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Cluster Analysis of Time-Dependent Crystallographic Data:
Direct Identification of Time-Independent Structural Intermediates
Konstantin S. Kostov* and Keith Moffat*
Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
ABSTRACT The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of
difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses.
The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures,
each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates inter-
convert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster anal-
ysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the
time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its
temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster
voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural interme-
diate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From
such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics,
and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystal-
lographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data
for the photocycle of photoactive yellow protein.
INTRODUCTION
Despite the wide success of traditional macromolecular
crystallography in determining static, time-independent
structures, mechanism is much more difficult to establish
by crystallographic means. A mechanism involves a series
of distinct structural intermediates lying between the reac-
tant and product states. The structural differences that
distinguish reactant from intermediates from product can
be purely local, confined to an active site, or global,
involving most of the protein. Such structural changes can
occur over a wide range of timescales, from picoseconds
to seconds or even longer. To establish a chemical mecha-
nism it is necessary to identify these short-lived interme-
diate structures and the complex pathways by which they
interconvert.

Such structural changes and mechanisms can be studied
to a limited extent with traditional crystallographic trapping
methods (1,2). However, they are particularly suited to anal-
ysis by time-resolved crystallography (3–5). The immediate
goal of a time-resolved crystallographic experiment is to
measure the variation with time of the structure amplitudes
jF(hkl,t)j, spanning the entire time range of the structural
reaction being considered from initiation at t¼ 0 to comple-
tion. By making use of the known phases f0 at t ¼ 0, the
data from such an experiment is typically presented as
a series of time-dependent difference electron density
maps (TDED, hereafter also referred to as the density)
Dr(r,t) ¼ r(r,t) � r(r,0) which display the changes of the
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average electron density with time as a biochemical reaction
progresses. A close approximation to Dr(r,t) is obtained
by Fourier transformation of DF(hkl,t) ¼ {jF(hkl,t)j �
jF(hkl,0)j, f0}.

The interactions between molecules in the lattice of a bio-
logical crystal are weak, unlike those between molecules in
crystals of small organic and inorganic species. Hence
biological molecules tend to behave independently of one
another as if they were in dilute solution, in the specific
sense that if one molecule adopts, e.g., a reaction interme-
diate state B, the probability that adjacent molecules in
the crystal lattice will adopt state B (or state A or state C,
etc.) is unaffected. The transitions between intermediates
are then uncorrelated in time from molecule to molecule
in the crystal lattice, and the variation with time of the
average structure arises from the variation in population of
the underlying intermediate structures. The intermediate
structures themselves do not vary; they are time-indepen-
dent (3). Hence

rðr; tÞ ¼
X

CjðtÞ rjðrÞ; (1)

and

Drðr; tÞ ¼
X

CjðtÞ DrjðrÞ; (2)

where rj(r) denotes the electron density at location r for
species j, Drj(r) denotes the difference electron density at
location r between species j and species 0 (identical to the
reactant r(r,0)), and Cj(t) is the fractional concentration of
species j at time t. Although 0 % Cj(t) % 1, Dr(r,t) and
Drj(r) may be either positive or negative.
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This may be illustrated by a simple kinetic mechanism
involving four states I0, I1, I2, and I3:

I0 /
k01

I1 /
k12

I2 /
k23

I3: (3)

The fractional concentration of each state as a function of
time is presented in Fig. 1. At nearly all time points the
average structure is heterogeneous and contains a significant
population of two or more states. The problem that time-
resolved crystallography faces is given r(r,t), identify the
number and nature of the distinct short-lived intermediate
states, refine the structure of each state, and determine the
reaction mechanism(s), and rate coefficients for the inter-
conversion of these states (3–5).

The experimental techniques for successful conduct of
time-resolved Laue crystallography are now largely in place
in systems in which a reaction can be initiated by light, as
recent examples show (6–10). A substantial remaining
problem is that of data analysis and interpretation. The
major difficulties arise from the low signal/noise ratio.
The signal is weak because the level of reaction initiation
in the crystal may be as low as 10%–20%. Even in those
molecules that do react, most atoms do not move as the
reaction progresses and those that do move may not move
very far (i.e., Dr(r,t) << r(r,t) for most values of r and t).

