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Abstract
Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs
and store fronts. Relative to document recognition, it is challenging because of font variability,
minimal language context, and uncontrolled conditions. Much information available to solve this
problem is frequently ignored or used sequentially. Similarity between character images is often
overlooked as useful information. Because of language priors, a recognizer may assign different
labels to identical characters. Directly comparing characters to each other, rather than only a
model, helps ensure that similar instances receive the same label. Lexicons improve recognition
accuracy but are used post hoc. We introduce a probabilistic model for STR that integrates
similarity, language properties, and lexical decision. Inference is accelerated with sparse belief
propagation, a bottom-up method for shortening messages by reducing the dependency between
weakly supported hypotheses. By fusing information sources in one model, we eliminate
unrecoverable errors that result from sequential processing, improving accuracy. In experimental
results recognizing text from images of signs in outdoor scenes, incorporating similarity reduces
character recognition error by 19%, the lexicon reduces word recognition error by 35%, and sparse
belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no
loss in accuracy.

Index Terms
Scene text recognition; optical character recognition; conditional random fields; factor graphs;
graphical models; lexicon; language model; similarity; belief propagation; sparse belief
propagation

1 Introduction
The problem of optical character recognition (OCR), or the recognition of text in machine-
printed documents, has a long history and is one of the most successful applications of
computer vision, image processing, and machine learning techniques. In this paper, we focus
on scene text recognition (STR), the recognition of text anywhere in the environment, such
as on store fronts, traffic signs, movie marquees, or parade banners. While superficially
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similar to OCR, STR is significantly more challenging because of extreme font variability,
uncontrolled viewing conditions, and minimal language context. Difficult viewing angles,
shadows, occlusions, unique fonts, and lack of language context are all problems that make
the typical STR problem signficantly more difficult than a straightforward OCR application.

In fact, while state-of-the-art OCR systems typically achieve character recognition rates over
99% on clean documents, they fail catastrophically on STR problems. Humans of course,
have no trouble reading text in the environment under normal conditions. One reason for the
gap between human and machine performance in STR problems could be that people are
able to apply many more sources of information to the problem than current automated
techniques. This is not unique to character recognition, of course; using more information
sources in approaches to many computer vision problems should improve results. Because
several sources of information factor into the reading process, we require a computational
model that can combine factors in a unified framework.

In this paper, we propose a probabilistic graphical model for STR that brings together
bottom-up and top-down information as well local and long-distance relationships into a
single elegant framework. In addition to individual character appearance, our model
integrates appearance similarity, one underused source of information, with local language
statistics and a lexicon in a unified probabilistic framework to reduce false matches—errors
in which the different characters are given the same label—by a factor of four and improve
overall accuracy by greatly reducing word error. The model adapts to the data present in a
small sample of text, as typically encountered when reading signs, while also using higher
level knowledge to increase robustness.

The paper is organized as follows. In the remainder of this section, we give additional
background on using similarity and lexicons in text recognition and discuss why sparse
belief propagation is important. The next section briefly introduces the discriminative
probabilistic framework in terms of factor graphs. Section 3 describes the particular form
and features of our model for scene text recognition. We describe the particulars and
advantages of sparse belief propagation for efficient approximate inference in Section 4. Our
experimental results on scene text images are presented in Section 5, and we conclude in
Section 6.

1.1 Similarity
Because of language priors or other constraints, it is not unusual for a text recognizer to
assign two different labels to two identical characters (see Figure 1). This is particularly
common when the appearance model for a font is weak, causing high character ambiguity.
This happens frequently in STR due to the lack of training data for a particular font. In an
effort to make character recognition more robust to font variations or noise, recent advances
in OCR performance have exploited the length of documents to leverage multiple
appearances of the same character. Hong and Hull [3] cluster word images and then label the
clusters, rather than individual words. Similarly, Breuel learns a probability of whether two
images contain the same character and uses the probability to cluster individual characters
[4], with subsequent cluster labeling (i.e., by voting) and nearest neighbor (most similar)
classification [5]. These methods capitalize on the idea of similarity, that characters and
words of similar appearance should be given the same label. However, they suffer from the
drawback that there is no feedback between the labeling and clustering process. Hobby and
Ho [6] ameliorate this somewhat by purging outliers from a cluster and matching them to
other clusters where possible. These processes all solve the clustering and recognition
problems in separate stages, making it impossible to recover from errors in the clustering
stage. Furthermore, they rely on having hundreds or thousands of characters in each
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recognition problem so that clustering is practical, making them impractical for reading
short text segments like those encountered in the STR problem.

Prior to our recent work [1], the dissimilarity between character images had not been used as
evidence against giving them the same label, but in many circumstances this too is a
reasonable approach. Previous clustering-based methods only ensure that all cluster
members are given the same label; they do not prevent different clusters from being
assigned the same label.

Consider the example in Figure 1. The top row of text is the result of reading the sign using
only basic information about character images, and the lowercase l (ell) is mistaken for an
uppercase I (eye). The next result combines the image information with some basic local
language information. This does not correct the error but in fact introduces new errors. The
image and language information is based on local context and do not require any global
consistency. By factoring in character similarity information in the third line, the errors are
corrected; the two e characters that appear the same are given the same label, while the land
t characters of dissimilar appearance are given different labels. In contrast, using similarity
information first to determine which characters are the same and then identifying character
clusters, as shown in the last line, does not perform as well as a unified model. This is
particularly true when the number of characters is very small. We present in the first part of
this paper a model that incorporates all of these important information sources [1].

Kumar and Hebert [7] have used such a strategy for the general image labeling problem,
associating image sites with particular labels and biasing the eventual classification by
measuring the similarity of neighboring image regions. Our approach broadens this to
incorporate all pairs of characters that must be classified, not just neighboring characters.

1.2 Lexicon
Higher-level information, such as a lexicon, can also help improve recognition. When
images have low-resolution or contain uncommon fonts, a lexicon can inform an otherwise
unreliable character recognizer. Humans are more reliable at reading characters when they
are present in words, or pseudo-words [8], motivating us to consider how this information
may be incorporated in the recognition process. The earliest unification of character
confusion likelihoods with a lexicon constraint is by Bledsoe and Browning [9]. Device-
specific character confusion likelihoods are combined with word unigram probabilities to
find the most likely dictionary word given the OCR output. One major drawback is that the
computational load is linear in the size of the lexicon. For low-resolution document images,
Jacobs et al. [10] have improved accuracy by forcing character parses to form words drawn
from a lexicon, but this technique will not be able to correctly recognize non-lexicon words.
In the STR problem, non-words are quite common due to the abundance of proper names.

