
Oxidative Stress in Schizophrenia: An Integrated Approach

Byron K.Y. Bitanihirwe, M.Sc., M.Sc.1 and Tsung-Ung W. Woo, M.D., Ph.D.2,3,4

1Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich,
Switzerland 2Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA, USA
3Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
4Department of Psychiatry, Harvard Medical School, Boston, MA, USA

Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In
particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known
to impair cell viability and function, which may subsequently account for the deteriorating course
of the illness. Currently available evidence points towards an alteration in the activities of
enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models
have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly
similar to those observed in schizophrenia. These findings suggest that oxidative stress is
intimately linked to a variety of pathophysiological processes, such as inflammation,
oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate
receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[BKYB1] Such
self-sustaining mechanisms may progressively worsen producing the functional and structural
consequences associated with schizophrenia. Recent clinical studies have shown antioxidant
treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable
therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances
provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
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1. Introduction
Schizophrenia is a chronic, severe and disabling psychiatric illness that affects about 1% of
the population worldwide (Jackobson, 2000; Perala et al., 2007). The symptoms of the
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disorder can be divided into three main categories: positive symptoms (e.g. delusions and
hallucinations), negative symptoms (e.g. flat affect, lack of motivation and deficits in social
function) and cognitive deficits (Carpenter, 1994; Tamminga and Holcomb, 2005). Although
the symptoms that establish the diagnosis are usually not present until young adulthood,
prodromal symptoms and endophenotypic features of cognitive and social deficits can
precede psychotic illness and manifest in unaffected relatives.

The prevailing hypothesis for the etiology of schizophrenia is that variations in multiple risk
genes, each contributing a subtle effect, interact with each other and with environmental
stimuli to impact both early and late brain development (Weinberger, 1987; Lewis and
Lieberman, 2000; McDonald & Murray, 2000; Lewis and Levitt, 2002; Sawa and Snyder,
2002; Mueser and McGurk, 2004; Harrison and Weinberger, 2005; Jaaro-Peled et al., 2009).
Although a clear mechanism underlying the pathogenesis of schizophrenia remains
unknown, oxidative stress as a consequence of aberrant reduction-oxidation (redox) control
has become an attractive hypothesis for explaining, at least in part, the pathophysiology of
schizophrenia (Cadet and Kahler, 1994; Reddy and Yao, 1996; Fendri et al., 2006; Ng et al.,
2008; Behrens and Sejnowski, 2009; Dean et al., 2009a; Do et al., 2009, 2010; Wood et al.,
2009a; Yao et al., 2001, 2004, 2006, 2009; Matsuzawa and Hashimoto, 2010; Zhang et al.,
2010).

The last four decades have witnessed a great increase in our knowledge of the basic
molecular mechanisms underlying oxidative stress. Most remarkably, functional genetic
analysis has identified molecular mechanisms that are conserved in yeast, nematodes, flies
and mammals. Analysis of these model systems suggests that redox mechanisms are not
fixed but are reversible. Similarly, cognitive dysfunction associated with an imbalance in the
generation and clearance of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) also seems to be variable and possibly open to modification [BKYB2](Kamsler and
Segal, 2003; Calabrese et al., 2006). Recent studies have implicated these mechanisms in the
control of brain pathology, raising the possibility that altered regulation of fundamental
mechanisms of oxidative stress may contribute to the pathogenesis of schizophrenia and
related disorders (Floyd, 1999; Chauhan and Chauhan, 2006; Ng et al., 2008; Do et al.,
2009; Wood et al., 2009a).

In this review, we explore the basic molecular mechanisms of redox regulation in the brain.
We begin with a brief description of oxidative stress and its regulation. Then we turn to a
discussion of clinical and pre-clinical findings of redox impairment that induce brain
pathology in schizophrenia, through mechanisms that likely involve aberrant inflammatory
responses, mitochondrial dysfunction, oligodendrocyte abnormalities, epigenetic changes,
hypoactive N-methyl-D-aspartate (NMDA) glutamate receptors and the impairment of fast-
spiking gamma-aminobutyric acid (GABA) interneurons (see Figure 1). There is hope that
our growing understanding of the molecular basis of oxidative stress mechanisms within the
brain will allow us to rise to the challenge of treating and preventing the clinical symptoms
and cognitive deficits associated with schizophrenia.

2. What is Oxidative Stress?
Oxidative stress occurs when cellular antioxidant defense mechanisms fail to counterbalance
and control endogenous ROS and RNS generated from normal oxidative metabolism or
from pro-oxidant environmental exposures (Kohen and Nyska, 2002; Berg et al., 2004). The
link between oxidative stress and the pathophysiology of disease can be explained by the
physiological phenomenon commonly referred to as the ‘oxygen paradox’ (Davies, 1995).
This concept states that oxygen plays contradictory roles, one essential for life and the other
as a toxic substance (Davies, 1995; Kohen and Nyska, 2002). The deleterious effects of
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oxygen relate directly to the fact that atomic oxygen is a free radical and molecular oxygen
is a biradical (Davies, 1995). The biradical property of oxygen dictates that full reduction of
oxygen to water as a terminal event in the electron transport chain requires 4 electrons. The
sequential donation of electrons to oxygen during this process can generate ROS as
intermediates, and “electron leakage” can also contribute to the formation of ROS [BKYB3]
(Davies, 1995; Miwa and Brand, 2003; Genova et al., 2003). The most important ROS in
humans are hydrogen peroxide (H2O2), superoxide radical (O2•−), and hydroxyl radical
(OH•). Reactive nitrogen species include nitric oxide (NO) and peroxinitrite (ONOO•).
Fortunately, several cellular antioxidant defense mechanisms exist to counterbalance the
production of ROS and RNS, including enzymatic and nonenzymatic pathways (Nordberg
and Arner, 2001).

Because the redox status of cells is involved in regulating various transcription factors/
activators (e.g., activator protein- and modulating signaling pathways, appropriate ROS/
RNS levels are necessary for normal physiological function of living organisms (Sun and
Oberley, 1996). Nuclear factor κB, for example, becomes more transcriptionally active in
response to the contribution of ROS to the degradation of IκB, the inhibitory partner of
nuclear factor κB that sequesters it in the cytosol (Hayden and Ghosh, 2004). Thus ROS can
play an important role in modulating inflammation. Excessive ROS may, however, have
detrimental effects including modification of macromolecules such as nucleic acids, proteins
and lipids (Kohen and Nyska, 2002). Lipid peroxidation is a well-characterized effect of
ROS that results in damage to the cell membrane as well as to the membranes of cellular
organelles (Rathore et al., 1998). In addition, ROS can contribute to mutagenesis of DNA by
inducing strand breaks, purine oxidation, and protein-DNA cross-linking, and other ROS
mediated alterations in chromatin structure may significantly affect gene expression (i.e.
epigenetic changes) (Konat, 2003). Modification of proteins by ROS/RNS can induce
denaturation that renders proteins nonfunctional (Lockwood, 2000; Stadtman and Levine,
2003). Similarly, an overabundance of ROS/RNS can cause inactivation of critical enzymes
and induce cell death through activation of kinases and caspase cascades (Cai et al., 1998;
Evans et al., 2004; Scherz-Shouval and Elazar, 2007).