The noise contains both random and systematic contribu-
tions. Spatial and temporal random noise can arise from
error in measurement of the time-dependent structure factor
amplitudes. Phase errors may produce spatially random
errors that have no temporal component and are constant
from time point to time point. Systematic contributions arise
from the use of the difference Fourier approximation, from
the fact that an entire time series is often pieced together
from data in which only one or a few time points are
acquired on the same crystal, and from significant crystal-
FIGURE 1 Time course of the population of each intermediate in the

chemical kinetic mechanism of Eq. 2. This mechanism is used in all subse-

quent figures for the simulated data. The time course is derived using the

rate constants in Table 1: I0 (black), I1 (red), I2 (blue), and I3 (green).
to-crystal, or experiment-to-experiment, variation in the
extent of reaction initiation.

Several strategies to minimize the noise have been devel-
oped. One strategy (11) is to make repeated measurements
of jF(hkl,t)j containing at least 10 observations, which
yields precise values of both its mean and its standard
deviation. Knowledge of the latter allows the application
of weighting schemes that reduce error (12). An effective
strategy to minimize experiment-to-experiment errors is to
collect data in the four-dimensional data space (hkl,t) with
time as the fast variable, by acquiring only a subset of
jF(hkl)j values on a single crystal, for all values of t (13).
Singular value decomposition (SVD) acts both as a powerful
noise filter and is also effective in identifying the number of
distinct intermediates present (14–17).

Even when these strategies are applied, the data analysis
stages remain very demanding. Thus, unscrambling or
deconvoluting the time-independent, heterogeneous mixture
of structures from the very noisy time-dependent data is the
essential challenge we consider here. This approach has
been termed analytical trapping, by which time-independent
structures are analytically trapped from time-dependent data.
The term parallels the more widely used chemical trapping
and physical trapping of intermediate structures (2,18,19).

In this study, we present what we believe is a novel
analytical trapping strategy—cluster analysis. This tech-
nique originated in statistics but has been used widely in
many areas of science including analysis of gene microar-
rays (20,21), protein dynamics simulations (22), and
functional magnetic resonance imaging (23). With the
exception of our prior brief communication (24), we believe
this is the first application of cluster analysis to crystallog-
raphy. In the following text, we review the basic principles
and algorithms of cluster analysis, and apply cluster analysis
to simulated data with different levels of noise and to noisy
real data. This is followed by a discussion.
COMPUTATIONAL METHODS

The TDED maps are described by the time profile of the
density Dr(r,t) over a set of time points spanning the time
domain of interest at a discrete set of grid points {ri} over
the space occupied by the asymmetric unit, which we refer
to as voxels. The fundamental rationale for our approach is
that the TDED for each individual voxel r follows a pattern
which is determined by the concentration profile (shape) in
time of the structural intermediate(s) j to which the density
at this particular voxel is sensitive. Thus, the TDED at a voxel
that is sensitive to a single intermediate will be similar in
shape to the unknown concentration profile of this interme-
diate. In this case, Eq. 2 consists of a single term, e.g., j ¼
J. Conversely, if the density at a voxel r is not sensitive to
any intermediate, then Dr(r,t)z 0 for all t. A more compli-
cated but also more common case arises when the density at
a voxel is sensitive to more than one intermediate. Then
Biophysical Journal 100(2) 440–449
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Dr(r,t) will exhibit a more complex time dependence over
the time interval when the concentration of those intermedi-
ates is nonzero (Fig. 1). Thus, if voxels could be classified or
clustered into groups such that each group corresponds to one
intermediate (or combination of intermediates) then the
number of intermediates present can be inferred from the
number of such groups. Further, the common shape of
the TDED at the voxels in each group yields the time profile
of their concentration changes and hence the relaxation rates
associated with their interconversion. If these time profiles
can be represented by a simple sum of exponentials, then
a chemical kinetic mechanism may hold.

Two key ingredients are the existence of voxels whose
TDED is indeed sensitive to the presence of only one inter-
mediate; and for those voxels whose TDED depends on
more than one intermediate, the ability to separate the indi-
vidual contributions of each intermediate to the total TDED.
This separation would allow refinement of the structures of
each intermediate. We show that such a separation is indeed
possible, at least in the case of a simple sequential kinetic
mechanism where only two intermediates overlap in time.
Cluster analysis

The computational grouping of objects based on their simi-
larity as defined by a suitable mathematical measure is
referred to in statistics as cluster analysis (25,26). The basic
problem in cluster analysis may be formulated as: given
N objects (here, the voxels in the electron density map)
the difference density at which is measured in each of
p variables (here, the time points), devise a scheme for
grouping the objects into g classes or clusters. The number
of clusters g in the general case is not known a priori. If this
number were known the grouping would simply involve
categorization of the objects.