Related work on specialized models for scene text recognition either ignores helpful
contextual and lexical information or incorporates them in an ad hoc fashion. For instance,
after isolated character recognition, Thillou et al. [11] postprocess results by applying an n-
gram model to the n-best list of characters. Beaufort and and Mancas-Thillou [12] similarly
use a lexicon in a post-processing stage with a finite state machine. Linguistic processing is
divorced from recognition in both cases by ignoring the relative probability of characters
based on their appearance. Alternatively, Zhang and Chang [13] have handled this by
explicitly including a lexical decision variable in a probabilistic model. However, their
model does not include local language properties, such as bigrams, for the case when a word
is not in the lexicon. We find both are important for recognition accuracy.
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As indicated above, one practical issue with using a lexicon is the time it takes to examine
candidate words in a large lexicon. Lucas [14] addresses this issue by reusing computation
in a trie-formatted lexicon. Another approach, taken by Schambach [15], is to eliminate
words from consideration based on the low probability of their constituent characters.

We present an addition to our discriminative model that incorporates a bias for strings from
a lexicon [2]. Modeling the lexical decision process allows word predictions to come from
outside the lexicon, based on the evidence and a prior bias for (or against) lexicon words.
Our model allows efficient approximate inference schemes by eliminating the need to
explicitly consider all possible strings, only evaluating entries from the lexicon. Notably, we
can speed this process even further by applying an approximate “sparse inference”
technique.

1.3 Sparse Belief Propagation
Belief propagation (BP) is a popular and simple method for learning and prediction in
probabilistic graphical models. The algorithm’s message passing operations require sums
over the domain of functions (factors) measuring local compatibility between assigned
labels. Since the complexity of the sum grows exponentially with the number of arguments
to these functions, it is typically only used with factors of two or three unknowns. Adding a
lexicon to our model introduces factors over several more unknowns—the characters of an
entire word. Without simplification and approximation, using belief propagation would be
untenable. Fortunately, non-lexicon information allows us to make reasonable predictions
about which characters are not possible candidates. We use the sparse belief propagation
algorithm proposed by Pal et al. [16] toward this end. By eliminating unlikely characters
from consideration in messages passed between nodes of a graphical model, we can
drastically reduce the set of words that must be considered. Previous work by Coughlan and
Shen [17] features an approach similar in spirit for pairwise functions, but it has not been
generalized to higher-order functions, and it uses thresholds for sparsity that may not
provide good approximations to the messages. Importantly, sparse belief propagation does
not completely drop characters from consideration. Rather, it merely reduces the contextual
dependence between characters when one of them has weak support based on other
information. Further details are given in Section 4.

In summary, by fusing the available information sources, such as character similarity and a
lexicon, in a single model, we improve overall accuracy and eliminate unrecoverable errors
that result from processing the information in separate stages.

2 Probabilistic Framework
Graphical models of probability are a powerful tool for describing and modeling the logical
dependence of various information sources and unknowns in a Bayesian framework. We
employ a discriminative undirected graphical model [18] for predicting character identities.

Let x be an input image representation and y = y1y2 … yn be the string of characters
contained in the image, taken from an alphabet Y. Letting I represent our information and
assumptions about the problem, we frame the task of reading text in images as an inference
problem—using I and some training data  —over a model or parameter space Θ:

(1)
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Note we have assumed that (i) given a prediction model θ, the training data  do not reveal
anything additional about y, and (ii) given the training data , an additional image x does
not give any information about the prediction model θ. Evaluating such an integral is non-
trivial, so we take the standard approach of finding the most likely model

(2)

and using the point approximation p(θ | , I) = δ (θ − θ ̂) so that the integral (1) becomes

(3)

The probability p(y | x, θ, I) is the typical undirected graphical model. Let C contain some
subset of the {1, …,n} positions of y, so that yC gives the values of the subset. The
conditional probability is expressed as a product of local factors,

(4)

where Z (x, θ) is the observation-dependent normalizing factor ensuring the expression is a
proper probability distribution. The non-negative factors fC express the local compatibility
among the unknowns in yC and the observation x, and  is a collection of the subsets for
indexing these factors. Typically there are several categories of factors that are instantiated
several times in the product (4). Each of these instantiations involves the same function, but
accepts a different set of arguments C. For example, the same character recognition function
is applied at many locations in the image.

2.1 Inference
The index sets C induce a bipartite graph between the factors fC and the unknowns y, as
illustrated in Figure 2. When this graph (not including x and edges connected to it) is a tree,
exact inference may be performed efficiently via the sum-product algorithm [19], also
known as belief propagation (BP). Local information stored in the factors influences the
global interpretation by passing messages between the factors and nodes. Factors
neighboring node i in the graph are indexed by members of the set  (i) = {C ∈ | i ∈ C}.
The node-to-factor messages have the form

(5)

the product of all the incoming messages to a node from other neighboring factors. The
resulting functional message is normalized (sums to 1 over yi) for numerical stability. The
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factor-to-node messages combine the local information expressed in the factor and the
current messages from its other arguments,

(6)

Note that the summation is taken over all values of the nodes in the set C \ {i}.

If the graph has cycles, these messages are iteratively passed until convergence, which is not
guaranteed but empirically tends to give reasonable results in many applications. Greater
detail about factor graphs and inference may be found in an article by Kschischang et al.
[19]. We add more about a sparse version of BP for accelerating inference in Section 4.

2.2 Training
To learn from training data, the probability distribution (4) is parameterized by θ, with each
factor fC having some subset of the parameters, θC, as arguments. Given a set of
independent, labeled examples  = {y(k), x(k)}k, the parameters may be estimated by
maximizing the posterior probability p(θ | , I). The optimization (2) is the usual maximum
a posteriori (MAP) estimation with some parameter prior p(θ | I) [18]. Using Bayes’ rule,
the parameter posterior is

(7)

where the product terms have the same model form (4). After taking logarithms, the
objective function is given by

(8)

where p(θ | α, I) is a prior on the parameters with conditioning parameters α and information
I. The set of factors  depends on how many characters there are in the observation and is
thus indexed by the particular example k. When fC is log-linear in θC (as all of the learned
factors we employ are) and the log prior is convex, the objective  (θ; ) is convex, and a
global optimum can easily be found.

Because it is a combinatorial sum, the normalization term Z (x, θ) is generally intractable.
To simplify training, we use a piecewise approximation [20], which changes Z from a sum
over all y to a product of local sums over the terms for each factor. Thus, the logZ term in
(8) is replaced by the upper bound ΣC∈C log ZC where
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(9)

Since the factors are local and typically include only a small set of unknowns, sums over the
set of the values for yC are practical to compute. Replacing logZ with an upper bound means
we are optimizing a tractable lower bound on the log posterior probability  (θ; ).

3 Markov Models for Recognition
Using the probabilistic framework described in the previous section involves defining
parameterized factors for the data and the labels. For this recognition problem, model input
will be size-normalized character images and the output is the predicted character labels. In
this section we will outline the details of our model, including the form of the input and
features, the relevant information being used, and the particular factors that are learned to
form the model.