The brain is particularly vulnerable to oxidative damage (Rougemont et al., 2002;
McQuillen and Ferriero, 2004), given its relatively low content of anti-oxidant defenses in
addition to its high metal content (e.g. iron, zinc, copper and manganese), which can
catalyze the formation of ROS/RNS. The brain utilizes more than 20% of oxygen consumed
by the body yet comprises only 2% of the total body weight (Dringen, 2000; Berg et al.,
2004). The high energy demand from oxidative glucose metabolism plus a high
concentration of polyunsaturated fatty acids and relatively low levels of antioxidants are
therefore thought to render the brain more vulnerable to oxidative insult than most organs
(Bains and Shaw, 1997; Dringen, 2000) (see Figure 2).

3. Antioxidant Systems
The potential toxicity of ROS/RNS in the brain is counteracted by a number of antioxidants
that can protect the brain against oxidative damage in several ways, including: (1) removal
of ROS/RNS (Ozturk et al., 2005), (2) inhibition of ROS/RNS formation, and (3) binding
metal ions needed for catalysis of ROS/RNS generation. Glutathione peroxidase and
glutathione reductase are well-known intracellular antioxidant enzymes. Glutathione
peroxidase converts peroxides and hydroxyl radicals into nontoxic forms, often with the
concomitant oxidation of reduced glutathione (GSH) into the oxidized form glutathione
disulfide (GSSG), and glutathione reductase recycles GSSG to GSH. Other enzymes and
pathways are also involved in the management of cellular defense against oxidative stress.
Notably, catalase and superoxide dismutase, acting in concert with glutathione peroxidase
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constitute the major defense or primary antioxidant enzymes against superoxide radicals
(DeKosky et al., 2004; Dringen et al., 2005). In addition, glutathione-S-transferase and
glucose-6-phosphate dehydrogenase help in the detoxification of ROS by decreasing
peroxide levels or maintaining a steady supply of metabolic intermediates like GSH and
nicotinamide adenine dinucleotide-phosphate (NADPH) necessary for optimum functioning
of the primary antioxidant enzymes (Vendemiale et al., 1999). Similarly, thioredoxin and
thioredoxin reductase can catalyze the regeneration of many antioxidant molecules,
including ubiquinone, lipoic acid, and ascorbic acid (vitamin C), and as such constitute an
important antioxidant defense against ROS/RNS. Other notable defense mechanisms against
free radical-induced oxidative and nitrosative stress include α-tocopherol (vitamin E),
bilurubin, albumin, uric acid, niacin, carotenoids and flavonoids (Nordberg and Arner, 2001;
Cho et al., 2009).

Another key antioxidant within biological systems is NO. Nitric oxide is an important
messenger molecule involved in many physiological and pathological processes within the
mammalian body, both beneficial and detrimental (Mustafa et al., 2009; Shahani and Sawa,
2010). Being a free radical, NO has both pro-and antioxidant properties. Nitric oxide can be
protective against oxidative injury, depending on the specific conditions (Kanner et al.,
1991). The NO radical can both stimulate lipid oxidation and mediate oxidant-protective
reactions in membranes (Radi et al., 1991). Nitric oxide reacts rapidly with peroxyl radicals
as a sacrificial chain-terminating antioxidant. However, if left unchecked NO free radical
can react with superoxide radical to form highly toxic peroxynitrite. Table 1 shows a list of
neutralising antioxidants against ROS/RNS and additional physiological antioxidants.

4. Alterations in Antioxidant Defense Systems in Schizophrenia
Clinical and preclinical investigations of the actions of antioxidative defense systems in the
brain suggest several ways in which ongoing oxidative stress might impact the occurrence
and course of schizophrenia. In this section, we describe clinical and preclinical studies that
may shed light on the role that oxidative stress plays in schizophrenia.

4.1. Clinical studies
Several studies have documented alterations in antioxidant enzymes in schizophrenia, but
this is not always consistent. While reduced levels of the antioxidant enzymes are generally
reported in patients with schizophrenia compared with controls (Dadheech et al., 2008;
Singh et al., 2008; Raffa et al., 2009), other studies have reported either no change
(Srivastava et al., 2001) or a strengthening of antioxidant status in schizophrenia (Kuloglu et
al., 2002; Dakhale et al., 2004; Kunz et al., 2008). A recent meta-analysis indicated that
there is an increase in the levels of lipid peroxidation products and NO (discussed in further
detail below) in schizophrenia, while superoxide dismutase activity was found to be
significantly decreased in the disorder (Zhang et al., 2010). This study also showed that the
activities of glutathione peroxidase and catalase were not affected in patients with
schizophrenia (Zhang et al., 2010). Nonetheless, various reports from different research
groups have indicated lower (Reddy et al., 1991), elevated (Herken et al., 2001) or normal
(Yao et al.,1998a) catalase levels in schizophrenia patients. The levels of glutathione
peroxidase have also been reported to be inconsistent in patients with schizophrenia (Herken
et al., 2001; Ranjekar et al., 2003; Gawryluk et al., 2010). The results in the measure of
superoxide dismutase are also contradictory, with an increase (Reddy et al.,1991; Zhang et
al., 2003), decrease (Mukerjee et al., 1996; Ranjekar et al., 2003) or no change (Yao et al.,
1998a) in enzyme activity in patients with schizophrenia. Interestingly, the levels of
superoxide dismutase have been found to be high in chronic schizophrenic patients (Reddy
et al., 1991; Yao et al., 1998a,b; Zhang et al., 2003) or to be low in neuroleptic-naïve first-
episode schizophrenic patients (Raffa et al., 2009), suggesting that the efficacy of
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neuroleptics may in part be mediated by promoting an endogenous antioxidative mechanism
(Padurariu et al., 2010). [BKYB4]

Post-mortem studies have reported a 40% depletion of GSH in the caudate nucleus of
schizophrenia patients (Yao et al., 2006). Similarly, Gawryluk and colleagues have recently
reported reduced levels of GSH in postmortem prefrontal cortex of patients with
schizophrenia (Gawryluk et al., 2010). In addition, magnetic resonance spectroscopy studies
have shown that levels of GSH were reduced by 52% in the prefrontal cortex and by 27% in
cerebrospinal fluid of drug-naïve schizophrenia patients (Do et al., 2000). However, other
spectroscopy studies have failed to detect a decrease in the levels of GSH in the anterior
cingulated cortex (Terpstra et al., 2005), posterior medial frontal cortex (Matsuzawa et al.,
2008) or the medial temporal lobe (Wood et al., 2009b). In the latter studies, patients were
receiving neuroleptic treatment and some of the variability of the results may therefore be
related to medication status (drug-naïve versus patients on medication), sample source,
ethnicity or the region of the brain investigated.

To examine a novel cell model based on patient-derived cells from the human olfactory
neuroepithelium, an elegant study assessed gene and protein expression and cell function
from healthy controls, patients with schizophrenia or Parkinson’s disease (Matigian et al.,
2010). The olfactory neuroepithelium is the only neural tissue in the human body that is
easily accessible (Féron et al., 1998) and demonstrates disease-dependant alterations in cell
biology in schizophrenia (McCurdy et al., 2006), amongst other neurological disorders. In
their study, Matigian and colleagues identified several pathways already implicated in
schizophrenia including Reelin, Il-8 and Erb signaling in addition to GSH metabolism
(Matigian et al., 2010). The findings that molecular profiles from human olfactory neuronal
cells are similar to that of post-mortem brain tissue from patients with schizophrenia support
the use of this cell model for studying cellular and molecular bases of neurological
conditions such as schizophrenia.