The application of cluster analysis to time-resolved crys-
tallographic data requires three questions to be addressed. Is
there any initial transformation of the raw data that will
better distinguish the groupings? What is the appropriate
mathematical measure of similarity between the data?
Once a similarity measure is chosen, what kind of clustering
algorithm should be used? The correct answers to these
questions are interconnected and require careful analysis.
Data transformation

The initial data to be clustered consists of Dr(r,t). The data
may be replaced by w(r,t) T(Dr(r,t)), where w(r,t) is an
appropriateweighting function andTdenotes amathematical
transformation. We explored various transformations T such
as jDr(r,t)j and (Dr(r,t))2 and conclude (data not shown) that
it is best to use Dr(r,t) as is. The weighting function w(r,t)
may depend explicitly on factors such as t or r; and implicitly
on the quality of the data, or the magnitude of Dr(ri,t). In the
simplest weighting scheme w(ri,t) is either 0 or 1 depending
Biophysical Journal 100(2) 440–449
on whether some criterion is met. Thus a time point tm that
contains large systematic noise can be excluded from the
analysis by setting w(r, tm)¼ 0 for that time point. Likewise
attention can be restricted to the region of space containing
the protein molecule, or only the active site, by applying
a spatial mask and setting w(ri, t) ¼ 0 outside the mask.
To initially identify the number of clusters present, we found
it useful to consider only a subset of the voxels that have the
strongest signal. This corresponds to using aweighting factor
that depends on the magnitude of Dr(ri,t) and is zero when-
ever jDr(ri,t)j does not reach a specified magnitude at any
time during the reaction. Initially focusing on only the few
hundred voxels with largest magnitudes of the TDED instead
of all voxels present in the map, typically ~105, both greatly
accelerates the computations that are otherwise quite
unwieldy, and more importantly, allows more accurate iden-
tification of the clusters.
Choice of similarity measure

The choice of metric (25) used to quantify whether the
TDEDs at two voxels in the density maps are similar to
each other is of primary importance. The values of the elec-
tron density for a given voxel at n different times define an
n-dimensional vector. We tested the most commonly used
similarity measures: the Euclidean distance (the distance
between two points in the n-dimensional space sensitive to
both the direction and the magnitude of the electron density
vectors); the Pearson correlation coefficient (the dot product
of two normalized vectors that captures the directional simi-
larity in space (or shape along the time axis)with no emphasis
on magnitude); and Kendall’s Tau (that measures the
tendency of TDEDs at two voxels to vary in the same direc-
tion with time). The performance of each of these similarity
metrics is discussed in the supplemental materials. Because
we aim to distinguish the TDEDprofiles based on shape simi-
larities and not on absolute magnitude we expect that the
Pearson correlation coefficient measure will perform best.

The choice of similarity measure is complicated by the
fact that Dr(ri,t) can be both positive (an atom moving
into a region of space) and negative (an atom moving out
of a region). There exist voxels whose TDEDs have similar
time profiles that are mirror images of each other across the
time axis, but are sensitive to the same intermediate or group
of intermediates. Most similarity measures would classify
such voxels as belonging to different clusters, whereas in
the present context they should be grouped together. This
may be addressed by using a variant of the Pearson simi-
larity measure—Pearson squared—that clusters together
both positively and negatively correlated voxels.
Clustering algorithms

We find that the most appropriate methods for analysis of
time-resolved crystallographic data are those that divide



TABLE 1 Comparison of input and fitted rate coefficients

Data k01 k12 k23

Input 40,000 1000 100

No noise data 40,177 1006 100

2 s/1 s noise 33,557 1444 69

5 s/3 s noise 34,733 1416 61

Rate coefficients (s�1) used to generate the simulated data according to the

mechanism in Fig. 1, and the coefficients obtained from the global fitting of

the cluster analysis results at each of the three levels of noise.
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the data into a predetermined number of homogeneous
groups by optimizing some predefined criterion, usually
attempting to minimize the within-groups dispersion matrix
(the objects in the groups are tight) or maximizing the
between-groups dispersion matrix (the groups are well sepa-
rated). One such widely used method is k-means clustering,
in which the number of partitions M to be sought is chosen
in advance (26). In this approach, each of the M partitions
has a reference vector, which is initialized randomly. Each
voxel is then partitioned to its most similar reference vector.
Next, each reference vector is recalculated as the average of
all vectors assigned to it. These steps are repeated until all
electron density vectors map to the same partition on
consecutive iterations. It should be noted that k-means clus-
tering is nondeterministic due to the random initialization
(although deterministic versions exist) and therefore
different k-means runs on the same data can and do produce
slightly different outcomes.

