we have not addressed here is short-term axonal thinning.
In their extreme stretch-growth experiments, Pfister et al.
demonstrated that stretching axons at very high strain rates
leads to rupture. However, when these tracts were properly
conditioned, they were able to sustain elongation rates of
up to 8 mm day�1 (7). Although our current model would
suggest that in the absence of adhesions, increasing the elon-
gation parameter A as much as possible would increase both
the rate of elongation and the contribution of stretching to
anterograde transport, there is certainly a limit as to how
much stretching an axon or a nerve can support. A theoret-
ical analysis of this limitation is required for optimal rates of
axon/nerve regeneration to be determined.

It has long been thought that the rate of axonal regenera-
tion is linked to the speed of slow axonal transport. When
an axon elongates by axially oriented forces, much of the
necessary transport in the axon occurs by stretching,
reducing the demand for microtubule-motor-mediated trans-
port. Away to increase regeneration rates in the presence of
adhesions may be to condition the nerves to be more suscep-
tible to stretching (33,34). In this way, transport due to
stretching would increase slow axonal transport and allow
faster rates of regeneration. We have shown that the
stretch-dominated region and anterograde momentum of
an axon/nerve are sensitive to the ratio of adhesions to
axonal viscosity, and that influence of stretching can be
increased by controlling this ratio. It may be possible to
achieve this increase by modulating the expressions of
cell-adhesion molecules (to decrease h) and/or cytoskeletal
components (to increase G).

Discovery of a drug that would drastically increase the
rates of both axonal elongation and slow axonal transport
would be a major advance in the field of nerve regeneration.
Stretching, a purely physical mechanism, has the ability to
simultaneously accomplish both tasks. With advances in
technology, axonal winches (cables embedded in the body
to stretch damaged nerves) and miniature robots that tow
nerves will be possible. A combination of physical and
cellular approaches (e.g., growth factors, gene therapy,
and neuronal stem cells) has the promise to yield phenom-
enal rates of exquisitely controlled nerve regeneration.
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