The levels of plasma antioxidants (uric acid, albumin and bilirubin) have been reported to be
significantly lower in schizophrenia (Yao et al., 1998c; 2000; Reddy et al., 2003). These
findings were found to be independent of smoking status (Reddy et al., 2003). Plasma levels
of α-tocopherol (McCreadie et al., 1995) and ascorbic acid (Suboticanec et al., 1990) have
also been reported to be lower in schizophrenic patients. In contrast, thioredoxin has been
shown to be increased during the acute phase of schizophrenia (Zhang et al., 2009), but
becomes normalized in chronic schizophrenic patients on long-term antipsychotic
pharmacotherapy (Zhang et al., 2009). Serum thioredoxin was also found to be positively
correlated with positive symptoms of schizophrenia (Zhang et al., 2009). Other studies have
shown the levels of lipid peroxidation products (e.g. malondialdehyde and thiobarbiturate
reactive substances) to be increased in plasma, serum (McCreadie et al., 1995; Zhang et al.,
2006; Dietrich—Muszalska and Olas, 2009) and red blood cells (Mahadik et al., 1998;
Herken et al., 2001) of schizophrenic patients. These observations strengthen the evidence
for a defective antioxidant system as an early pathophysiological change associated with the
disease, rather than a sequela of drug effects, chronic disease and smoking (Reddy et al.,
2003).

4.2. Preclinical studies
Various studies have shown that alterations in antioxidant systems cause cognitive
impairment and biochemical changes relevant to schizophrenia. Dean and colleagues have
shown that treatment of Sprague-Dawley rats and C57BL/6 mice with 2-cyclohexene-1-one
(CHX), a compound that reduces brain GSH levels by conjugating to GSH via glutathione
transferase (Masukawa et al., 1989), dose-dependently reduced striatal and frontal cortical
GSH levels to levels similar to those observed in patients with schizophrenia (Dean et al.,
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2009b). In both species, GSH depletion resulted in disruption of short-term spatial
recognition memory in a Y-maze test. Because GSH has been shown to modulate
glutamatergic activity (Janaky et al., 1994; Oja et al., 2000), it has been suggested that a
GSH deficit may contribute to a dysfunction in glutamatergic pathways responsible for long-
term potentiation (LTP) (Steullet et al., 2006), a phenomenon critical for learning and
required to encode memories (Martin et al., 2000). Treatment with CHX, however, did not
affect sensory motor gating as indexed by prepulse inhibition (PPI), a preattentive process
that is considered an endophenotype of schizophrenia, in both species following treatment
with MK-801 or dizocilipine, an NMDA receptor antagonist, and amphetamine, which
increases synaptic dopamine release (Dean et al., 2010). Although in rats treated with CHX,
the effect of amphetamine to disrupt PPI was reversed, potentially suggesting a decrease in
pre-synaptic dopamine release or dopamine receptor function.Therefore, acutely reduced
GSH levels may not be directly involved in the disruption of PPI observed in schizophrenia
(Dean et al., 2010).

Experimental evidence from rats exposed to early postnatal (days 5-16) treatment with l-
buthionine-(S,R)-sulfoximine (BSO), an accepted rodent model of oxidative stress which
induces a transitory deficit in GSH, have shown that GSH deficiency leads to long-lasting
behavioral aberrations (Cabungcal et al., 2007). For example, BSO treatment leads to
impaired spatial learning and memory (viz. worse performance in the homing hole board
task) (Cabungcal et al., 2007). These findings highlight the role of oxidative changes during
development in cognitive processes associated with schizophrenia. Specifically, oxidative
stress during early development may lead to a dysfunction in integrating sensory
information relevant for spatial representation. Such a deficit may arise from a
misconnectivity in specific brain regions involved in modulating distinct cognitive processes
(Cabungcal et al., 2007).

A recent study demonstrated the importance of altered oxidative stress state in inducing
anomalies of brain neural oscillations and neuronal pathology underlying cerebral
integration and cognitive functioning (Steullet et al., 2010). The study used a mouse model
in which disrupted expression of the modifier (GCLM) subunit of glutamate cysteine ligase
(GCL), the rate-limiting enzyme of GSH synthesis, elicits elevated oxidative stress (Yang et
al., 2002). These mice exhibited altered behavior during an object recognition task,
increased novelty-induced exploration in addition to altered emotion and stress-related
behaviors (Steullet et al., 2010). Furthermore, the GSH deficit within these mice resulted in
a specific reduction in parvalbumin (PV) containing inhibitory interneurons and a
concomitant reduction in β/γ oscillations in the hippocampus of young adult mice (Steullet
et al., 2010). The fast-spiking basket and chandelier cells that contain PV are known to play
a critical role in regulating synchronous neuronal discharges in multiple frequency bands
(e.g., theta, gamma, ripple) via both chemical and electrical synapses (Freund, 2003;
Klausberger et al., 2003; Whittington and Traub, 2003; Buzsaki and Draguhn, 2004; Freund
and Katona, 2007). These findings therefore highlight the role of oxidative changes in
electrophysiological, behavioral and cognitive deficits associated with schizophrenia.

5. Nitric Oxide in Schizophrenia
Evidence is accumulating that NO may be involved in the pathophysiology of schizophrenia
given the various roles that NO plays in the brain, such as regulating synaptic plasticity
(Holscher and Rose, 1992), neurotransmitter release (Lonart et al., 1992), and
neurodevelopment (Truman et al., 1996; Hindley et al., 1997; Downen et al., 1999;
Contestabile, 2000; Gibbs, 2003). Nitric oxide is especially important as the second
messenger of NMDA receptor activation, which interacts with both dopaminergic and
serotonergic pathways (Lorrain and Hull, 1993; Brenman and Bredt, 1997). Abnormal
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functioning of these pathways has been suggested to be involved in the pathophysiology of
schizophrenia. Perhaps relevant to the previous connection are the findings suggesting that
nitric oxide synthase (NOS, an enzyme widely expressed throughout the brain and which is
responsible for NO production in the central nervous system) inhibitors protect against
phencyclidine (PCP) induced schizophrenia-mimicing phenotypes such as PPI deficits and
cognitive inflexibility in animals (Johansson et al., 1997; Klamer et al., 2001, 2004; Wass et
al., 2008, 2009). Interestingly, postmortem studies have reported elevated levels of NO and
NOS in brain tissue of subjects with schizophrenia and have suggested that NOS may be
activated in the illness (Baba et al., 2004; Yao et al., 2004; Xu et al., 2005). Similarly, it was
shown that NO levels in red blood cells are significantly increased in patients with
schizophrenia (Herken et al., 2001). However, the evidence surrounding NO metabolites in
schizophrenia has been inconsistent with studies reporting both increased (Zoroglu et al.,
2002; Suzuki et al., 2003; Yilmaz et al., 2007) and decreased (Suzuki et al., 2003; Lee and
Kim, 2008; Nakano et al., 2010) levels. A negative correlation was observed between NO
metabolite levels and positive and negative syndrome scale (PANNS) scores in
schizophrenia subjects, indicating that reduced plasma NO metabolites maybe related to the
severity of negative symptoms in schizophrenia (Nakano et al., 2010).