An important consideration in k-means clustering is
choosing the number of partitions. In the analysis of time-
resolved crystallography data, this task is aided by the avail-
able experimental evidence that usually places restrictions
on the number of possible intermediates and hence of parti-
tions. If there are N intermediates (i.e., states distinguishable
from the reactant state) then there are 2N – 1 partitions. For
the simulated data analyzed here the number of intermedi-
ates is known in advance. Even in this case, it is not always
obvious how many partitions to specify to display the under-
lying structure in the data. Due to the imperfect similarity
measures and the noise and complexity of the data, if the
number of partitions is set too low, voxels that should belong
to the same cluster are often grouped into two or more sepa-
rate clusters at the expense of voxels that should belong in
a separate cluster. Thus it seems that the number of clusters
specified in k-means clustering should be overdetermined by
trial and error, something that is more difficult to do when
the number of intermediates is not known in advance.

We explored several other clustering algorithms using
k-means clustering as a reference point. These include
k-means support, Pavlidis template matching, self-orga-
nizing maps, and quality clustering (QTC). The results using
these methods are reviewed in the supplemental materials.
Although many of these alternatives have attractive features
they contain equally important drawbacks. The arbitrary
specification of the number of clusters in k-means clustering
is substituted by equally arbitrary criteria such as the cluster
diameter in QTC. The choice of the number of clusters in
k-means clustering is guided by the anticipated number of
intermediates and is a discrete parameter that can be system-
atically explored, unlike some of the continuous parameters
needed in the other methods.

These considerations and our computational results pre-
sented in the next section show that k-means clustering
with the Pearson squared similarity measure produces the
best results.
RESULTS

Simulated data

The clustering computations were carried out with the
TMeV program developed by The Institute for Genomic
Research for the analysis of gene microarray data (27),
customized to include additional similarity measures. This
program was chosen because it contains a large number of
clustering algorithms and similarity measures.

We first analyze simulated crystallographic data repre-
senting structural intermediates in the photocycle of photo-
active yellow protein (PYP). The data consist of a time
series of difference electron density maps generated for
different noise levels as described in Schmidt et al. (15)
and subjected there to SVD analysis. Briefly, the intermedi-
ates are derived from several structures of PYP deposited in
the Protein Data Bank: the entry 2phy represents the dark
state structure and the entries 3pyp, 2pyr, and 2pyp the
structures of three intermediates. A sequential kinetic
mechanism is used in which the three intermediates have
the concentration profiles shown in Fig. 1, generated with
the rate coefficients in Table 1. The time-dependent struc-
ture factor for the crystal as a whole is calculated by the
vector addition of time-independent structure factors of
the intermediates to the dark-state structure factor, each
weighted by its time-dependent concentration. Values of
time are chosen equidistant in logarithmic time to cover
the entire time course of the photocycle. Noise on the struc-
ture amplitudes is based on the experimental standard
deviations s measured for an experimental data set on
a PYP crystal in the dark. A spatial mask is applied to the
difference maps that includes one PYP molecule and
contains ~82,000 voxels; complete details are provided in
Schmidt et al. (15). We retain the notation of that study,
e.g., 5 s/3 s denotes simulated data that has a noise level
of 5s in the light state and 3s in the dark state.

We found that for the simulated data, applying aweighting
function of zero for voxels with a TDED below 5s at any
time point tm, where s represents the standard deviation of
Dr(r,t) for all voxels in the asymmetric unit, allows us to
initially focus on those voxels most representative of the
clusters in the data and produces the best trade-off between
computational speed and reliable identification of all
intermediates.
Biophysical Journal 100(2) 440–449
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Simulated data without noise

Two of the similarity measures analyzed, Euclidean and
Kendall’s Tau (see Fig. S1 in Supporting Material),
frequently produce clusters that are not homogeneous and
contain mixtures of voxels that are sensitive to more than
one intermediate. This undesirable effect is minimized
when using the Pearson correlation coefficient that best
captures the differences in shapes of the TDED that we
seek (Fig. S1 c). In particular, Pearson squared groups
together both positively and negatively correlated voxels,
as shown in Fig. 2 a where the number of clusters was
chosen to be 12. This permits voxels with TDEDs that are
mirror images of each other along the time axis to be
grouped into the same cluster, a clustering that is physically
correct. The data is partitioned into clusters that can be asso-
ciated with the time course followed by the concentration of
the each of the three intermediates separately (Fig. 2 a,D, A,
and H; compare with Fig. 1) and with combinations of two
of the intermediates, or all three intermediates (for example,
Fig. 2 a, E, J, and L). Plotting of the electron density features
associated with each of these clusters (Fig. 2 a, A, D, and H)
shows that they are spatially contiguous as would be chem-
ically expected.