Our model makes the following assumptions:

1. For each sign, the input is all of the same font

2. Characters have been segmented (that is, the coordinates of their bounding boxes
are known), but not binarized

3. Word boundaries are known

Our conditioning information I consists of these in addition to our other basic information.
Assumption 1 is especially reasonable for signs containing small amounts of text. Although
exceptions to this certainly exist, our database of signs has only a few that stretch the
assumption, and it is not difficult to imagine introducing a factor for deciding whether two
characters or words are in the same font. While Assumption 2 is not the most general, with
high-resolution digital cameras, adequately lit scenes and an area of interest that occupies
sufficient area on the sensor, it is reasonable. Note that it does not require a binary image,
only a rough localization of each character. Furthermore, with an automated version of
Niblack’s binarization algorithm [21], we can accurately segment over 96% of characters in
our evaluation. Finally, assumption 3 is not overly restrictive since word boundaries can
mostly be found by modeling intra- and inter-word character spacings. These assumptions
are all reasonable for the problem we are trying to solve, namely, reading short amounts of
text found on signs in images of scenes.

In the remainder of this section we build up our model from its constituent factors, based on
the assumptions listed above. These will reflect several useful sources of information,
namely:

• character appearance (what do As, Bs, etc., tend to look like?)

• local language properties (what letters tend to follow other letters? where do we
expect capital letters?)

• character similarity (which characters look similar or different?)

• lexicon (is this string more likely to be elm or clm)?

Each of these are combined effortlessly into a unified model for character recognition with
the basic form outlined in Section 2.

Weinman et al. Page 7

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2011 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Eventually, we will want to compare the results of the model with various information
sources (mathematically represented as factors) included. Since we denote the assumptions
or information I that a particular model p (y | x, θ ̂, I) employs, this is used to also indicate
the information sources being used. To this end, when a particular class of factors is used,
e.g., fA for character appearance, we indicate this by conditioning the model on the
corresponding “information” IA.

The models resulting from the combination of the factors we will define are shown in Figure
2. All of the various factor types may be combined in one model, but we show them in two
separate graphs for clarity. The top graph highlights the “adaptive” model that uses
similarity between the character images as part of the recognition process. The bottom graph
demonstrates how other factors may be introduced to promote the recognition of strings as
lexicon words. Details of each of these factor types are given in the remainder of this
section.

3.1 Appearance Model
The most obvious component of a recognition model involves relating character appearances
to their identity. Gabor filters are an effective and widely used tool for feature extraction that
decompose geometry into local orientation and scale [22]. Their success in handwriting
recognition [23] and printed character recognition [24] demonstrates their utility for this
task. Using a minimally redundant design strategy [25], a bank of 18 Gabor filters spanning
three scales (three full octaves) and six orientations (30° increments from 0° to 150°) is
applied to the grayscale image x, yielding complex coefficients f that contain phase
information. The real and imaginary parts of the filter are even and odd functions,
respectively.

Taking the complex modulus of the filter outputs |f| provides phase invariance and makes
the responses less sensitive to translations of the input; see Figure 3. Practically, this makes
the filter responses invariant to the polarity of the text (white-on-black versus black-on-
white). After filtering, the complex modulus of each response image is downsized by
applying a Gaussian blur and downsampling. This adds a slight amount of insensitivity to
feature location for different fonts but mostly serves to reduce the size of the feature vector
used as input to the model. All of the downsized responses are collected into a single feature
vector for each character, Fi, a function of the original image x.

Given a relationship between the identity of the character and the filter responses, this
information is denoted IA because it is based on the appearance of the character image. We
then associate character classes with these filtered images by a log-linear factor

(10)

The same appearance parameters are used for every character, so there is no dependence of
θA on index i.

3.2 Language Model
Properties of the language are strong cues for recognizing characters in previously unseen
fonts and under adverse conditions; much previous work has made use of it in various ways
(see, e.g., [26]). We add simple linguistic properties to the model in the form of two
information sources: character bigrams and letter case.
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It is well known that the English lexicon employs certain character juxtapositions more often
than others. N-grams are a widely-used general feature for character and handwriting
recognition. Our model uses this information IB via the log-linear factors

(11)

where i and j are ordered, adjacent characters within a word. In this model, we do not
distinguish letter case in the bigrams, so the weights in θB are tied across case (i.e., θB (R,A)
= θB (r,A) = θB (R,a) = θB (r,a)).

Prior knowledge of letter case with respect to words also proves important for accurate
recognition in English. In some fonts, potentially confusable characters may have different
cases (e.g., l and I, lowercase ell and uppercase eye, respectively). We can improve
recognition accuracy in context because English rarely switches case in the middle of the
word. Additionally, uppercase to lowercase transitions are common at the beginning of
words, but the reverse is not. Note that digit characters have no case. This information IC is
incorporated with the feature weights

(12)

when i and j are adjacent characters within a word and

(13)

when i and j are the first and second characters of a word, respectively. Thus, for this letter

case model, fC, we have the parameters . Note that the functions (12)
and (13) have the same general log-linear form as (10) and (11), but we present their more
compact, tied form here.

3.3 Similarity Model
An important, underused source of information for recognition is the similarity among the
character images themselves—two character images that look the same should rarely be
given different labels. Toward this end, we need a comparison function for images. We have
found the vector angle between the concatenated real and imaginary parts

(14)

of filtered image vectors fi and fj for each character to be a robust indicator of image
discrepancies. We use
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(15)

as a distance measure, which has range [0,2]. If ρ is the angle between the two vectors  and

, the distance is related by ρ = 1 − arccos κ. When the distance is small the characters are
very similar, but when large they are dissimilar. Using the information IS, we add the factors

(16)

where δ(·, ·) is the Kronecker delta, and

(17)

is a vector of basis functions that transform the distance κi j between two character images in
x. The first two functions each have a distance range boundary as an asymptote, and the last
is a bias term. Thus, the first weight in the parameter vector θS establishes a high
compatibility reward for small distances, the second weight a low compatibility penalty for
larger distances, and the bias helps (in conjunction with the first two) establish the crossover
point. This is qualitatively similar to the inverse of the sigmoid function with a scaled range,
except that it is no longer symmetric about the zero-crossing; see Figure 4. Once again, we
note that the function (16) has the general log-linear form as fA, but we present its more
compact version here.

3.4 Lexicon Model
A lexicon is a useful source of high level information that can be applied to recognition. We
propose another set of factors for our model that incorporates lexicon information. First, we
add auxiliary unknowns that represent lexical decisions. We then add two new factors
involving these and the character unknowns. The first factor is simply a bias determining
how likely it is a priori for a given string to be from the lexicon. The second is a simple
binary function that connects all the constituent characters of a word to the lexical indicator.
Although this factor is simple in appearance, a naïve implementation would present a great
deal of difficulty for common message-based approximate inference methods, such as BP.
Fortunately, the form of this particular function makes the implementation much easier,
though still linear in the lexicon size. This can be problematic when the lexicon is large,
therefore we use a sparse message passing scheme for a lexical model that avoids most of
the overhead required with no loss of accuracy on our data. In the remainder of this section,
we introduce the new lexical factors, followed by the specialized message passing scheme
for inference in the resulting model.