Altered populations or distribution of NOS-containing neurons have been reported in frontal
(Akbarian et al., 1993a) and temporal (Akbarian et al., 1993b) cortices, hypothalamus
(Bernstein et al., 1998), and cerebellum (Karson et al., 1996; Bernstein et al., 2001) in
schizophrenia. Consistent with a role of NOS in schizophrenia, a number of genetic
association studies have reported that single nucleotide polymorphisms in the NOS gene are
associated with schizophrenia (Shinkai et al., 2002; Brzustowicz et al., 2004; Fallin et al.,
2005; Reif et al., 2006; Tang et al., 2008; Wratten et al., 2009; Cui et al., 2010), although
some results are inconsistent with such associations (Okumura et al., 2009). Genetic and
functional data for NOS revealed an association between a putative cis-acting polymorphism
in the NOS gene and decreased protein NOS expression in the prefrontal cortex of patients
with schizophrenia (Cui et al., 2010). The same study also showed that the age of
schizophrenia onset was earlier in patients carrying the cis-acting polymorphism in the NOS
gene (Cui et al., 2010).

Decreased activity of receptors sensitive to NO has also been reported in schizophrenia. The
cholinergic receptors (e.g. α7 nicotinic acetylcholine receptor) known to be sensitive to NO
toxicity were decreased in both blood and cortex of patients with schizophrenia (Perl et al.,
2003; Matthew et al., 2007). Patients with schizophrenia frequently smoke cigarettes and
often smoke heavier than the normal population (Matterson and O’shea, 1984; Goff et al.,
1992; Lasser et al., 2000). The high level of smoking has been proposed as a form of self-
medication to alleviate symptoms of their illness including depression, anxiety, anhedonia or
amotivation (Glassman, 1993; Olincy et al., 1997). In this context, a series of studies in
humans has implicated the α7 nicotinic acetylcholine receptor in the physiology of P50
auditory gating (a measure of preattentive auditory processing). Nicotine gum and
physostigmine were found to improve gating in the relatives of persons with schizophrenia
who also had impaired auditory gating (Adler et al., 1992). Thus, NO appears to influence
neurotransmission (e.g. cholinergic transmission) and may play a role in some of the
endophenotypes associated with schizophrenia.

6. Imbalance in Homocysteine Metabolism and Epigenetic Changes in
Schizophrenia

Hyperhomocysteinaemia (a medical condition characterized by an abnormally elevated level
of homocysteine in the blood) can cause oxidative stress via a number of mechanisms such
as auto-oxidation of homocysteine to form ROS (Heinecke et al., 1987), increased lipid
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peroxidation (Jones et al., 1994) and reduced production of glutathione peroxidase
(Upchurch et al., 1997). A recent study by Brown and colleagues reported that higher
maternal homocysteine levels may be a risk factor for schizophrenia (Brown et al., 2007).
Specifically, mothers that have elevated third-trimester homocysteine levels may elevate
schizophrenia risk through developmental effects on brain structure and function and/or
through subtle damage to the placental vasculature that compromises oxygen delivery to the
fetus (Brown et al., 2007). In this context, it has been shown that high levels of
homocysteine are negatively correlated with glutathione peroxidase activity (Pasca et al.,
2006), suggesting that high levels of homocysteine may also be associated with oxidative
stress in schizophrenia.

Because oxidative damage to specific gene promoters results in gene silencing (Lu et al.,
2004), it may be that irreplaceable post-mitotic cells, such as neurons, respond to unrepaired
DNA damage by silencing expression of the affected genomic region, rather than by
undergoing apoptosis. The mechanism of silencing is likely epigenetic; specifically, it may
be mediated through dysregulation of DNA methylation. High homocysteine levels have
been shown to be accompanied by high S-adenosyl-homocysteine levels with the elevation
of S-adenosyl-homocysteine suggested to be associated with DNA hypomethylation and
alterations in gene expression (James et al., 2002). Altered gene expression has been shown
to be associated with the pathogenesis of schizophrenia (Tsankova et al., 2007; van Vliet et
al., 2007; Jiang et al., 2008). S-Adenosyl-homocysteine and its analogs have been reported
to be a non-competitive inhibitor of catechol-O-methyltransferase (COMT), an enzyme that
catalyses the first step in the degradation of monoamine neurotransmitters such as dopamine,
epinephrine and norepinephrine (Coward and Sweet, 1972; Coward et al., 1972, 1973). The
more active allele of COMT is reported to be associated with schizophrenia (Egan et al.,
2001) and although not immediately intuitive, it might be that elevated levels of
homocysteine may play some aggravating role in the pathogenesis of schizophrenia through
an indirect effect on COMT (Applebaum et al., 2004).

7. Genetic Susceptibility to Schizophrenia
Genetic factors may also contribute in modulating the threshold for vulnerability to
oxidative stress in schizophrenia (for a review see Kodavali et al., 2010). Recent evidence
has shown manganese superoxide dismutase (Akyol et al., 2005) and glutathione S-
transferase T1 (Saadat et al., 2007) to be associated with schizophrenia. A functional
polymorphism in the glutathione S-transferase p1 gene has been reported to be associated
with vulnerability to develop psychosis in the setting of methamphetamine abuse
(Hashimoto et al., 2005), which may have some bearing on schizophrenia. A mitochondrial
DNA sequence variation affecting a subunit of NADPH-ubiquinone reductase (complex 1),
a component of the electron transport chain responsible for generating superoxide, has also
been associated with schizophrenia patients and with increased superoxide levels in post-
mortem brain samples (Marchbanks et al., 2003). In another study, the GCLM subunit of the
GCL enzyme has been suggested as a susceptibility gene in schizophrenia (Tosic et al.,
2006). Similarly, genetic analysis of the trinucleotide (GAG) repeat polymorphism in the
GCL catalytic subunit (GCLC) gene showed a significant association with schizophrenia in
two independent case-control studies (Swiss and Danish) (Gysin et al., 2007). The same
study revealed an association between disease-associated GCLC GAG trinucleotide repeat
genotypes and decreased GCLC protein expression (Gysin et al., 2007). Do and colleagues
have recently gone on to demonstrate that patients with the trinucleotide repeat GAG
susceptibility polymorphism also show reduced plasma total cysteine levels, and an increase
of the oxidized form of cysteine, namely cystine, content (Do et al., 2010). These patients
also exhibit increased levels of plasma free serine, glutamine, citrulline, and arginine. These
data suggest that schizophrenia patients exhibit alterations of plasma thiols levels in addition
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to a decreased capacity to synthesize GSH that most likely reflects a dysregulation of redox
control and an increased susceptibility to oxidative stress that is most likely of a genetic
origin (Gysin et al., 2007, 2009; Do et al., 2010). Taken together, these studies provide
additional support for the involvement of oxidative stress in the etiology of schizophrenia.

8. Neurotransmitter Metabolism and Oxidative Stress in Schizophrenia
The biological effects of neurotransmitters are linked to their chemical properties. It has
been shown that metabolism of serotonin (Yao et al., 2009), glutamate (Smythies, 1999) and
dopamine (Smythies, 1999) play important roles in mediating redox balance within
biological systems. These neurotransmitters have generated a great deal of research in a
variety of mental disorders, including schizophrenia (Grima et al., 2003; Smythies, 1999;
Yao et al., 2009). In this section, we specifically focus on how abnormal metabolism of
dopamine and glutamate may play a pathological role in schizophrenia.