Identification of other clusters is aided by analyzing zero
crossings. Any cluster for which certain TDEDs cross zero
(e.g., Fig. 2 a, C, E, G, J, and K) must arise from more
than one intermediate. One zero crossing implies two inter-
mediates; two zero crossings imply three intermediates, and
so forth. This follows from the fact that Drj(r) in Eq. 2 may
be positive or negative.

We note also that each TDED in a cluster arising from
a combination of two (or more) intermediates is a weighted
sum of the TDEDs of the two (or more) clusters arising from
each intermediate separately. The combination is a linear
combination of the individual clusters, a fact that aids in
its identification. For example, the cluster in Fig. 2 a, G
resembles that in Fig. 2 a, H, but both the zero crossings
and the larger values at the lowest times in Fig. 2 a, G
suggest that it contains both the first and third intermediates,
rather than simply the third intermediate as in Fig. 2 a, H.
FIGURE 2 Clusters of voxels at which the TDED exceeds 5s, obtained

by applying the k-means clustering algorithm with the Pearson squared

similarity measure to simulated data. Each panel represents a different

cluster. The number of voxels in each cluster is shown in parentheses: (a)

no added noise: A(54), B(44), C(51), D(50), E(32), F(39), G(36), H(37),

I(36), J(43), K(18), L(65), (b) intermediate (2 s/1 s) noise level: A(40),

B(33), C(21), D(14), E(10), F(48), G(2), H(38), I(12), J(21), K(33),

L(15), and (c) high (5 s/3 s) noise level: A(5), B(14), C(6), D(27), E(22),

F(22), G(20).
Noisy simulated data

Fig. 2, b and c, depicts the clusters obtained when using
simulated data at the 2 s/1 s and 5 s/3 s noise levels. As
with the no noise data, the resulting clusters can clearly be
associated with each of the intermediates present in the
simulated data. For example, Fig. 2 c, B, D, and G, corre-
spond to each of the three intermediates separately, whereas
Fig. 2 c, E, corresponds to a mixture of the first two interme-
diates. Clustering at the highest noise level provides the
most convincing partition of the data. This apparent paradox
may be explained by the small number of voxels selected for
the initial clustering by applying the 5s noise cut-off
Biophysical Journal 100(2) 440–449



FIGURE 3 Fits using a sum of exponentials with rates from Table 1 of

two voxels selected from the 5 s/3 s data set. The red (solid) line is the input

data and the green (dashed) line represents the fit, (a) voxel sensitive to the

second intermediate only, (b) voxel sensitive to the first and third interme-

diates. The contributions of each exponential term to the total fit are shown

with purple, light blue, and dark blue dotted lines.
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criterion. Smaller data sets are mathematically easier to
cluster into distinct groups. Only 7 clusters yielded a clear
partitioning as opposed to the 12 clusters necessary at the
lower noise levels. We verified that the initial clusters
obtained are homogeneous by attempting to subcluster
each of the clusters into two or more clusters (data not
shown). No new clusters or time profiles were observed.

After data partitioning, we then determine the contribu-
tion of each intermediate to the TDEDs of voxels in the
clusters that are sensitive to more than one intermediate.
First, we take the clusters that correspond to each of the
three intermediates and globally fit the TDEDs of each
voxel with a sum of three exponentials, in which the relax-
ation rates are fit with the constraint to be the same for each
voxel, whereas the pre-exponential factors are allowed to
vary for each voxel. The initial values of the rates in the
fit were those used to generate the simulated data (Table 1).
Fig. 3 a depicts such a fit for a voxel sensitive to the second
intermediate. This process yields the relaxation rates R1, R2,
and R3; their values for the different noise levels are shown
in Table 1. Using these rates we fit the remaining voxels in
the density maps using the following expression:

Drðri; tÞ ¼ Aiexpð�R1tÞ þ Biexp½ð�R2tÞ � expð�R1tÞ�
þ Ci½expð�R3tÞ � expð�R2tÞ�:

(4)

The first term in the above equation represents the decay
of the first intermediate, whereas the second and third terms
account for, respectively, the rise and decay of the second
and third intermediates. An example of such a fit is pre-
sented in Fig. 3 b (see also Fig. S3) for a voxel that depends
on two intermediates. The pre-exponential coefficients Ai,
Bi, and Ci vary for each voxel and represent the time-inde-
pendent contribution of each intermediate to the TDED at
voxel i. By generating a set (Ai, Bi, Ci) for each voxel in
the asymmetric unit, the TDEDs maps are deconvoluted
into three time-independent density maps, each correspond-
ing to a single intermediate j. Fig. 4 compares the input
density maps (first row) for the three intermediates
(columns) with those obtained from the fitting procedure
at each of the three noise levels (second through fourth
rows). The excellent agreement between the maps obtained
via clustering and the input maps is apparent. The clustering
maps even reproduce artifacts in the input maps such as
features outside the asymmetric unit (black arrows) and
side-chain density differences arising from the crystal struc-
ture used to construct I1 (blue arrow). Fig. 4 demonstrates
that the clustering results are robust to the presence of
even large levels of noise that do not appreciably influence
the main features of the resulting time-independent maps.