3.4.1 Lexicon Factors—To represent the lexical decision, we introduce auxiliary
unknowns w = wAwBwC … that, for each word in the string y, indicates wk ∈ {0,1} whether
it is present in the lexicon L. For notational clarity, we use numerical indices for the
character unknowns y and alphabetical indices for the lexical/word unknowns w. Let C be
the set of unknowns relating to a single word unit; such a set will contain the indices of
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some letters y and one entry from w. The factor relating the lexicon, the predicted string, and
the lexical decision, is a simple binary function

(18)

where we have written wC to indicate the value of the sole index of w present in C. Thus, the
corresponding factor (18) is zero only when wC indicates the string is a word but yC is not
found in the lexicon. This tautological factor simply represents the proposition

(19)

and would not be much use were it not for the fact the value of wC is unknown. The
indicator wC could help control other aspects of interpretation in the model. For instance, we
might want to disable the influence of the local language compatibilities when wC = 1; no
matter how unlikely the word yukky is1, it is in the lexicon and should not be discounted for
its unusual bigrams during recognition.

The other new factor is a simple term biasing the preference for strings to be drawn from the
lexicon

(20)

This function also has a general log-linear form, but we present here its interpretable
compact form, so that the single parameter θL can be thought of as penalty for non-lexicon
predictions.

Introducing these two new classes of factors fW and fL will be reflected by conditioning on
information IW and IL. The factor graph for a model including these factors appears in the
bottom of Figure 2. In the next section, we describe more about how the two new
compatibility functions (18) and (20) affect inference in the model and introduce the
application of a sparse inference technique for making predictions using loopy BP.

3.5 Inference with the Lexicon Factors
Inference, even approximate inference, in the model proposed above might be
computationally taxing in general. The sum-product algorithm involves computing local
marginals of factors, which is generally much easier than the more global marginalization
desired. However, the complexity of marginalizing the lexicon word factors fW grows
exponentially with the length of the word. For instance, with a six letter word in a 62
character alphabet, each iteration of message passing would require a sum over 626 or nearly
57 billion strings.

Fortunately, the on/off “gating” behavior of the function fW allows us to take advantage of
its special form. The effect is that when wC = 1, the “product” in the sum-product equation
only needs to be summed over words in the lexicon. For the case when wC = 0, it is summed

1Under a bigram model trained on a corpus of English text, the word is actually the least likely from a large lexicon.
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over all strings, but the sums over constituent characters become independent. This means
we can make the calculation a much more efficient product of sums. Thus, the special form
(18) makes the inference calculation linear in the size of the lexicon or the character
alphabet, rather than exponential in word size. The computational expense of a six letter
word drops from billions of possible strings to just a few thousand lexicon words.

As a concrete example, consider the three letter word y5y6y7 with lexical decision unknown
wB in the right-hand portion of the bottom graph in Figure 2. The general form of a factor-
to-node message (cf. Eq. 6) is a product of the factor times the messages to that factor from
all its arguments except the message recipient. This product is then summed over all those
arguments leaving a function whose value is dependent on the recipient node. To calculate
the message from a lexicon factor to the character y5, we may split the marginalization (the
summation of all unknowns except y5) into two cases, one where the string is a lexicon word
and another when it is not: the two values for wB. For the lexicon factor we are calling C, the
specialized form of the message from C to the character y5 has the form

(21)

We first separate the sums for the two values of wB. Because the factor  is zero
whenever the argument yC is not in the lexicon but wC = 1, the sum can be restricted from
all values of yC\{5} to the portion of the lexicon that agrees with the argument value y5 when
wB = 1. Furthermore, when wB = 0, the factor is always one. In the last line, we may push
the sums over each character value y6 and y7 in against the corresponding messages.
Because these messages are normalized to sum to one in practice, these terms are dropped,
leaving us with a relatively simple sum over a subset of lexicon terms. Calculating the
message to character 5 for all values of y5 involves a sum over all lexicon words of the
appropriate length. Messages to other character nodes will have the same form, with the
number of node-to-factor messages in the product depending on the length of the word.

Only two values need to be computed for messages from the factor to the word indicator wB.
When the string is not a lexicon word (wB = 0), the value of the factor is always 1, and the
sums over the remaining unknowns in (6) may be pushed inside the product against their
corresponding message terms. This results in a product of node-to-factor message sums.
Since the messages are normalized, the product (and thus the message value) is simply a
constant 1.

When the string is a lexicon word (wB = 1), the product of messages must only be evaluated
at lexicon strings because fC is zero when the string is not in the lexicon:

(22)

4 Sparse Belief Propagation
Although the sums for belief propagation (21) and (22) have a complexity linear in the size
of the lexicon, they can still present a computational drag in practice. The top-down
information is very important for accurate recognition, so we use a bottom-up scheme to
speed the recognition process. Pal et al. [16] propose a probabilistically motivated sparse
inference method that simplifies the message passing calculations. The central idea is to

Weinman et al. Page 12

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2011 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reduce the number of summands in such factor-to-node messages by creating zeros in the
node-to-factor messages.

At every node, a belief state, or local approximate marginal probability, is represented by the
normalized product of messages to that node from its adjacent factors

(23)

During each iteration of loopy BP, each factor combines information from its adjacent node
arguments and returns updates to them. As described above, the update for the lexicon factor
involves a sum over every word in the lexicon (of the appropriate length), even those words
containing characters with low probabilities. We may therefore desire to eliminate these
unlikely lexicon words from consideration during the belief update stage. The well-
motivated approach given by Pal et al. is to revise the local beliefs such that the largest
number of the lowest probability states are given zero probability, subject to a constraint on
the divergence of the sparse belief from the original. In other words, consider the fewest
number of characters while staying close to the original beliefs. Employing this strategy, we
expect to greatly reduce the amount of lexicon scans for a given query.

If bi represents the marginal belief for node i in the graph, our goal is to compress this
distribution to  such that it has the maximum number of zero entries, subject to a
divergence constraint:

(24)

where

(25)

is the Kullback-Leibler divergence between the original and compressed beliefs. This can
easily be accomplished for each node in time O(|Yi| log|Yi|) by sorting the beliefs and
calculating the log cumulant. Once the sparse belief  is calculated, the messages to the
factors mi→C (cf. Eq. (5) ) are compressed to respect the sparsity of  and re-normalized.