8.1 Dopamine
The classical dopamine hypothesis of schizophrenia postulates a hyperactivity of
dopaminergic transmission at the D2 receptor. It is of interest that enzymatic metabolism of
dopamine leads to hydrogen peroxide generation, which, via autooxidation of dopamine,
leads to the production of ROS such as dopamine quinones and superoxide (Hastings, 1995;
Fleckenstein et al., 2007). These ROS may then interact with superoxide dismutase and
GSH, leading to a reduction in the available levels of these antioxidants.

Do and colleagues have studied the effect of dopamine in cultured cortical neurons with a
low level of GSH. This study suggests that dopamine alone decreased GSH by 40% (Grima
et al., 2003). This effect appears to result from the direct conjugation of dopamine
semiquinone/quinone with GSH. Furthermore ethacrynic acid, a potent inhibitor of
glutathione-S-transferase, decreased GSH in a concentration-dependent manner. When
added to ethacrynic acid, dopamine further lowered GSH levels. As this additional decrease
is blocked by superoxide dismutase or D1/D2 receptor antagonists, it likely involves the
generation of superoxide via activation of dopamine receptors. It also reduces the
mitochondrial membrane potential (Grima et al., 2003). Most interestingly, a significant
decrease in the number of neuronal processes was induced by a 24-hour application of
dopamine with ethacrynic acid, which also reduced the levels of GSH. The underlying
mechanism of this effect of reduced GSH level on neuronal morphology may include ROS-
evoked lipid peroxidation, leading to membrane alterations, and cytoskeleton modification
(Halliwell and Gutteridge, 1998; Valko et al., 2007). These findings are consistent with the
reported reduction of neuropil and dendritic spines in regions rich in dopamine innervation
(Selemon et al., 1995, 1998; Garey et al., 1998; Glantz and Lewis, 2000; Selemon, 2001)
and with the postulated retrograde degeneration of the mediodorsal nucleus of the thalamus
projecting to those regions (Pakkenberg, 1990; Popken et al., 2000) in patients with
schizophrenia. The degeneration of spines with their synaptic contacts would lead to
abnormal cortico-cortical and thalamo-cortical connectivity (Weinberger, 1987; Parnas et
al., 1996; Lewis and Lieberman, 2000; Andreasen, 2000). This may in turn be responsible
for part of the symptoms of schizophrenia, particularly those involving cognitive and
perceptive functions (Goldman-Rakic, 1991; Grima et al., 2003).

8.2 Glutamate
The glutamate hypothesis of schizophrenia posits that the function of the NMDA receptor is
compromised in this disease (Coyle, 1996, 2006). This postulate is largely based on the
observations that PCP and other NMDA antagonists can induce psychosis that is
diagnostically difficult to differentiate from schizophrenia (Javitt and Zukin, 1991; Krystal
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et al., 1994, 2002; Newcomer and Krystal, 2001). While glutamate serves as the major
excitatory neurotransmitter in the central nervous system via ionotropic and metabotropic
receptors, it is also known to be excitotoxic at high levels (Platt, 2007). The toxic effects of
glutamate on cell viability ensue from two major factors: Firstly, an influx of calcium ions
may trigger an osmotic entry of isotonic fluid that renders the cells vulnerable to mechanical
stress. Secondly, a cycle of excitation caused by increased calcium entry into cells results in
the further release of glutamate. The latter may result in ROS production due to the
accumulation of glutamate and calcium related oxidative events (Olney, 1989; Hirose and
Chan, 1993).

Whereas the hypofunction of the NMDA receptor results in reduced calcium flow through
these channels, the resultant effect is an increased level of free intracellular calcium in large
neuronal populations (Olney et al., 1999; Schwartz et al., 1994). This is because
deactivation of NMDA receptors on GABAergic interneurons removes the inhibition of
major excitatory pathways that innervate primary neurons of cerebrocortical and limbic
brain regions (Olney and Farber, 1995; Olney et al., 1999). These pathways are, then, able to
induce an abnormal increase in free intracellular calcium in their targets by activating non-
NMDA glutamate gated ion channels as well as G protein-coupled receptors, which are
capable of mobilizing calcium from internal stores (Sharp et al., 1994) and subsequently
triggering oxidative damage (Lidow, 2003).

A recent study has revealed that perinatal PCP administration to rats results in region-
specific changes in the levels of GSH and the activities of the enzymes involved in its
metabolism (i.e. glutathione peroxidase and glutathione reductase) (Radonjic et al., 2009).
Alterations in superoxide dismutase activity and the level of lipid peroxides were also
reported (Radonjic et al., 2009). Interestingly, the activity of catalase was not changed in
any of the investigated brain structures (Radonjic et al., 2009). Within the prefrontal cortex,
GSH, superoxide dismutase and glutathione reductase levels were all reduced whereas an
increase in glutathione peroxidase level was observed. In the hippocampus, reduced GSH,
glutathione peroxidase and glutathione reductase levels were accompanied with an increased
level of lipid peroxides (Radonjic et al., 2009). In addition, GSH content was decreased in
the caudate nucleus, while the major findings in the thalamus were, increased levels of lipid
peroxides and glutathione reductase activity (Radonjic et al., 2009). These findings suggest
that NMDA receptor malfunction might be related to the redox status of patients with
schizophrenia.

9. Abnormal Iron Metabolism as a Mechanism for Oxidative Stress
Several studies have implicated imbalances of trace elements, including manganese, zinc,
copper, and iron in schizophrenia (Yanik et al., 2004; Rahman et al., 2008). A disruption in
the homeostasis of the latter two redox-active metals is particularly significant in light of the
increases in oxidative stress parameters such as lipid peroxidation, and the oxidative damage
to proteins and nucleic acids. Because free iron has been implicated in undergoing redox
transitions in vivo (via superoxide-driven Fenton chemistry: Fe2+ + H2O2 --> Fe3+ + •OH +
OH−) with the consequent generation of oxygen free radicals more than any other transition
metal (Winterbourn, 1995), the focus of this section will be on abnormalities of brain iron
metabolism and its involvement in schizophrenia.

Iron plays an important role in the human body. Almost two thirds of the total amount of
iron is located in hemoglobin (Yuan et al., 1995). Most of the remaining iron is located in
the liver, spleen, heart and brain. Iron is adept at catalyzing redox reactions within biological
systems (Wright and Bacarelli, 2007). Transferrin and ferritin are iron-transporting proteins
which also possess antioxidant properties (Loeffler et al., 1995; Nappi and Vass, 2000;
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Fisher et al., 2007; Madsen and Gitlin, 2007). Both proteins are synthesized in several
tissues, including brain (Loeffler et al., 1995; Fisher et al., 2007; Madsen and Gitlin, 2007)
and act as antioxidants by reducing the concentration of free ferrous ion (Loeffler et al.,
1995). Several authors have reported that the levels of iron, ferritin and transferrin are
reduced in the serum of patients with schizophrenia as compared to normal controls (Weiser
et al., 1994; Kuloglu et al., 2003; Yanik et al., 2004). Other studies have reported no change
in levels of iron in postmortem brains of schizophrenic patients (Casanova et al., 1990;
Kornhuber et al., 1994).