Because an irreversible kinetic mechanism is simulated
here, fitting of pre-exponential coefficients and apparent
rates readily derives the intermediates. It remains to be
explored whether this approach will be applicable to more
complicated mechanisms with reversible steps or with
more intermediates.
Experimental data

The experimental time-resolved data for wild-type PYP
spans the microsecond to second time range (6). We omit
the last seven time points from our analysis due to their
low signal/noise. We also removed the sixth point for which
the mean value of jDr(r,t)j across the asymmetric unit devi-
ates markedly from the values for adjacent time points.
Removal is based on the premise that concentration profiles
in real reactions vary smoothly with time (Eq. 2) and that
a spike can only arise from systematic noise such as a scaling
error (see also Rajagopal et al. (17)). The results of clus-
tering the TDED at voxels exceeding 6s using the k-means
and the Pearson squared similarity measure are shown in
Fig. 5. The clusters reveal the presence of two
Biophysical Journal 100(2) 440–449
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FIGURE 4 Comparison of the input difference density

map for the three intermediates, I1, I2, and I3, with output

maps obtained by clustering at the three different noise

levels. Maps contoured at �4s (pink), �3s (red), 3s

(blue), and 4s (cyan). Each column represents one interme-

diate. The first row is the input difference density map, the

second through fourth rows are the difference density maps

derived from clustering of simulated data with no noise,

with 2 s/1 s noise, and with 5 s/3 s noise, respectively.
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intermediates: one early intermediate (cluster F) and one
late intermediate (clusters A and C). The other clusters
contain voxels that depend on both intermediates. This
initial result is confirmed by varying the number of clusters
and by attempting to recluster each cluster (data not shown).
In neither case does any new cluster corresponding to addi-
tional intermediates emerge. These results differ from the
interpretation of the same data using SVD analysis by
Ihee et al. (4), who find evidence of more intermediates in
this time range. One possibility for this discrepancy is that
the intermediates with similar and closely overlapping
concentration profiles identified in (6) may not be readily
discernible by the Pearson similarity measure used in the
Drðri; tÞ ¼ Ai expð�4400tÞ þ B

Biophysical Journal 100(2) 440–449
present computations, particularly at the high noise levels
inherent in experimental data. A discussion of cluster anal-
ysis and SVD is presented below.

We then applied the two-step voxel time course fitting
procedure described above to the experimental data. First,
all voxels in the clusters corresponding to only the first
and second intermediates were fitted separately to a sum
of two exponentials with the same relaxation rates for
each voxel. The values obtained for the two relaxation rates
R1 and R2 are 4400 s�1 and 30 s�1, close to the values of
3030 s�1 and 100 s�1 determined by SVD (6). Next, these
relaxation rates were used to fit all voxels in the density
map with
i½expð�30tÞ � expð�4400tÞ�; (5)



FIGURE 5 Clusters of voxels at which the TDED exceeds 6s, obtained

by applying k-means clustering and the Pearson squared similarity measure

to experimental data for PYP spanning the microsecond to second time

range. Each panel represents a different cluster. The number of voxels in

each cluster is shown in parentheses: A(30), B(57), C(20), D(15), E(81),

F(38), G(7), H(54).
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where the first term represents the decay of the first interme-
diate whereas the second term represents the rise and decay
of the second intermediate. The time-independent electron
density maps corresponding to each of the two intermediates
are shown in Fig. 6. As expected, the density features are
spatially contiguous and concentrated around the chromo-
phore. Each intermediate displays distinct density features.
DISCUSSION

Potential of clustering

For cluster analysis to be successful in analyzing time-
resolved x-ray crystallographic data it must address three
problems: 1), be able to handle the large amount of data
generated by time-resolved experiments, typically hundreds
I1 I2

HC4 69
ARG 52

HC4 69ARG 52

FIGURE 6 Difference density maps for the two intermediates identified

by clustering of the experimental PYP data. Maps are contoured at �4s

(pink), �3s (red), 3s (blue), and 4s (cyan), where s here denotes the

root mean-square value of the difference electron density across the asym-

metric unit.
of thousands of voxels spanning the asymmetric unit, over
tens of time points; 2), be robust with respect to the signif-
icant noise present in each TDED; and 3), be able to accu-
rately identify voxels whose TDED is sensitive to one
intermediate only and those whose TDED is sensitive to
more than one intermediate.