These sparse node-to-factor messages are then subsequently used to calculate the reverse
factor-to-node messages. The practical effect of sparse BP is that certain characters are
temporarily eliminated from consideration. For instance, the visual and contextual evidence
for y7 to be a t may be so low that it can be assigned a zero belief without greatly changing
the current local marginal. When this happens, we may eliminate summands for any word
whose second character is t in the messages (21) and (22). Taken together, pruning highly
unlikely characters reduces the lexicon under consideration from tens of thousands of words
to just a few, dramatically accelerating message passing-based inference.
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In the original work on sparse BP, only a linear chain graph was used. This topology permits
exact inference and requires messages only be passed once in each direction. Here, a loopy
variant is used. We note that depending on the order of operations, characters need not be
strictly eliminated from possibility when a sparsifying step is taken. Specifically, if outgoing
messages to factors are made sparse in agreement with the compressed disribution , this
only means that terms are dropped from the summation used to calculate messages to other
nodes. The return message is not sparse in general. Thus, using sparse methods to
“eliminate” characters means only that we lose the influence of the dropped character
hypotheses upon their logically dependent nodes. The final belief at a node (from which
predictions are made) is calculated using the most recent incoming messages from the
factors, which are not generally sparse. Therefore we have not necessarily committed to a
mistaken elimination of correct character hypotheses. In fact, in some of our experiments,
certain character hypotheses are restored as information propagates through the graph.

The information-theoretic criterion for pruning states stands in contrast to that of Coughlan
and Shen [17]. In their dynamic quantization algorithm, states are eliminated by
thresholding the beliefs bi (yi) ≥ ε and restored by keeping states yC that have high factor
values fC (yC) ≥ ε. The former criterion may not be stable when the marginal distributions
are relatively flat, having many states with equally low probability. The latter criterion may
not accurately reflect information from elsewhere in the model. By contrast, the KL-
divergence criterion ensures that a minimum total probability mass is maintained for each
node’s beliefs, and this is constantly updated as information propagates through the graph.

5 Experiments
In this section we present experimental validation of our model on sign images containing
previously unseen fonts and non-lexicon words. The alphabet of characters recognized, Y,
consists of 26 lowercase, 26 uppercase, and the 10 digits (62 total).

We find that adding similarity reduces character recognition error by 19%, whereas using it
in a separate stage harms accuracy. Adding the lexicon reduces word recognition error by
35%. Using sparse BP eliminates 99.9% of the lexicon, giving a 12X speedup with no loss
in accuracy.

First we describe the data used in our experiments for both training and testing, and then the
procedures used to train and evaluate the models. The section concludes with the
experimental results and a subsequent analysis and discussion.

5.1 Experimental Data
Because we have such a rich model involving many information sources, there are many
corresponding data sets for training, including character images, English text corpora, and a
lexicon. We describe these after detailing the nature of the primary evaluation data.

Sign Evaluation Data—Our evaluation data comes from pictures of signs captured
around a downtown area. There are 95 text regions (areas with the same font) totaling 215
words with 1,209 characters. Many signs have regular fonts (that is, characters appear the
same in all instances) that are straightforward, such as basic sans serif, and should be easily
recognized. Other signs contain regular fonts that are custom or rarely seen in the course of
typical document recognition. Finally, there are a few signs with custom irregular fonts,
where repeated characters have a different appearance. These pose the greatest challenge to
the premise that similarity information is useful. Examples of each of these three categories
are shown in Figure 5. The signs are imaged without extreme perspective distortion—they
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are often roughly fronto-parallel. Following the assumptions laid out in Section 3, we have
annotated our evaluation data with the approximate bounding boxes for the characters.

Synthetic Font Training Data—We generated images of each character in several
commercially available fonts using GIMP.2 Each image is 128 ×128 pixels with a font
height of 100 pixels (an x-height of roughly 50 pixels). No anti-aliasing was used in the
image synthesis and the bounding box of the character is centered in the window. 3

Text Corpora—A corpus of English text was acquired from Project Gutenberg4—82
books including novels, non-fiction, and reference for a total of more than 11 million words
and 49 million characters (from our 62 character alphabet).

Lexicon—The lexicon we use is derived from SCOWL5 and contains 187,000 words
including proper names, abbreviations, and contractions. Because our current model does
not account for word frequency in its lexical bias, we only use those words in the list up to
the 70th percentile of frequency for our lexicon.

5.2 Experimental Procedure
In this section we describe the procedure used for training and evaluating our model. We
first outline the nature of the overall model parameter training followed by details of training
for each component of the model. The section concludes with a brief description of how the
model is applied to the actual image data for evaluation.

5.2.1 Model Training—The model parameters  are learned
from the data outlined above. Typical parameter estimation procedures in such
discriminative joint models requires labeled data involving all the information at once. In
other words, training data should be like the testing data.

The parameters θA, θB, θC, and θS are each learned independently in the piecewise,
decoupled fashion described in Section 2.2, while the lexicon bias parameter θL is chosen by
cross-validation. Next, we detail the training procedures for each of these parameter sets.

Appearance Model: The character image appearance model parameters θA are trained on
200 fonts, and 800 fonts are used as a validation set. We use a Laplacian prior [27], [28]

(26)

where ||·||1 is the ℓ1 vector norm. The value of hyperparameter α that yields the highest
likelihood on the validation set is the one used for optimizing the posterior for θA.

The filter outputs for the 128 × 128 training images are downsized by a factor of four to 32
× 32. Although some information from the highest frequency filters is lost, this reduces the
dimensionality of θA by a factor of 16.

The evaluation data is far from having perfect contrast (a nearly 0/1 binary image). As a
very simple alternative to a more elaborate contrast normalization scheme, we scale the

2GNU Image Manipulation Program http://www.gimp.org.
3Font images and sign evaluation data are publicly available at http://www.cs.grinnell.edu/~weinman.
4http://www.gutenberg.org.
5http://wordlist.sourceforge.net.
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training images so that the contrast (absolute difference between background and character
intensity) is 0.3.

Language Model: To avoid the need for performing inference on large chains of text, we
use piecewise training (c.f., 2.2) to approximate the likelihood. The approximation is
especially advantageous for the bigram and case switch models (11), (12), and (13), which
do not depend on an observed image. Thus, training instances may be collapsed into unique
cases and weighted by their frequency. For example, the corpus of 49 million characters
contains nearly 780,000 occurrences of the bigram th. Rather than doing inference on the
entire chain of text with an exact method, we need only do inference once in a two-node
chain for th and count it 780,000 times.

The books were split into two sets of roughly equal size, one for training and one for
validation. The (case-insensitive) bigram counts were taken for each set, and the value of the
hyperparameter α for the Laplacian prior (cf. Eq. (26) ) that yields the highest likelihood on
the validation set is the one used for optimizing the posteriors for θB on the entire corpus.

In practice, we found that enabling the language model, regardless of the value of the
auxiliary word indicators w improved accuracy over disabling it whenever the
corresponding wk = 1. Our results reflect this aspect of the model.

Case model parameters θC use a uniform prior.

Similarity Model: Because the function fS is one whenever its two character arguments
have different labels and otherwise has a functional value parameterized by θS (displayed in
Figure 4), we may equivalently learn the parameters for a function fS that takes only a single
argument y with a label of Same or Different. The piecewise training approximation
described above follows naturally because these character pairs are completely decoupled
from any related stream of text.