A deficiency of maternal iron as a risk factor for schizophrenia spectrum disorders (SSDs)
was recently evaluated (Insel et al., 2008). It was postulated that maternal iron deficiency
during pregnancy, assessed via maternal hemoglobin concentration, may disrupt essential
pathways and iron-dependent processes involving dopaminergic neurotransmission,
myelination, and energy metabolism. Disturbances of these pathways during fetal
development might heighten the susceptibility to schizophrenia in adulthood. This study
showed that reduced maternal hemoglobin concentration was associated with a nearly 4-fold
statistically significant increased rate of SSDs (Insel et al., 2008), hence suggesting that
maternal iron deficiency may be a risk factor for SSDs among offspring.

In keeping with this notion, a recent study demonstrated the importance of hypoferremia
(viz. a cytokine induced reduction of serum non-heme iron) in inducing behavioural and
biochemical changes relevant to schizophrenia (Aguilar-Valles et al., 2010). The study used
a rat model of localized injury induced by turpentine, which triggers the innate immune
response and inflammation, in order to investigate the effects of maternal iron
supplementation on the offspring’s dopamine function. Offspring of turpentine-treated
mothers exhibited an enhanced behavioral sensitization to amphetamine following repeated
exposure to this drug, when compared to control offspring. These behavioral changes were
accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its
metabolites, selectively in the nucleus accumbens (Aguilar-Valles et al., 2010).
Interestingly, the behavioral and neurochemical changes were prevented by maternal iron
supplementation. Given that schizophrenia is associated with increased subcortical
dopamine, it is probable that abnormalities in fetal/maternal iron homeostasis may play a
role in developmental processes that render the offspring more susceptible to schizophrenia.

Taken together, these results suggest that reduced iron levels may be associated with
schizophrenia in a subset of patients. Because oxidative stress can be induced under
situations of iron deficiency (Knutson et al., 2000; Casanueva and Viteri, 2003), free radical
formation resulting from iron deficiency may lead to functional disturbances and foster
genetic alterations that could in turn contribute to the development of schizophrenia.

10. Mitochondrial Dysfunction and Abnormal Energy Metabolism in
Schizophrenia

Oxidative phosphorylation in the mitochondria generates superoxide anion. Furthermore,
enzymatic oxidation of biogenic amines by monoamine oxidase in the mitochondrial outer
membrane produces hydrogen peroxide. Damaged mitochondria not only produce more
oxidants, but mitochondria are also vulnerable to oxidative stress (Kowlatowski and Vercesi,
1999). Notably, peroxidation of membrane lipids yields toxic aldehydes (Keller et al., 1997),
which impair critical mitochondrial enzymes (Humphries and Szweda, 1998; Ben-Shachar
and Laifenfeld, 2004; Martins-de-Souza et al., 2010). Other essential proteins are directly
oxidized, yielding carbonyl and nitrated derivatives (Andreazza et al., 2010). Subsequently,
increases in membrane permeability to calcium, other ionic imbalances, and impaired
glucose metabolism (Hazlett et al., 2004) aggravate the energy imbalance.
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Several studies have demonstrated that mitochondrial malfunction can lead to cellular
degeneration (Calabrese et al., 2001; Martins-de-Souza et al., 2009, 2010) as a result of the
formation of ROS/RNS (Lenaz, 2001). A disturbance of energy metabolism in mitochondria
may play a role in the pathophysiology of schizophrenia (Prabakaran et al., 2004; Martins-
de-Souza et al., 2009). Notably, a study using a combined transcriptomic, proteomic,
metabolomic approach in addition to hierarchial clustering on human prefrontal cortex tissue
in order to detect molecular signatures associated with schizophrenia found alterations in
proteins associated with mitochondrial function and oxidative stress responses (Prabakaran
et al., 2004). Other studies have also suggested increased lactate levels (Prabakaran et al.,
2004), and mitochondrial dysfunction with concomitant defects in neuronal oxidative
phosphorylation in schizophrenia (Ben-Shachar et al., 1999; Ben-Scachar and Laifenfeld,
2004; Karry et al., 2004; Prabakaran et al., 2004; Martins-de-Souza et al., 2009). Finally,
abnormal mitochondrial morphology, size and density have also been reported in the brains
of schizophrenic individuals (Ben-Shachar, 2002).

11. Inflammatory Response Induces Oxidative Stress in Schizophrenia
Maternal exposure to infection during pregnancy has been associated with an increased risk
of offspring developing schizophrenia (Brown and Susser, 2002; Brown and Derkits, 2010).
Although the epidemiological relationship between in utero infections and schizophrenia
remain unclear, the maternal cytokine-associated inflammatory response to infection may be
a crucial link, as the identity of the pathogen seems irrelevant (Gilmore and Jarskog, 1997;
Buka et al., 2001; Pearce, 2001; Brown et al., 2004; Deverman and Patterson, 2009; Meyer
et al., 2009; Patterson, 2009; Watanabe et al., 2010). The mechanism linking maternal
immune infection to schizophrenia is suspected to occur as follows: maternally infected cells
may promote an increased production of inflammatory cytokines that cross the placenta and
then increase interleukin (IL)1β, IL-6, (Tumor necrosis factor) TNF-α and (Interferon) IFN-
β among others, by fetal cells (Ohyama et al., 2004). DNA fragmentation may then be
induced by free radical production associated with the increase in these cytokines, especially
interferon-β. The impact of this damage on nuclear and mitochondrial DNA damage in the
neuron could be even more severe due to the high neuronal energy consumption rate and the
lack of cell turnover. Due to the positive feed-back loops formed in such a mechanism, the
disease state could self-sustain and persist resulting in the progressive development of
pathological features and clinical symptoms associated with schizophrenia.

In keeping with this notion, inflammatory responses induced by proinflammatory T cells
provide a source of free radicals with the capacity to modify proteins, lipids, and nucleic
acids that are potentially toxic for neurons. Important work has therefore been directed
towards understanding the consequences and the mechanisms linked to T cell dysfunction in
patients with schizophrenia (Henneberg et al., 1990; Sperner-Unterweger et al., 1999;
Mazzarello et al., 2004; Rudolf et al., 2004; Maxeiner et al., 2009). Craddock and
colleagues have recently shown a decreased activation of helper T cells in both unmedicated
and minimally medicated schizophrenia patients as compared with controls (Craddock et al.,
2007). To follow up on this indication that patients with schizophrenia exhibit physiological
differences in T cell responses, Craddock and colleagues undertook a more systematic
investigation of T cell proliferative responses by conducting a microarray analysis of
differentially expressed genes in isolated T cells from schizophrenia patients and controls.
Functional profiling revealed prominent transcript changes in categories pertaining to cell
cycle machinery, intracellular signaling, metabolism and oxidative stress (Craddock et al.,
2007). These results suggest that altered T cell response may correspond with oxidative
stress in some patients with schizophrenia.
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The effects of bacterial infections on triggering oxidative stress during fetal brain
development have been evaluated by Lanté and colleagues who administered a
lipopolysaccharide injection during pregnancy to rats 2 days before delivery (Lanté et al.,
2007). This treatment triggered an oxidative stress response in the hippocampus of male
fetuses, evidenced by damage to proteins (as indexed by a rapid rise in protein
carbonylation) and by decreases in α-tocopherol levels and in the ratio of reduced/oxidized
forms of glutathione (GSH/GSSG). In contrast, none of the biochemical changes observed in
males were observed in female fetuses. The authors also showed that NMDA synaptic
currents and LTP in addition to spatial recognition in the water maze, were impaired in male
but not in female offspring exposed to immune activation by lipopolysaccharide in utero.
The sex-dependent effects of lipopolysaccharide treatment are consistent with the
impression that male schizophrenic patients seem to exhibit greater structural brain
abnormalities (Flaum et al., 1990; Nopoulos et al., 1997) in addition to a more severe
clinical profile compared to female patients (Flor-Henry, 1990; Aleman et al., 2003),
especially in terms of cognitive deficits (Roy et al., 2001).