The first problem is surmounted by our finding that it is
not necessary to cluster all voxels to identify the clusters
corresponding to the intermediates present in the data.
Initially analyzing only those few hundred voxels that
contain the strongest signal is sufficient. However, care
must be taken not to omit all voxels belonging to a given
intermediate when none of those voxels exhibits a strong
enough signal. This can be addressed by clustering the
sets of voxels at decreasing signal levels, say first 6s, then
5s and 4s, and noting if the inclusion of voxels with
progressively lower signal levels leads to the appearance
of new clusters.

With respect to the second problem, none of the similarity
measures currently used in statistics is fully satisfactory for
the clustering of the inherently noisy, time-resolved crystal-
lographic data. Yet, as the clusters of the simulated data with
increasing levels of noise indicate, the results are suffi-
ciently stable to the presence of high levels of noise
(Fig. 2 and Fig. 4). The number of unique clusters and their
characteristics remain unchanged. Thus, the results with the
noisy simulated data gave us the confidence to apply cluster
analysis to experimental data.

The third problem is more complicated at first sight but
turns out to have a simple solution. Our results for both
the simulated and the real data indicate that by using the
fitting procedure described above it is only necessary to
identify those clusters that correspond to a single interme-
diate. All other voxels are then fit to a sum of exponentials
with relaxation rates determined from the fit to the single-
intermediate clusters, a process that allows establishing
the contributions of the peak populations of each interme-
diate to the difference density of the remaining voxels.
We show that this is possible in the case of a simple sequen-
tial mechanism where the intermediates are relatively well
separated in time. Of course, this fit can be preceded by
further refinement of the relaxation rates against all voxels,
not just those associated with a single intermediate or whose
TDED exceeds the sigma cutoff.

The third problem has a second, more general geomet-
rical aspect: will voxels always exist whose TDED arises
from each single intermediate? We believe the answer is
‘‘yes’’ as in the simulated and experimental data analyzed
here, but lack a formal proof.

Cluster analysis using k-means does not have any inherent
assumptions that bias the method toward a particular number
of intermediates. In practice, in the initial clustering we
use only those voxels with the largest magnitude of
TDED to identify the number of intermediates. Authentic
intermediates may exist with features that have weaker
Biophysical Journal 100(2) 440–449



448 Kostov and Moffat
signal, especially if an intermediate contains more delocal-
ized structural changes with weaker signal. Such intermedi-
ates would not be captured in the initial analysis. In principle,
it is possible to include in the initial clustering voxels with
weaker signal/noise ratio or even all voxels in the difference
map. However, such an approach results in poor clustering
and worse reproducibility; therefore in Fig. 2 and Fig. 5 the
substantial number of voxels whose TDEDs have values
near zero at all times were eliminated with the 5s weighting
function. Initially, we expected that voxels containing
primarily noise would be clustered into a separate noise
cluster. This proved to be only partially true. The reason
lies in the mathematical nature of clustering that is based
on a minimax algorithm. This algorithm attempts both to
minimize the intracluster difference between the clustered
objects and maximize the intercluster differences. When
the number of voxels to be clustered becomes too large or
if many of their TDEDs do not contain strong features, the
quality of the resulting clusters is reduced because many
noise voxels are incorrectly allocated to clusters associated
with one of more of the structural intermediates. Even
when the voxels whose TDED is near zero throughout are
eliminated, many voxels remain whose TDEDs contain
signal at some time points but only noise at others. Due to
a smaller minimax penalty, the clustering algorithm might
group such partially noisy voxels together with others that
are somewhat similar in TDED, rather than segregating
them into a separate cluster. An example is in Fig. 2, c, G,
where onevoxel stands out at long times. The clustering algo-
rithms and similarity measures currently used in statistics are
not designed to deal with complex and noisy data where
a large number (and in fact the great majority) of the objects
to be grouped do not contain the features sought. At the same
time, the signal/noise in the data is not large enough (unlike
data from time-resolved spectroscopy) to provide a clear-cut
distinction between the TDEDs containing signal and those
containing only noise.