To learn the similarity parameters θS we generated pairs of the same character (in the same
font) and pairs of different characters (also in the same font) with the following procedure.
First, we select a font and a character uniformly at random. To produce a similar character,
we generate a random linear transformation with rotation θ ~  (0,1°), scale factors σx, σy ~

 (1,0.01), and skew factors ρx, ρy ~  (0,0.005). This transformation is then applied to the
original image. To produce a dissimilar pair, a different character is chosen uniformly at
random. We choose a different character from the same font, having assumed the input is
from a single font. Such characters are likely to be more similar than different characters
from different fonts, allowing a better and more appropriate threshold to be learned.
Additive Gaussian noise ε ~  (0,0.01) is added to the original and transformed images prior
to Gabor filtering. Unlike for the appearance model, the full-size (128 × 128) filter outputs
are used to calculate the distance κi j between images. The finer details are useful for these
comparisons, and the dimensionality is not an issue since fS only has three parameters.

For optimal predictive discrimination, the ratio of same to different pairs in the training data
should be the ratio we expect in testing data. Toward this end, we sample small windows of
text from our corpus. The window length is sampled from a geometric distribution with a
mean of 10 characters and length at least 3; these parameters are chosen based on our
expectation of sign contents. In 10,000 samples, the same/different ratio is consistently
about 0.057. This ratio controls the relative number of similar and dissimilar pairs we
generated (100,000 total).

Similarity model parameters θS use a uniform prior.
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Lexicon Model: We found acceptable performance for models conditioned on IA, IB, IC, IS

with corresponding parameters found in the decoupled piecewise fashion detailed above.
One way of doing this for the bias parameter θL is to use our English corpus, using each
word from the text as a training instance with w = 1 if it is in our lexicon L and w = 0
otherwise. We found that decoupling the learning of θL in this way does not yield a strong
enough lexical bias to improve results as originally hoped, so we turn to a cross-validation
strategy to “re-couple” the parameter learning.

To add IL to the model, we keep all other parameters fixed at their values learned from
decoupling. The 95 regions in the evaluation sign data are randomly split into ten subsets. In
a ten-fold cross-validation procedure, we iteratively held out one set for testing. Several
values of θL are used, and the one with the highest word accuracy on the nine training sets is
then applied to the test set for evaluation.

We can also force the model to always predict words from the lexicon by adjusting the bias
θL to −∞. We will use  to indicate such a closed-vocabulary assumption.

Sparse message passing as proposed by Pal et al. [16] was created for BP in a chain-
structured graph where a well-defined forward-backward schedule for message passing
achieves exact inference. While the graph based on IA, IB, IC is a chain, adding the lexical
information IW makes this graph not only not chain-structured, but cyclic. Thus, the results
of BP will not be exact in general. It is only IW that is truly problematic from a
computational standpoint. The other messages—of which there are only a few—only require
complexity of at most O(Y2), which is substantially less than the messages from the lexical
factor. For this reason, we run BP in a phased schedule, only sending any lexical factor to
node messages after the others have converged. Once these messages have converged, we
have the best possible local marginals on the available information, excepting IW and IL. We
then use these beliefs for computing the sparsity of the character states y. This sparsity is
calculated once, then the lexical information IW, IL is introduced, and the same sparsity
structure is maintained. Belief propagation then continues until the termination criterion is
reached (convergence or an iteration limit).

This phased processing has two advantages. First, because messages are passed within a
limited portion of the model until convergence, the beliefs used to calculate sparsity should
be more reliable since the available information has flowed throughout the graph. This
stands in contrast with the alternative of doing state pruning with the initial beliefs, which
will only be based on factors immediately adjacent to the nodes. Longer distance
dependencies certainly exist in these types of models, and these could have an effect on the
sparsity and correctness of the approximate beliefs. The second and arguably more
important advantage is that it avoids the need to make a complete lexical scan required in
the messages from the lexical factor. Since the messages are initialized to uniform, the
lexical factor merely ends up contributing positional unigrams to the initial belief. This is
not worth the cost of the lexical scan and could be modeled directly if we wished. Returning
to our initial point, we prefer to use the best available information before incorporating the
lexicon.

We use ε = 10−7 as the divergence bound for sparse BP. This corresponds to keeping nearly
all of the probability mass (e−ε) for each character. The runtime was sensitive to this, since it
controls the amount of pruning, but we found accuracy was not.

5.2.2 Model Application—Here we add a few additional details of how the evaluation
images are processed for the model. The height of the input characters in the evaluation data
is normalized so that the font size is roughly that of the appearance training data. Only filter
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responses from within the annotated bounding box of each character are used when
calculating the factors for appearance fA and similarity fS; image areas outside the bounding
box are zeroed out. Note that Gabor filters are applied to the actual grayscale image; no
binarization is performed.

5.3 Experimental Results
Here we describe the performance of several variants of our model on the evaluation data, as
well as alternatives from prior approaches to challenging character recognition problems.
First, we demonstrate the impact of using similarity information in a unified model for
recognition. Then, we investigate how incorporating a lexicon affects results.

5.3.1 Unified Similarity—Prior work using similarity incorporated this information in a
processing stage separate from that using character appearance. Here we will compare our
unified model to the approach of Breuel [4], [5], where characters are first clustered using
the degree of similarity as a distance metric. Following this approach, to cluster letters, we
maximize p (y|x, θ ̂, I, IS) for y via simulated annealing, initialized at the prediction derived
from IA (the strategy taken by Breuel [4]). The identity of each cluster is then chosen by
using the classification of each character derived from other models (sans IS) as a vote. Ties
are broken by choosing the label whose members have the lowest average entropy for their
posterior marginal, a strategy that slightly outperforms random tie breaking.

Table 1 gives the results of the unified model using different combinations of appearance
information IA, language information IB, IC, and similarity information IS. It also shows the
results when the similarity information is used first to cluster the characters, and the other
information (used separately) is then used to vote on character identities. Character accuracy
is the percentage of characters correctly identified (including case). To evaluate the ability
of our model to recognize different instances of the same character in the same font, for
intra-sign and intra-font characters we measure:

• False negative rate: Percentage of character pairs that are the same but are given
different labels.

• False positive rate: Percentage of character pairs that are different but are given
the same label.

• Hit rate: Percentage of character pairs that are the same, given the same label, and
correct (correctly labeled true positives).

For the model IS, only false negative and positive rates may be reported as cluster purity
measures. Figure 6 contains examples of signs correctly read, and Figure 7 shows examples
from the evaluation set that are more difficult.

5.3.2 Lexicon-Based Model—In addition to the unified similarity model, we also test the
effect of the integrated lexicon and the impact of using sparse BP. Table 2 compares the
character and word accuracy for our model with varying amounts of information. For
comparison, the output of our best lexicon-free model is passed through the spell-checker
Aspell, keeping the top suggestion. Figure 8 shows results on example data of varying
difficulty, including where corrections were made and errors introduced.