Interestingly, pretreatment with the antioxidant N-acetyl cysteine (NAC), a precursor of
GSH, prevented the lipopolysaccharide induced changes in the biochemical markers of
oxidative stress in male fetuses, and the delayed detrimental effects in male offspring,
completely restoring both LTP in the hippocampus and spatial recognition performance
(Lanté et al., 2007). Together these findings suggest that the antioxidant properties of NAC
may provide an efficient supplement for the treatment of symptoms associated with
schizophrenia.

12. Oligodendrocyte Dysfunction in Schizophrenia
Schizophrenia has long been considered a disorder consisting of a disconnection between
different cortical areas (Friston and Frith, 1995; Stephan et al., 2006). Given that white
matter constitutes the anatomical infrastructure for neural connectivity, it has been
hypothesized that aberrant connectivity of brain regions may explain altered processing
patterns documented by functional neuroimaging and electrophysiology studies in patients
with schizophrenia (Bartzokis, 2002; Hulsoff et al., 2004). Consistent with this notion, a
reduced density and compromised morphology of oligodendrocytes as well as signs of
deviant myelination have been observed in patients suffering from schizophrenia (Uranova
et al., 2004, 2007). Oligodendrocytes are the predominant iron-containing cells of the brain
(Connor, 1994, 1995). They also contain reduced level of GSH, glutathione peroxidase and
mitochondrial manganese superoxide dismutase (Juurlink et al., 1998). In addition,
oligodendrocytes are vulnerable to intracellular GSH depletion (Back et al., 1998; Cammer
et al., 2002a), which may result in cell death (Oka et al., 1993). This sensitivity to GSH
depletion is ameliorated by free radical scavengers such as α-tocopherol (Cammer et al.,
2002a,b). Also, cell death can be prevented by NAC (Cammer et al., 2002b). Taken
together, oligodendrocytes appear to be highly susceptible to oxidative stress-induced
damage, which may lead to myelin deficiency.

Instead of compromising oligodendrocyte functions, oxidative stress may also directly
damage myelin. For instance, peroxide and hydroxyl radical can react with the
polyunsaturated fatty acids that are present in myelin sheaths, directly triggering
demyelination (Halliwell, 1992). It has recently been reported that free radical-related
molecules such as NO and peroxynitrite generated by activated microglia (Merrill et al.,
1993; Li et al., 2005) in addition to inflammatory cytokines such as TNF-α and IFN-γ
(Buntinx et al., 2004) result in cytotoxicity toward oligodendroctyes. Furthermore, TNF-α
has been shown to compromise the growth of oligodendrocytes and the expression of
mRNA for myelin basic protein in cultures (Cammer and Zhang., 1999). The same study
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showed that TNF-α also inhibited the survival and proliferation of the oligodendrocyte
progenitors and their subsequent differentiation into mature myelinating phenotypes. In
summary, impaired redox function and inflammatory induction, in combination with
previously described deficits in the expression of oligodendrocyte-related genes (Hakak et
al., 2001; McCullumsmith et al., 2007; Iwamoto et al., 2008), suggest a multifactorial
pathway linking oxidative stress to the abnormalities of myelination observed in
schizophrenia.

13. Redox Dysregulation of NMDA-Receptor Mediated Transmission in
Parvalbumin-Containing Interneurons

Although the evidence from experimental studies and from postmortem investigation shows
that NMDA receptor dysfunction has relevance to schizophrenia, it is still debatable as to
which specific NMDA receptor subunits are involved in the cascade of molecular events
leading to the neuronal deficits and dysfunction associated with schizophrenia.

Postmortem evidence from human brain has shown that the expression of the NR2A subunit
is reduced in subjects with schizophrenia (Beneyto and Meador-Woodruff, 2008). In fact,
NR2A expression levels have been shown to be reduced in glutamic acid decarboxylase
(GAD) 67 positive neurons in subjects with schizophrenia (Woo et al., 2004, 2008). The
reduced NR2A expression is possibly due to a reduced NMDA receptor activity at the
affected interneurons because it has been shown in other studies that NR2A expression
seems to be down-regulated by reduced glutamatergic input and vice versa (Kinney et al.,
2006; Behrens et al., 2007; Xi et al., 2009).

Receptors that contain the NR2A subunit are tightly regulated by redox-active agents
including GSH (Kohr et al., 1994; Choi and Lipton, 2000; Lipton et al., 2002) and play a
pivotal role in the maintenance of the function of PV interneurons (Kinney et al., 2006). In
line with these observations, treatment of intermediate duration with the NMDA receptor
antagonist MK-801 has been shown to almost completely down-regulate the expression of
NMDA receptor subunits and PV in microdissected PV-positive interneurons in the rat
frontal cortex (Xi et al., 2009). In this context, we have recently found that, in
schizophrenia, the expression of the mRNA for the NR2A subunit of the NMDA receptor in
PV neurons also appears to be decreased (Bitanihirwe et al., 2009). This latter finding
supports the notion that reduced glutamatergic inputs to PV neurons via the NMDA receptor
contributes to the down-regulation of PV and GAD67 messenger RNA transcripts (Kinney
et al., 2006; Behrens et al., 2007) and hence plays a central role in the functional
disturbances of PV neurons in schizophrenia (Olney and Farber 1995; Lisman et al., 2008;
Gonzalez-Burgos et al., 2010; Woo et al., 2010).

Behrens and colleagues have recently shown that prolonged exposure to ketamine, an
NMDA receptor antagonist, induces the release of the pro-inflammatory cytokine IL-6,
which results in a subsequent induction and activation of the electron transporter and ROS-
generating NADPH oxidase (Nox) enzyme (Behrens et al., 2007). Superoxide
overproduction as a result of NOX activation could result in the chain of events that initiates
processes resulting in reduced expression of GABAergic markers and the consequent loss of
inhibitory capacity in PV interneurons (Behrens et al., 2007, 2008; Dugan et al., 2009).
Given that ketamine augmented NOX expression in the mouse brain, and that both apocynin
(an inhibitor of NOX activity) pretreatment and NOX deficiency prevented ROS generation
and the decrease of PV expressing interneurons, NOX activation was indicated as a major
contributor to the pathogenesis of ketamine-induced psychosis and possibly also to
schizophrenia (Behrens et al., 2007, 2008; Sorce et al., 2010). Together these findings
provide evidence for a potential pathological link between NMDA hypofunction, enhanced
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neuronal production of IL-6 and oxidative stress, which may in turn be associated with the
GABAergic dysfunction often observed in the brain of patients with schizophrenia (Behrens
et al., 2007, 2008; Behrens and Sejnowski, 2009; Dugan et al., 2009).