The robustness of the cluster analysis results is validated
by three key findings. First, the clusters are homogeneous
and no new time courses are revealed by reclustering any
of the clusters associated with a single intermediate. Second,
the features in the single-intermediate density maps
obtained with cluster analysis for both simulated and real
data are spatially contiguous as would be chemically
expected. If the candidate single-intermediate maps were
in fact heterogeneous due to a failure in clustering, then
they would not be refinable by a single intermediate struc-
ture. Finally, for the simulated data the input density maps
are accurately reproduced.
Comparison with singular value decomposition

For a review of the principles of SVD analysis see Henry and
Hoftrichter (14). The application of the method to simulated
and real data for PYP is presented in Ihee et al. (6) and
Biophysical Journal 100(2) 440–449
Schmidt et al.(15,16). Both cluster analysis and SVD are
able to correctly identify the number of intermediates and
their interconversion rates in the simulated data, a casewhere
these quantities are known in advance (see Table 1).
However, SVD analysis of the experimental data for wild-
type PYP (6) identifies more intermediates than does cluster
analysis. Two general reasons why cluster analysis may miss
an intermediate were discussed above: omitting all voxels
belonging to a given intermediate if they do not have a strong
enough signal and difficulty in discerning species with
similar and closely overlapping concentration profiles. An
additional reason is that difference density maps obtained
by cluster analysis have not been refined. The pB2 late inter-
mediate identified by SVD as present in very low fractional
concentrations was only discovered during the refinement
process (6). The SVD analysis also contains uncertainties.
Although the initial matrix decomposition is an exact math-
ematical operation the subsequent determination of the
number of significant singular values and vectors is more
subjective. Previous studies (6,15,16) have adopted
a comprehensive set of criteria for the selection of the rele-
vant singular values, criteria designed to eliminate subjec-
tivity to the greatest possible extent. Nonetheless it remains
possible that the number of intermediates may be overesti-
mated. Such a possibility has already been discussed with
respect to spectroscopic data (28) where a simple weighting
made the distinction much clearer between singular values
that contain information from those that contain noise.
Because spectroscopy data are typically of much higher
signal/noise than our time-resolved crystallography data,
the spectroscopic analysis was able to identify the significant
singular values only on the basis of their magnitude, and did
not require any additional criteria such as those used in the
SVD analysis of time-resolved data.

A critical distinction between cluster analysis and SVD is
that cluster analysis is able to directly identify the voxels in
the density maps that are sensitive to each of the time-inde-
pendent intermediates, separately. In contrast, SVD analysis
produces a set of time-independent density maps consisting
of the left singular vectors, each of which is a linear combi-
nation of the individual maps corresponding to each inter-
mediate. The individual maps can be derived from the left
singular vectors after fitting the right singular vectors with
a candidate kinetic model. Once the structures of the inter-
mediates are known, the kinetic mechanism can further be
validated and the rate coefficients refined by posterior anal-
ysis (15). The ability of cluster analysis to derive the inter-
mediate time-independent density maps directly from the
TDED maps is a substantial advantage as it eliminates an
analysis step that may introduce subjectivity and inaccuracy.
Certain steps in cluster analysis at first glance appear
entirely subjective: choice of s cutoff, number of partitions,
and identification of particular clusters with single interme-
diates. These can be made at least partially objective by
varying e.g., the s cutoff and number of partitions, and by
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reclustering to demonstrate the homogeneity of all clusters
including those provisionally identified with single
intermediates.
CONCLUSIONS

Applied individually, SVD and cluster analysis represent
powerful analytical methods that enable the deconvolution
of time-resolved crystallographic data to extract information
on enzymatic reaction intermediates, mechanisms, and time
courses that is impossible to obtain via simple observation
of electron density maps. We demonstrate that cluster
analysis is a viable alternative and complement not only
to SVD but to other methods for the analysis of time-
resolved crystallographic data such as data averaging of
adjacent time points (11). The joint application of these
techniques promises to become a useful analytical tool for
the analysis of complex biological reactions.

Future work will explore the possibility of finding an
optimal signal/noise cutoff that would allow the inclusion of
any intermediates that are manifested with weaker signal
while at the same time maintaining clusters of high quality
that enable those intermediates to be readily distinguished.
Future work should also formulate new clustering algorithms
and/or similarity measures that are capable of effectively
segregating the noise time courses from complex data
in situations where such time courses constitute a significant
fraction of the data. Ideally, new similaritymeasureswould be
able to distinguish between time profiles with similar shapes
that are nearly overlapping in time. Such advances will allow
applying the clustering analysis to more complex mecha-
nisms and resolve any remaining discrepancies between
SVD and cluster analysis for the experimental PYP data.
SUPPORTING MATERIAL

Overview of additional cluster analysis methods and their applicability to

time-resolved crystallography data analysis are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(10)05190-8.
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