We show in Figure 9 (top row) the histogram of how many characters remain possible after
belief compression with sparse BP for several of the models. The elimination of many
characters from consideration excludes certain words in the lexicon with characters in
particular positions. The resulting reductions in length-appropriate lexicon words are shown
in the bottom row of histograms of Figure 9. Different word lengths have differing numbers
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of possible words in the lexicon, so we give length-specific lexicon size-normalized values.
However, to illustrate the raw impact we also give the median absolute size of the resulting
lexicon.

Table 3 compares the accuracy of full loopy BP and the sparse variant used to speed up
prediction on the two best models, one with similarity and a lexicon, and one with only the
lexicon. We also compare the relative speed of these two models and the different inference
techniques in Table 4, as measured by the geometric mean of time per character (to
normalize for query length) on the signs [29].

5.4 Discussion
5.4.1 Similarity Model—Figure 6 contains examples of signs correctly read without the
lexicon, showing that the features are robust to various fonts and background textures (e.g.,
wood and brick). Although the number of characters per sign is small compared to OCR
applications, adding similarity information undoubtedly improves character recognition
accuracy, reducing overall character error by nearly 20% (Table 1). Not surprisingly, most
of this improvement comes from greatly reducing the cases when different characters are
given the same label (pair false positives).

Perhaps surprisingly, adding similarity information IS to the simple image information IA

does not alter the results. This is probably because test images have relatively little noise and
are mostly difficult due to font novelty and non-fronto-parallel orientations. Therefore, it is
expected that the same characters, though novel, would often be given the same label in
different locations, due to their logical independence solely with information IA. However,
when other sources of information are introduced to help resolve ambiguity, the similarity
information does make a difference because the bigram and case information are based on
local context. These can push the beliefs about characters in different directions, even
though they tend to look the same, because their contexts are different. Adding the similarity
information on top of these other sources ensures that the local context does not introduce a
contradictory bias. In the example of Figure 1, adding bigram information pushes the second
e to an a because preference for the ea bigram outweighs both ee and the character
appearance factor. Similarly, adding case information pushes the l from being recognized as
the upper case I to lower case t; due to kerning in this italic font, some of the F overlaps in
the l’s bounding box, leaving a little crossbar indicative of a t. Finally, adding the similarity
information corrects the l since it is very different from the final t, and corrects the es since
they are very similar.

All of the differences in accuracy for the unified model (Table 1) are statistically significant.
6 In particular, adding the similarity information IS to IA, IB, IC reduces character
classification error by 19%. While the reduction of false negatives is not significant with the
addition of IS, the false positives are cut by 79%. When the unified model is compared to the
pipelined clustering approach, the differences between IA, IB, IC, IS and IS → IA, IB, IC are
significant for character accuracy, false negative rate, and false positive rate.

The results of clustering the letters prior to recognition appear worse than doing recognition
outright with no similarity information. However, unifying all the information available—
including similarity— does yield better results than a distinct clustering step. It is interesting
that clustering yields fewer false negatives than the unified approach. This is most likely
because clusters are not forced to have different labels at the secondary assignment stage.
Thus, instances of the same character assigned to different clusters are not forced to have

6In all cases, significance is assessed by a paired, two-sided sign test on the accuracy per query; significance is determined by p <
0.02.
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different labels (up to the fact that there are only as many clusters as characters in our
alphabet Y). Indeed, if this were the case, the false negative rate would be intolerably high.
Conversely, the clustering pre-processing step does commit unrecoverable errors by pairing
characters that are not the same; subsequent information cannot reduce the false positive
rate. This is especially critical because the probability of two characters being the same a
priori is much smaller than their being different, thus the false positive rate has a greater
impact on total errors than the false negative rate.

Some signs in our data set present tremendous difficulty and challenge the assumption that
characters of the same “font” appear similar. Some of these are due to rendered warping
effects, custom fonts, or inconsistent shadow effects (see Figure 7). Other signs just have
unique fonts that are very different from those in the training set.

5.4.2 Lexicon Model and Sparse Belief Propagation—Here we discuss the results of
adding the lexicon, some of which are shown in Figure 8. 31 and BOLTWOOD are not in
the lexicon, so errors arise with the forced lexicon and Aspell models. DELANOS is in the
lexicon, but the image evidence overpowers the bias in this case; forced to be a lexicon
word, it is correctly interpreted. The last two images exemplify some of the more difficult
text in our data set.

Incorporating the lexicon factor boosts the character accuracy, but adding the language
model (i.e., bigrams) after the lexicon seems to have little impact. However, the word
accuracy reveals a 41.5% error reduction with the inclusion of the lexicon. Results do
improve over an appearance-only model when words are forced to be from the lexicon, but
some proper nouns and numbers in the data are not lexicon words and thus are
misinterpreted. Using Aspell fixes some simple errors, but most errors are more complex.
Ignoring the character image for poorly recognized words tends to reduce overall character
accuracy (since poor suggestions are made). We also experimented with trigrams and word
frequencies (i.e., using a word-specific value for UW ), but found no improvement in word
accuracy on our evaluation data.

As accuracy gets close to 100%, more data is required for significant improvements to be
shown. However, instead of comparing accuracies—the outcome of a decision rule–
comparing the likelihoods of the data is more direct way of showing model improvement.
When the likelihood of the correct character string is higher in one model than the other, it
demonstrates that there is indeed additional information contributed. In this case, when the
similarity is added to a model already using a lexicon, the log likelihood ratio improvement
is significant (the character accuracy increases from 93.88 to 94.62). The average
improvement is

(27)

In other words, the data is nearly four times as likely when we add similarity information.
This significantly moves the probabilities in the “right direction” relative to the decision
rule.

Sparse BP speeds the lexicon integration by eliminating characters from consideration after
belief compression (Figure 9). This results in a 99% reduction of candidate lexicon words
overall. We must consider different lexicon words for strings of different lengths. The
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median elimination of candidate words for each string was 99.97% (Figure 9), or just 6
remaining candidates when not normalized for the differing sizes of the original candidate
lists. Table 3 shows that using sparse BP yields no significant difference in accuracy.
However, there is a very large speed improvement (Table 4), from about 1.36s per character
to 0.11s in the complete model.

With sparse BP, adding the similarity information slightly increases the (already greatly
reduced) inference time because there are now more factors to pass messages among.
Fortunately, the additional similarity information does make character beliefs more certain,
allowing more characters and lexicon words to be pruned (Fig. 9). This keeps the additional
message passing overhead to a minimum while providing the benefit of a more accurate
model.

6 Conclusions
We have laid out a general framework for recognition that is probabilistically well-
motivated and can accept long range information in a unified fashion. The conceptual
advantage provided by discriminative Markov models easily allows one to imagine and
implement a relationship among the unknowns.