14. Current Therapeutic Modalities
Therapy using antioxidants has the potential to prevent, delay, or ameliorate many
neurologic disorders including schizophrenia (Delanty and Dichter, 2000, Moosmann and
Behl, 2002, Ng et al., 2008, Dodd et al., 2008; Seybolt, 2010). For example,
supplementation of omega-3 poly unsaturated fatty acids in combination with ascorbic acid
and α-tocopherol is effective in improving psychopathology (viz. increased scores on the
Brief Psychiatric Rating and the PANNS) in chronic-medicated schizophrenic patients
(Arvindakshan et al., 2003). Similarly, it has been reported that treatment with Ginkgo
biloba extract (a powerful flavonoid antioxidant) and haloperidol results in better PANNS
scores (Zhang et al., 2001a), enhances the effectiveness of the antipsychotic and reduces
some extrapyramidal side effects (Zhang et al., 2001b). Atypical antipsychotic medication
with ascorbic acid (Michael et al., 2002; Dakhale et al., 2005), α-tocopherol (Michael et al.,
2002), and lipoic acid (Kim et al., 2008) have also been shown to improve the clinical
outcome of patients with schizophrenia.

Moreover, treatment with NAC the rate limiting factor in the synthesis of GSH (Dodd et al.,
2008), has been shown to improve core symptoms of schizophrenia (Berk et al., 2008;
Lavoie et al., 2008; Bulut et al., 2009). Specifically, administration of NAC has been shown
to improve cognitive functioning as indexed by mismatch negativity (MMN) (Lavoie et al.,
2008). Mismatch negativity is an auditory event related potential component that is elicited
when a sequence of repetitive standard sounds is interrupted infrequently by physically
deviant (e.g. pitch, intensity, location, duration), “oddball” stimuli. The MMN occurs
rapidly following deviant stimuli; the response begins 50 ms following the onset of the
deviation and peaks after an additional 100–150 ms. Physiologically, the MMN is the first
measurable brain response component that differentiates between usual and unusual auditory
stimuli and shares many of the properties of an automatic, memory-based comparison
process (Naatanen et al., 1989). Using this task, a differential response to deviant stimuli
compared to distracters (i.e. infrequent tones of a higher pitch) presented in an auditory
oddball paradigm, has been shown to be impaired in schizophrenia (Shelley et al., 1991;
Javitt et al.,1993; Catts et al., 1995; Shutara et al., 1996; et al., 1998). This impairment may
in part be mediated by NMDA receptor hypofunction (Javitt and Zukin, 1991; Umbricht et
al., 2000; Coyle, 2006), which, in turn, may result from GSH deficit (Light and Braff, 2005;
Steullet et al., 2006). In this context, it has been suggested that NAC treatment could
increase GSH levels in schizophrenia patients (Lavoie et al., 2008), restoring normal GSH
levels and thus improving NMDA reception functioning, which is thought to be reflected by
the amplitude of the MMN (Javitt et al, 1998). Treatment with antioxidants may therefore
serve as an effective therapeutic strategy in schizophrenia.

15. Conclusion
There is growing evidence supporting increased oxidative stress in schizophrenia with likely
contributions from environment, genetic and immunological factors. However, the exact
molecular mechanisms are yet to be determined. Indeed, the maintenance of redox balance
within cells is a primary component of homeostasis underlying neuronal survival. It may not
be too surprising therefore that any process that leads to a disruption of the redox balance
can drastically interfere with a range of other biochemical processes and result in neuronal
deficits and dysfunction.
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Compared to other organs in the body, brain tissue is more vulnerable to oxidative stress due
to its high oxygen consumption, high content of polyunsaturated fatty acids and low levels
of antioxidant enzymes. Even so, neuronal cells are endowed with a range of protective
mechanisms. The difficulty is that these may be overwhelmed by additional oxidative load
and that a failure of protective mechanisms may allow endogenous oxidative processes to
damage cells and result in the pathophysiology of neurological disease. Pathways and
mechanisms that control oxidative stress such as GSH metabolism, can modulate pathology
and cognitive deficits in rodent models of schizophrenia (Cabuncgal et al., 2007; Dean et
al., 2000b, Steullet et al., 2010). However, the role of these conserved pathways in the onset
and progression of schizophrenia in humans is still unclear. The resolution of this basic issue
will depend on future clinical interventions that target these pathways to ascertain their role
in cognitive dysfunction and neuropathogenesis. Tackling of the oxidative stress
involvement offers a novel therapeutic target for schizophrenia. However, only when the
mechanisms and involvement of oxidative stress in the pathogenesis of schizophrenia are
understood, will approaches to antioxidant therapy be designed effectively and targeted. It is
thus noteworthy that preliminary results of some clinical trials have suggested improved
cognitive functioning in individuals with schizophrenia who receive antioxidant therapy,
particularly NAC (Berk et al., 2008; Lavoie et al., 2008; Bulut et al., 2009). Hence,
identifying viable therapeutic strategies to restore redox balance and the physiological
disturbances that result from oxidative stress provide an exciting opportunity for the
treatment and ultimately prevention of schizophrenia.

Research highlights

• Evidence of oxidative stress in schizophrenia.

• Redox dysregulation during neurodevelopment may play a role in
schizophrenia.

• Antioxidants may prove to be a useful adjunctive treatment for schizophrenia.
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Figure 1.
Schematic illustration of the involvement of oxidative stress in schizophrenia.
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Figure 2.
The Brain is susceptible to oxidative damage
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Table 1

Redox-active species and their corresponding neutralizing antioxidants. Direct role = direct redox-active
species scavenging activity; Indirect Role = prevent the accumulation of toxic species rather than acting
directly on ROS/RNS

ROS Anti Oxidants (endogenous) Antioxidants (Exogenous)

Direct Role Indirect Role

Hydroxyl Radical Glutathione Peroxidase
Glucose-6-Phosphate

Dehydrogenase
Thioredoxin

- Ascorbate
Flavonoids
Lipoic Acid

Lipid Peroxide Glutathione Peroxidase
Glutathione-S-Transferase

Glucose-6-Phosphate
Dehydrogenase

Nitric Oxide

- α-Tocopherol
Carotenoids
Flavonoids
Ubiquinone

Niacin

Superoxide Radical Superoxide Dismutase
(cofactor copper/zinc/

manganese)
Glutathione

Glucose-6-Phosphate
Dehydrogenase

Thioredoxin

Albumin Ascorbate
Flavonoids

Hydrogen Peroxide Catalase
Glutathione-S-Transferase

Glutathione
Nitric Oxide

Thioredoxin Reductase

Ferritin
Transferrin

Hemoglobin

Ascorbate,
Carotenoids
Lipoic Acid

Glucose-6-Phosphate
Dehydrogenase

Pro-Oxidant/antioxidant
equilibrium

Thiols (Glutathione, N-acetyl
cysteine) NADPH,

Thioredoxin

Bilurubin
Uric Acid

Flavonoids

Neurosci Biobehav Rev. Author manuscript; available in PMC 2012 January 1.