Our principal contributions are as follows. First, we have constructed a model that allows
unified processing of several important pieces of information (appearance, language,
similarity to other characters, and a lexicon). Second, we show how a similarity function can
be learned and integrated so that recognition is improved and more consistent with small
samples of novel fonts. Finally we have proposed a simple construction that incorporates a
lexicon into the model and facilitated its use by applying principled sparse methods.

The basic discriminative framework for character recognition is not new, but it has typically
been relegated to individual characters. Language information is usually employed after
recognition in a post-processing clean-up. Most prior models integrating language with
recognition have been generative, whose independence assumptions often prohibit them
from using richer features of the data (observations). A recent exception by Jacobs et al. [10]
is a discriminative model, but forces recognition output to be lexicon words. In contrast, our
model allows a smooth trade-off between the interpretation of a string as a known word, or
some other string.

Classifier adaptation is a useful strategy for recognition. However, when recognizing signs
or scene text, there is a scant amount of data, and it is generally insufficient for reliable use
with the existing methods for coping with novel typefaces. Our recognition strategy
improves on two issues lacking in previous approaches. First, by simultaneously
incorporating character identity and similarity information in a unified model, we eliminate
the need for distinct clustering/recognition steps and the potential for unrecoverable errors.
Second, we treat similarity and dissimilarity as two sides of the same issue, which prevents
dissimilar characters from being given the same label.

It has long been known that the use of a lexicon can improve recognition accuracy.
Although some computational tricks exist, the size of a lexicon can often be prohibitive for
processing that integrates recognition, rather than using it as a post-processing step. Our
model provides a natural, practical testbed for the sparse inference methods proposed by Pal
et al. [16] for acyclic models. This has the advantage over the traditional approach, which is
to prune to one possibility for higher-level processing or to use a more ad hoc method to
consider a reduced number of alternatives. By eliminating characters from outgoing
messages in a principled fashion, we are able to drastically reduce the size of the lexicon that
is used for a given query. This does not necessarily mean that characters are eliminated from
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possibility, since the incoming messages—from which beliefs are calculated—are not
generally sparse. We have also introduced lexical decision into a model that also includes
other important linguistic cues, such as bigrams.

In this article, we have presented a model for character recognition that ties together several
important information sources. We have shown that the unified model clearly improves
results over pipelined processing. No doubt many opportunities exist to add other
information sources. A richer character recognition model could easily be incorporated to
boost accuracy, and higher order n-grams for both characters and words could be added. All
manner of language models could be considered, and there is likely much mileage to be
gained by integrating these with the recognition process, rather than using them as post-
processors.
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Fig. 1.
A query image (top) is interpreted with varying amounts of image and linguistic
information. Only when unified with similarity information is the other contextual
information constrained to global consistency.
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Fig. 2.
Factor graphs for inferring characters y from a given image x. The solid (black) factors
capture relationships between the image and character identity (IA). Hatched (blue) factors
between neighboring ys capture language information including bigrams, (IB), and letter
case (IC). Shaded (red) factors among ys account for similarities between characters in x for
jointly labeling the string (IS). Cross-hatched (magenta) factors can constrain portions of y to
be drawn from a lexicon, (IW), while the tiled (cyan) factors capture the bias for lexicon
words, (IL). Top: Model using pairwise similarity comparisons. Bottom: Model
incorporating a lexicon and lexical decision unknowns wA and wB for two words.
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Fig. 3.
An example training character with (left to right) real, imaginary, and complex modulus
filter responses for one orientation and scale.
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Fig. 4.
Similarity basis functions and the learned compatibility for the distance between different
images of the same character; the coefficients are θS = [0.9728 9.3191 −6.9280]. The dotted
line in the right-hand figure shows the crossover from reward to penalty, which occurs at a
vector angle of about 37°.
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Fig. 5.
Examples of sign evaluation data illustrating (left-right) regular fonts similar to those found
in documents, unusual regular fonts, and custom irregular fonts.
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Fig. 6.
Examples from the sign evaluation data that are read correctly with IA, IB, IC, IS.
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Fig. 7.
Challenging signs from the evaluation data that have unique fonts, are hand-painted, or
contain three-dimensional effects, real and virtual.
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Fig. 8.
Example recognition results on difficult data. Correct words indicated in bold. Model
examples are IA, IB, IC, IS (No Lexicon), IA, IB, IC, IS, IL, IW (Lexicon), IA, IB, IC, IS, , IW

(Forced Lexicon) and IA, IB, IC, IS → Aspell (Aspell).

Weinman et al. Page 34

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2011 January 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Top: Histograms of character state space size after belief compression. Bottom: Histograms
of lexicon words (percentage) considered after belief compression. Left: Appearance only
model IA, IL, IW. Center: Appearance and language model IA, IB, IC, IL, IW. Right: Full
model with appearance, language, and similarity IA, IB, IC, IS, IL, IW.
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TABLE 1

Recognition results (percentages) of the unified model (top) and clustering followed by recognition and voting
(bottom) with varying information. Overall character accuracy, false negative (FNR), false positive (FPR), and
hit rates (HR) for pairs (see text) are given.

Information Char. Accuracy FNR FPR HR

IA 84.04 11.42 0.51 91.07

IA, IS 84.04 11.42 0.51 91.07

IA, IB 87.92 9.14 0.53 93.81

IA, IC 87.92 8.79 0.87 94.03

IA, IB, IC 91.65 6.85 0.66 98.68

IA, IB, IC, IS 93.22 5.45 0.14 99.26

IS - 22.67 0.25 -

IS → IA 83.54 7.03 0.69 88.28

IS → IA, IB 87.92 4.39 0.80 91.73

IS → IA, IC 87.76 5.80 1.02 92.72

IS → IA, IB, IC 91.40 3.69 0.88 97.26
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TABLE 2

Word and character accuracy with various forms of the model.

Information Char. Accuracy Word Accuracy

IA 84.04 46.05

IA, IB, IC 91.65 75.35

IA, IB, IC, IS 93.22 78.60

IA, IL, IW 93.63 72.56

IA, , IW
91.56 68.84

IA, IB, IC, IL, IW 93.88 85.58

IA, IB, IC, IS, IL, IW 94.62 86.05

IA, IB, IC, , IW
92.39 81.40

IA → Aspell 73.78 53.49

IA, IB, IC → Aspell 89.50 77.21

IA, IB, IC, IS → Aspell 90.98 79.07
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TABLE 3

Accuracies under sparse and full BP.

Char. Accuracy Word Accuracy

Information Sparse Full Sparse Full

IA, IB, IC, IL, IW 93.88 93.63 85.58 84.19

IA, IB, IC, IS, IL, IW 94.62 94.38 86.05 86.05
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TABLE 4

Relative speeds of models with full and sparse BP.

Model and Inference Mean Relative Speedup

No Similarity; Full vs. Sparse 19.53

Similarity; Full vs. Sparse 12.15

No Similarity vs. Similarity; Sparse 0.57
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